
130 IEEIYACM TRANSACTIONS ON NETWORKING, VOL. 1, NO, 1, FEBRUARY 1993

Loop-Free Routing Using Diffusing Computations
J. J. Garcia-Lunes-Aceves, Member, IEEE

Abstract-A family of distributed algorithms for the dynamic

computation of the shortest paths in a computer network or

Memet is presented, validated, and analyzed. According to these

algorithms, each node maintains a vector with its distance to

every other node. Update messages from a node are sent only

to its neighbors; each such message contains a dktance vector

of one or more entries, and each entry specifies the length

of the selected path to a network destination, as well as m

indication of whether the entry constitutes an update, a query,

or a reply to a previous query. The new algorithms treat the

problem of distributed shortest-path routing as one of diffusing

computations, which was firzt proposed by Dijkztra and Scholten.

They improve on algorithms introduced previously by Chandy

and Misra, JatYe and Moss, Merlin and Segatl, and the author.

The new algorithms are shown to converge in finite time after

an arbitrary sequence of link coat or topological changes, to be

loop-free at every instan~ and to outperform all other loop-free

routing algorithms previously proposed from the standpoint of

the combined temporal, message, and storage complexities.

I. INTRODUCTION

T
HE routing protocols used in most of today’s computer

networks are based on shortest-path algorithms that can

be classified as distance-vector or link-state algorithms. In a

distance-vector algorithm, a node knows the length of the

shortest path from each neighbor node to every network

destination, and uses this information to compute the shortest

path and next node in the path to each destination. A node

sends update messages to its neighbors, who in turn process

the messages and send messages of their own if needed. Each

update message contains a vector of one or more entries,

each of which specifies, as a minimum, the distance to a

given destination. In contrast, in a link-state algorithm, also

called topology-broadcast algorithm, a node must know the

entire network topology, or at least receive that information,

to compute the shortest path to each network destination.

Each node broadcasts update messages, containing the state

of each of the node’s adjacent links, to every other node in

the network.

Several routing protocols based on distance-vector algo-

rithms, called distance-vector protocols or DVP’s in this

paper, have been proposed for and implemented in computer

Manuscript received June 1991; revised January 1992; recommended

for transfer from the IEEE TRANSACTIONS ON COMMUNICATIONS by

IEHYACM TRANSACTIONS ON NETWORKING Editor Jeffrey Jtie. This

work was supported by SRI IR&D funds, by the U.S. Army Research Office

under contract DAM03-88-K-0054, and by the USAF-AFSC Rome Air

Development Center, and the Defense Advanced Research Projects Agency

under Contracts F30602-85-C-0186 and F30602-89-C-0015. This paper was

presented in part at the ACM SIGCOMM ‘89 Conference, Austin, lX, Sept.

19-22, 1989.

The author is with the Department of Computer Engineering, University of

Crdifomi% Santa Cruz, CA 95064, and with SRI International, Menlo Park,

CA 94025. (email: joaquin@NISC.SfU, COM)

IEEE Log Number 9206160.

networks including the old ARPANET routing protocol [18]

and the NETCHANGE protocol of the MERIT network [26].

Well-known examples of DVP’S implemented in intemetworks

are the Routing Information Protocol (RIP) [10], the Gateway-

to-Gateway Protocol (GGP) [11], and the Exterior Gateway

Protocol (EGP) [20]. All of these DVP’S have used variants

of the distributed Bellman-Ford algorithm (DBF) for shortest

path computation [4]. The primary disadvantages of this

algorithm are routing-table loops and counting to infinity [13].

A routing-table loop is a path specified in the nodes’ routing

tables at a particular point in time, such that the path visits

the same node more than once before reaching the intended

destination. A node counts to infinity when it increments its

dhwtce to a destination until it reaches a predefine maximum

distance value.

A number of attempts have been made to solve the counting-

to-infinity and routing-table looping problems of distance-

vector algorithms by increasing the amount of information

exchanged among nodes, or by making nodes to hold down

the updating of their routing tables for some period of time

after detecting distance increases. However, none of those

approaches solves these problems satisfactorily [6], [7], A

recent DVP developed for intemetwork routing, called the

Border Gateway Protocol (BGP) [16], specifies the entire path

from source to destination in update messages, as proposed by

Shin and Chen [25], to detect the occurrence of loops.

On the other hand, link-state algorithms are free of the

counting-to-infinity problem. However, they need to maintain

an up-to-date version of the entire network topology at every

node, which may constitute excessive storage and communi-

cation overhead in a large, dynamic network [24]. It is also

interesting to note that the routing protocols using link-state

algorithms, called link-state protocols (LSP), which have been

implemented to date do not eliminate the creation of temporary

routing-table loops [7]. Well-known examples of LSP’s are the

new ARPANET routing protocol [19], the 0S1 intradomain

routing protocol [12], and the Open Shortest Path First (OSPF)

protocol [2].

Whether link states or distance veetors are used, the exis-

tence of routing-table loops, even temporarily, is a detriment

to the overall performance of an intemet. This paper unifies

new and previous results on loop-free routing using distance

vectors into a new family of distance-vector algorithms [9]

that are always loop-free, operate with arbitrary transmission

or processing delays, assume arbitrary positive link costs, and

provide shortest paths within a finite time after the occurrence

of an arbitrary sequence of link-cost or topological changes.

The approach used in these algorithms treats the distributed

shortest-path routing problem as one of difising computations

1063-6693/92 $03C0 0 1993 IEEE

GARCIA-LUNES-ACEVES: LOOP-FREE ROUTING USING DIFFUSING COMPUTATIONS 131

[3], and matches or improves on the performance of previous

loop-free distance-vector algorithms [5], [13], [17], [23].

This paper refers to routing-table loops simply as loops,

and refers to a routing algorithm that is free of routing-

table loops as a loop-free routing algorithm. The following

sections introduce sufficient conditions for loop freedom using

arbitrary routing algorithms, explain the application of dif-

fusing computations to routing, describe and verify the new

family of algorithms, and compare their performance with the

performance of other algorithms in terms of their complexity

and average response to topological changes.

II. NETWORK MODEL AND NOTATION

A network is modeled as an undirected connected graph

in which each link has two lengths or costs associated with

it-one for each direction—and in which any link of the

network exists in both directions at any one time. A link-level

protocol assures that:

● Every node knows its neighbors, which implies that a

node detects within a Finite time the existence of a new

neighbor or the loss of connectivity with a neighbor.

● All packets transmitted over an operational link are re-

ceived correctly and in the proper sequence within a finite

time.

● All messages, changes in the cost of a link, link failures,

and new-neighbor notifications are processed one at a

time within a finite time and in the order in which they

occur.

Each node has a unique identifier, and link costs can vary in

time but are always positive. The distance between two nodes

is measured as the sum of the link costs in the path of least cost

or shorresfpath between them. This same model can be applied

to an intemet in which routers are the nodes of the graph and

networks are the edges of the graph [20]. For this case, the

three services listed above are provided by a datagram service

at the network level and a transport-level protocol similar to

the transmission control protocol (TCP) [21].

Throughout this paper, the following notation is used:

G: a connected network of arbitrary topology

E: The set of links in G

.V: The set of nodes in G

j: The identifier of destination node j c IV

(i, z-): The link in E between ‘nodes i and z

s}(t): The successor (or next hop) in the path to node j

currently chosen by node i at time t

l:(t): The cost of the link from node z to neighbor node k.

as known by node i at time t; the cost of a nonexistent link

or a failed link is considered to be infinity

Vi(t): The set of destination nodes node i knows at time t

lVi(t): The set of nodes connected through a link with node i

at time t—more formally, JVz(t) = {x13(2,x), l~(t) < w}:

a node in that set is said to be a neighbor of node i.

D;(t): The cument distance from node z to node j as known

by node i at time t

D;k (t): The distance from node k to node j as known by

node i at time t

ll~a (t): The smallest value assigned to D; up to time t

D~~(t): The smallest value of D} known by node i up to

time t

RDj (t): The distance from node i to node j that node i

can report to its neighbors at time t (and which need not

equal D;(t))

FD; (t): The distance value used by node i to evaluate

whether a feasibility condition is satisfied at time t;depend-

ing on the condition used, it can be equal to either D;i (t)

or D;~ (t) (see Section HI)

Plj (t): The path from node x to node j implied by the s; (t)

entries for all r’ E G at time t.

The time at which the value of a variable applies is specified

only when it is necessary.

III. SUffiCient CONDITIONS FOR LooP FREEDOM

Assume that an arbitrary link-state or distance-vector algo-

rithm is used in G. such that a node updates its routing table

independently of other nodes upon reception of messages or

detection of changes in the status or cost of links. Also assume

that each node maintains at least a routing table and a topology

table. At time t, the routing table of node i consists of a

column vector of IVi (t) I row entries; the entry for destination

node j specifies at least s~(t)and D~ (t). The topology table

of a node i has enough information for node i to be able to

compute D$k. where k E .V1(t).

Accordingly, for each destination j. the successor entries of

the nodal routing tables in G define another graph, denoted

S,(G), whose nodes are the same nodes of G. and in which a

directed edge exists from node i to node k if and only if node

k is s;, Obviously, loop freedom is guaranteed at all times in

G if Sj (G) is always a directed acyclic graph, which is called

the acyclic successor graph (ASG) of G for destination j. In

steady state, when all routing tables are correct, SJ (G) must

be a tree.

Node i is said to be upstream of node k in SJ (G) if the

directed chain P,j from node i to node j includes node k.

Similarly, node k is downstream of node i. A node x is said

to be the predecessor of another node y for destination j if

node y is node x’s successor.

Unless specified otherwise, any mention to entries in nodal

tables or update messages refers to destination node j. Sim-

ilarly, references will be made to node j. distance to node

j. ASC for node j, and successor toward node j simply by

destination, distance, ASG, and successor, respectively.

Consider a node i for whom either s; (t’) = s # null

and D$(t’) < x, or s~(f’) = null and D;(f) = x.

Assume that node i makes no changes to such distance or

successor entries, until time t > t’, Each one of the following

three conditions, which we call feasibili~ conditions for loop

freedom, is suficient to ensure loop freedom at every instant

in G.

DIC: Distance increase condition. If at time t node i detects

a link-cost decrease or a decrease in the distance reported by

a neighbor, then node i is free to choose as its new successor

any neighbor q c Ni(t) for whom D~q(t) + l;(t) = Min

{D~,(t) + ~~(t)l~ c l~i(~)} and D~q(~) + 1~(~) < X. On
the other hand, if node i detects an increase in the cost of

132 IEEIYACM ‘rRANSAC’lTONSON NETWORKING, VOL. 1,NO. 1,FEBRUARY1993

a link or the distance reported by a neighbor, then it must

maintain its current successor if it has any.

A less restrictive version of DIC is stating that at time tnode

i can choose as its new successor any neighbor q E IVi (t) for

which Djq(t) + Zj(t) = Min {Djz(t) + lj(t)lz E J’Vi(t)} and

~~q(t) + Zj(t) S ~D~(t), where FDj(t) = D;i(t). Note that

tlis version of DIC behaves the same way as the previous

versin as long as distances or link costs do not increase. On

the other hand, when a node detects a distance or link-cost

increase, the new version of DIC allows the node to change

successors in some cases, while the previous version forces it

to maintain the same successor in all cases.

CSC: Current successor condition. If at time t > t’node z

needs to change its current successor, it can choose as its new

successor any neighbor q c ~i (t) for which D~q(t) +,1:(t) =

Min {Djz(t) + l~(t)lzE Ni(t)}and, if sj(t’) = s, Djq(t) S

FD~ (t), where FD~ (t) = D~~(t). If no such neighbor exists,

then node i must maintain its current successor if it has any.

SNC: Source node condition. If at time t node z needs to

change its cument successor, it can choose as its new successor

any neighbor q ~ Ni (t) for which D~q(t) + l:(t) = Min

{~~:(t) + i~(t)l~ c Ni(t)} ~d D~q(t) < FD;(t), where

FDJ (t) = D~’ (t). If no such neighbor exists, then node i

must maintain its old successor if it has any.

The variable FD~ is called the feasible distance of node z

for destination j.

While condition DIC was discussed in the literature prior

to the work by Jaffe and Moss, they were the first to prove

that DIC is sufficient for loop freedom [13] in DBF. The same

proof applies to an arbitrary routing algorithm. Condition CSC

has been previously proposed and proven by this author [8].

The following theorem proves SNC.

Proposition 1: If a loop Lj (t) is formed in Sj (G) for the

first time at time t, then some node z E Lj (t) must choose an

upstream node as its successor at time t. •1

This is evident from the fact that Sj (G) is dkected and

acyclic before Lj (t) is created.

Theorem 1: Using SNC when nodes choose their succes-

sors is sufficient to ensure that Sj (G) is loop free at every

instant, ❑

F’roofi Note that because the theorem must apply to any

distance-vector or link-state algorithm, each node in G can be

assumed to know an entire path from any other node to the

destination. However, even if this is the case, the information

maintained at a given node may be out of date. This forms the

basis of the proof, which is by contradiction.

Assume that, before time t, Sj (G) is loop free at every

instant and a loop Lj (t) is formed in Sj (G) at time t. It

is evident that no loop can be created unless nodes change

successors and modify Sj (G), and it follows from Proposition

1 that at least one node must change its successor at time t

and choose an upstream neighbor for a loop to be formed.

Therefore, this proof needs to show only that SNC is sufficient

to ensure loop freedom when at least one node in G changes

its successor at time t.

Assume that Lj (t) is formed when node i makes node a its

new successors; (t) after detecting a change in D; = D~b+ i~

‘[47..’:4s’+

\ .

s [2M

b-s[l.dd]

,+”””

Fig. 1, Loop in G.

at time t, where b = 5~(t6) # a and ttj < t. Because of

Lj(t), P~j (t) must include P~i(t).

LetPaz(t)consist of the chain of nodes {a = s[l, new], s[2,

new], ,.0 , s[k, new], .0. , i}, as shown in Fig. 1. According to

this notation, node s[k, new] is the kth hop in the path I’ai(t

at time t and has node s[k + 1, new] as its successor at time t.

The last time that node s k, new] updates its routing-table
\s k ,new]

entry up to time t and sets Sj = s[k + 1,new] is denoted

by t,[~+l,.e.l, where t.[~+l,n,~l S t. Therefore, it is true that

;[@wl (t,p+l,new]) = 9;[~’newl(t)9.

and

DS[~’new](t~[~+l ~eWl) = Dj[k’new] (t)
3

The time when node s[k, new] sends an update that con-

stitutes the last update from such a node that is processed by

node s[k – 1, new] up to time t is denoted by ts(~+l,.ld].

Node s[k, new]’s successor at time t,[~+l,O1dl is denoted by

s[k + 1, old]. Note that

ts[k+l,old] < ~s[k+l,new] < f!

and that s[k + 1, old] need not be the same as s[k + 1, new].

Lastly

9;[’1(t)= i, +(tb)= b, and tb < t.

Note that D~i(ti) < D~(ti) at any time ta, and DJi(t2) <

D~i (t 1) if tl < tz. Also note that, because SNC must be

satisfied, when node s[k, new] G Paj (t) makes node s[k + 1,

new] ● P~j (t) its successor at time t~I~+l,neWl it must be true

that

j.[k+l,new] (t) ‘Dj$iY~L] (ts+l,new])

D:[k,new]

Accordingly, because

must be satisfied by

< FDf[k’new](~.[k+ l,new]).

all link costs are positive and SNC

every node in Pai (t), traversing the

GARCIA-LUNES-ACEVES: LOOP-FREE ROUTING USING DIFFUSING COMPUTATIONS 133

directed path P.i (t) c P.j (t) at time t leads to the following

inequalities:

~~j(t) = ~ji(t) > ~;.(t) = ~;(~.[2,01d])

~~(~~[z,old]) Z ~ja(fs[2,01dj) > ~ja(~s[2,new])

= FDj (t.[2,ne\,r])

D=[~-l,ney](t) = D~[~’neW’j(t,I~+lOld])
js[~,ne~,~

> Dyhewl (t~lk+l ~)dl)
.

~ ~~s[k’ne’’’](~s[k+ l,new])

——
F@kJIew’] (t~[~+l,neW] >

Because these inequalities lead to the erroneous conclusion

that FDj (t) > FDj (t), it follows that no loop can be formed

in S3 (G). and SNC is sufficient in this case.

The operation of any routing algorithm can be defined to be

such that when the nodes in G are first initialized, each node

knows only how to reach itself. This is equivalent to saying

that a node has a routing table entry for each of the other

nodes in the graph with infinite distance and no successors to

them. Hence, at time O, Sj (G) is a disconnected graph of one

or more components, each with a single node, and must be

loop-free. Therefore, SNC is sufficient. •1

From the above proof of SNC, it is clear that other similar

feasibility conditions can be defined using a feasible distance

that can only decrease. Although DIC, CSC, and SNC ensure

loop freedom at every instant, none of them guarantees shortest

paths in the resulting ASG. Deriving routing algorithms based

on these feasibility conditions to achieve both loop freedom

at every instant and shortest paths for each destination is the

subject of the next section.

IV. DIFFUSING COMPUTATIONS

Dijkstra and Scholten [3] introduced the concept of d@s-

ing computations to check the termination of a computation

distributed among several nodes, such that the process starting

a computation is informed when it is completed and such that

there are no false terminations. The diffusing computation

started by a node grows by sending queries and shrinks by

receiving replies along an acyclic graph rooted at the source of

the computation. The algorithm itself can be used to construct

the acyclic graph.

The new family of routing algorithms presented in this

paper is based on an adaptation of diffusing computations to

distance-vector routing inspired on the distance-vector algo-

rithm proposed by Jaffe and Moss [13]. It allows a given node

i to modify FD~. in such a way that loop freedom and shortest

paths are achieved when it changes the values of D; or s;.

The rest of this paper refers to any algorithm in this family

simply as a di~using update algorithm or DUAL. Reference

[9] provides a formal description of DUAL, whose operation

is discussed in the rest of this section.

For each destination j, a change in the cost or status of a link

that affects Sj (G) causes one or more computations aimed at

updating Sj (G). A computation can be carried out by a node

independently of others, which is called a local computation,

or it can be a di~using computation in which the node that

originates the computation coordinates with upstream nodes

in Sj (G) before making any updates to the ASG.

At time t. node i is assumed to maintain 1~ and Djk for all

k ~ N,(t) as well as s~, D;. RD~. and FD; .

A. A Single Computation

Initially, no node in G is engaged in a diffusing compu-

tation for a new Sj (G). A node not engaged in a diffusing

computation is said to be passive (with respect to destination

j). When a passive node i detects a change in a link cost or

status at time t that changes the value of D; or s;. it first tries

to obtain a new successor that satisfies a feasibility condition

(DIC, CSC, SNC, or others), which is denoted by FC. Such a

successor is called a feasible successor.

If node i finds a feasible successor at time t. DUAL behaves

much like DBF; that is, node i carries out a local computation

to update its distance and successor. More specifically, node

z first computes the minimum of D~q(t) + l;(t) = Dmin for

all q E ~L (t). Secondly, node i updates D; = Dmin, RD~ =

llmi..g~ = klk ~ Ni(t). D~k(t) + l~(t) = Dmin. and FD~

equal to the smaller of its previous value or D~k (t) if CSC

is used, or D; (t)if SNC or DIC is used. Finally, if node i’s

updated distance is different than its previous distance, it sends

an update to all its neighbors specifying RD~ (t). Note that

node i establishes no coordination with its neighbors before

updating D; and s;.

On the other hand, if node i cannot find a feasible successor,

then it sets D; and RD; equal to Df.8(t) + l;(t). where s is

its current successor. In addition, node i sets FD; = Dj, (t)

if CSC is used, or sets FD~ = D; (t) if SNC or DIC is

used. After performing these updates, node i commences a

d;~using computation by sending a query to all its neighbors

in fV~(t).Such a query simply contains RD~ (t). i.e., node i’s

new distance through its current successor in Sj (G). Node i

is then said to be active, and cannot change its successor [i.e.,

it cannot change Sj (G)] or the values of RD~ and FD~ until

it receives all the replies to its query.

Node i follows the same procedure outlined above for a

local or diffusing computation after receiving an update from

a neighbor while it is passive. If node i receives a query from

a neighbor while it is passive, then node i attempts to find a

feasible successor and sends a reply to its neighbor with D;

if it succeeds. Node i also sends an update to the rest of its

neighbors if the value of D; changes. If node i fails to find a

feasible successor after processing its neighbor’s query, then

it becomes active by sending a query to all its neighbors; the

value of RD~ in the query specifies node i’s new distance

through its current successor.

When at time tpa node receives all the replies to the query

it sent out, it becomes passive once more, At that time, node

134 IEEWACM TRANSACTIONS ON NETWORKING, VOL. 1,NO. 1,FEBRUARY1993

i can be certain that all nodes that were upstream in Sj (G)

at time tP have either modified their distances as a result of

the distance reported by node z’s query, or stopped being

upstream nodes. Node i is, therefore, free to choose as its

successor a neighbor that offers the shortest distance at time

tP. Accordingly, at time tp,node i “resets” the value of ~~~

to OC, which ensures that FC will be satisfied by a node

n c Ni (tp) that offers tie shofiest ~lst~ce. After node z

makes node n its new successor, it sets RD~. = D; (tP). If

SNC or DIC is used, it also sets FD~ = D;(tP); if CSC is

used, it sets FDj = Djn(tp).

Node i uses a repfy status jag, denoted Tjk to remember

whether node k has sent a reply to node z‘s query. Node z

is passive at time t if r~k(t) = O for all k c iVi(t). Node z

becomes active at time t by setting r~k = 1 for all k E IVi(t).

Routing information is exchanged among neighbor nodes by

means of update messages. Each update message consists of

a distance vector of one or more entries, and each such entry

consists of the identifier of a destination node j, RD$, and a

flag that specifies that the entry is an update (flag equals O), a

query (flag equals 1), or a reply (flag equals 2).

Obviously, the basic algorithm described above needs to

be extended to handle multiple diffusing computations and

topological changes.

The Jaffe-Moss algorithm behaves essentially like DUAL

using DIC for the case in which a single diffusing computation

exists,

Chandy and Misra proposed a distance-vector algorithm

aimed at obtaining the shortest paths from a source to the

rest of the network nodes. This algorithm is based on a

simpler adaptation of Dijkstra and Scholten’s algorithm than

the one just described [1], and performs correctly only in fixed

topologies.

Merlin and Segall [17], [23] proposed a distance-vector

algorithm that propagates messages along an ASG much like

queries and replies do in DUAL. However, critical differences

between the two approaches stem from the way in which

messages are processed. In the Merlin–Segall algorithm, a

node z that receives a message from a node k E Ni other than

its successor simply updates D~k with the distance reported

by node k. Node i keeps track of which neighbor has sent a

message using a flag similar to the reply status flag of DUAL.

Node i does not update its own distance until it receives a

message from its successor; when that happens, node i sets

D; equal to Min {D~.k + 1~Ik E N~, message from k was

received} and sends a message reporting that distance to all

its neighbors, except its successor, When node i receives a

message from all its neighbors, it sends a message reporting

the current value of D; to its current successor, computes

a new shortest distance, and sets its new successor equal to

that neighbor that provides the shortest distance. Because the

messages a node sends to its successor or its other neighbors

need not report its shortest distance, multiple iterations or

cycles can be required for the Merlin–Segall algorithm to

converge. Each update cycle is initiated by the destination

node, and unbounded counters are used to keep track of cycle

numbers. The need for the destination node to control each

update cycle creates substantial communication overhead [22].

B. Multiple Computations

The Jaffe-Moss algorithm [13] supports multiple diffusing

computations concurrently by maintaining bit vectors at each

node. Bit vectors specify, for each neighbor and for each

destination, how many queries need to be answered by the

neighbor node and which one of such queries was originated

by the node maintaining the bit vector. Unfortunately, the bit

vectors used in the Jaffe-Moss algorithm can become exceed-

ingly large in a large network with dynamic link costs and

topology. The Merlin-Segall algorithm relies on unbounded

sequence numbers to keep track of multiple computations that

can occur concurrently from the standpoint of a node in the

ASG.

Rather than handling multiple diffusing computations con-

currently, DUAL makes sure that a node participates (i.e., is

active) in at most one diffusing computation per destination

at any given time. This is accomplished by means of the

algorithm represented in Fig. 2, which assumes a stable

topology. The state diagram of Fig. 2 shows the transition

to a new state for node i, given its current state, the input

event it receives, and whether or not FC is satisfied. An input

event can be a change in the cost or status of a link, an update,

a query, or a reply to a query.

The current state of node i is specified by the query origin

flag, denoted o;, and by the reply status flags. The possible

states for node i are the following:

●

●

●

●

●

Node z becomes active by relaying the query received

from its successor, and experiences no distance increases

after becoming active (o} = 3 and r; ~ = 1 for some

k c Ni(t)).

Node i is active and either relayed the query in progress

from its successor and has experienced at least one

distance increase after becoming active, or is the origin

of the query in progress and received another query from

its successor after becoming active (o$ = 2 and ?+k = 1

for some k E Ni(t)).

Node i becomes active by originating a query, and

experiences no distance increase and receives no query

from its successor while it is active with its query (o; = 1

and +k = 1 for some k C Nz(t)).

Node i is the origin of a query in progress and has

experienced at least one distance increase after becoming

active because of updates from its successor or link-cost

increases [oj = O and rjk = 1 for some k ● Nz(t)).

Node i is passive. Because r$k(t) = O for all k E N~(t)

for node i to be passive, o~ is set equal to 1 in this state.

When node i is passive and processes a query from a node

k other than its current successor 8$, if FC is not satisfied, it

sends a reply to its neighbor with the current value of RD~

before it starts its own query. ‘I%is way, node z can create

a new diffusing computation without having to remember to

send a reply to both k and s; when it becomes passive.

When node i transitions from active to passive state and

o; = 1 or 3, then it “resets” the value of its feasible distance

FD~ to cc before computing D; ands;. Hence, node i simply

GARCIA-LUNES-ACEVES: LOOP-FREE ROUTING USINGDIFFUSINGCOMPUTATIONS I35

input event related to neighbor k;

FC satisfied or Dji = - and Djk = -

Rpassive

~ji ~ 1

last reply; =
\

/’21N

last reply
FC satisfied with

- —

set FD/ = =
current }--’ - “‘-;

input event input event other than input event other input event

other than last reply last reply, increase in D, than last reply other than last reply

or query from sji or query from Sji D = Dji~,i+~iSji
or increase in D

I

Fig, 2. Active and passive states in’ DUAL

chooses the shortest path in this case. hr contrast, when node

i becomes passive and o; = O or 2, it uses the value of FD~

at the time it became active to determine whether or not a

feasible successor exists before computing D; and s;. Hence,

node i processes any pending query or distance increases that

occurred while it was active.

C. Handling Special Conditions and Topological Changes

Ensuring that updates will stop being sent in G when some

destination is unreachable is easily done. If node i has set

D; = x already and receives an input event (a change in cost

or status of link (i. k). or an update or query fron node k)

such that D;k + 1~ = x. then node i simply updates D~k or

1~. and sends a reply to node k with RD~ = x if the input

event is a query from node k.

A node initializes itself in passive state and with an infinite

distance for all its known neighbors, and with a zero distance

to itself, After initialization, it sends an update containing the

distance to itself to all its known neighbors.

When node i establishes a link with a neighbor k, it updates

the value of]: and assumes that node k has reported infinite

distances to all destinations and has replied to any query for

which node i is active, Furthermore, if node k is a previously

unknown destination, node i sets o~ = 1, s~ = null, and

D; = RD; = FD~ = x. Node i also sends to its new

neighbor k an update for each destination for which it has a

finite distance,

When node i is passive and detects that link (i. k) has failed,

it sets 1~ = x and D~k = x. After that, node i carries out

the same steps used for the reception of a link-cost change in

the passive state.

For a given destination, a node can become active in only

one diffusing computation at a time and can, therefore, expect

at most one reply from each neighbor. Accordingly, when an

active node i loses connectivity with a neighbor n. node i can

set r~~ = O and D;~ = x. i.e., assume that its neighbor n

sent any required reply reporting an infinite distance. If node

n is s;. node ialso sets o; = O. When node i becomes passive

again and o; = O. it cannot simply choose a shortest distance;

rather, it must find a neighbor that satisfies FC using the value

of FD; set at the time node i became active in the first place.

In effect, this is equivalent to deferring the processing of the

failure of link (i.s;) that took place while node i was active,

which may create another diffusing computation.

It, thus, follows that the FIFO order in which node i

processes diffusing computations does not change with the

establishment of new links or link failures. Note that the

addition or failure of a node is handled by its neighbors as

link additions or failures.

136 lEEWACM TRANSACTIONS ON NETWORKING, VOL. 1, NO. 1, FEBRUARY 1993

(4,4,1) , (3,3,1)

X
c b

20 1

(2,2,1)

10+2 a 1

i d

(0,0,1) 4 (3,3,1)

(12,1 2,3) C& (11,11,3)

x

c b

‘x 20 flR(lO)

(20,10,0)
20 a

i d

(0,0,1) 4 (4,3,1)

(12,12,1) (11,11,1)

X
c b

R(n)

20

(15,10,0)

15 a

i d

(0,0,1) 4 (4,3,1)

(4,4,1) (3,3,1)

X
&20 bQ

(10,10,1)

‘k a \“

i d

(0,0,1) 4 (3,3,1)

(12,1 2,3) WIJ) (11,11 ,3)

x

c b
20

R(I 0)~

(20,10,0)

20 a

i d

(0,0,1) 4 (4,3,1)

(12,12,1) (11,11,1)

x“i;“
(5,5,1)

u/ a ~u

j d

(0,0,1) 4 (4,3,1)

(4,4,1) & (11,11,3)

x

c b

R(4)% 20 / Q

20610
(10,10,1)

R(0)fl a RR(4)

j d

(0,0,1) 4 ~ (4,3,1)

(12,12,1) Ft(12) (11,11,3)
+“

x
c b

20

(20,10,0)

15-20 a

i d

(0,0,1) 4 (4,3,1)

(12,12,1) I& (6,6,1)

x

c

20
b~u

(5,5,1)

15 a

i d

(0,0,1) 4 (4,3,1)

(7,7,1) u (6,6,1)
+1

x
UMC :

20

(5,5,1)

15 a ,

i d

(0,0,1) 4 (4,3,1)

Fig. 3, Example of DUAL’s operation using SNC.

V. EXAMPLE

Consider the five-node network depicted in Fig. 3(a), in

which DUAL is used with SNC. In this network, links and

nodes have the same propagation or processing delays; link

(a, j) first changes its cost from 2 to 10, then from 10 to

20 [Fig. 3(c)], and finally from 20 to 15 [Fig. 3(f)], and

focuses on destination node j. In the figure, an arrowhead

in the directed link from node z to node g indicates that node

y is the successor toward node j (i.e., s; = y). The label

in parentheses assigned to node z indicates the value of D:,

followed by the value of FDf and O;. Fig. 3(bj(j) show the

changes in the routing table entry for node j at each node.

An update or a query is indicated by an arrow adjacent to

the link where it is transmitted, followed by a “U” or a “Q,”

respectively. A reply from node z is similarly identified with

an “R’ followed by the value of RD; in parentheses.

GARCIA-LUNES-ACEVES: LOOP-FREE ROUTING USING DIFFUSING COMPUTATIONS 137

When node a detects the cost increase of link (a, j), it

determines that it has no feasible successor because none of its

neighbors has a distance smaller than FD; = 2. Accordingly,

it becomes active by setting r~~, r~c, r~d, md r~j equal to 1,

and sends a query to all its neighbors [Fig. 3(b)].

Node b forwards node a’s query, because it has no feasible

successor [Fig. 3(c)], while node d is able to find a feasible

successor (node ~ itself, because Dfj < FDf = 3 and

D;, + l? < Dfa + l:). While this is happening, link (a, j)

increases its cost to 20, which makes node a set D; = 20 and

o; = O. The latter makes sure that node a uses FD~ = 10, not

~. when it becomes passive and computes a new distance and

successor. Note that node a replies to node b with RD; = 10.

which equals node [1’s distance when it became active in the

first place [Fig. 3(d)]; this prevents node b from creating a

loop through node c when it becomes passive [Fig. 3(g)].

When node c receives node a’s query, it simply sends a

reply [Fig. 3(c)] because it has a feasible successor. However,

it becomes active when it receives the query from node b.

Because o; = 3 when node c receives all the replies to its

query [Fig. 3(e)], it resets FD; = w to compute its new

distance and successor, and sets D; = FD; = 12 accordingly

[Fig. 3(f)]. Node b operates in a similar manner when it

receives all the replies to its query [Fig. 3(g)].

When node o receives all the replies to its query [Fig. 3(h)],

it applies SNC using the value FD; = 10, which was set when

node a became active in the first place. Because D~d = 4< 10

and D;d + 13 is the minimum for all of node a’s neighbors,

node a becomes passive, sends an update with RD; = 5, and

sets o; = 1 and D: = FD; = 5. Nodes b and c eventually

reach their shortest paths through uncoordinated updates.

Note that the cost changes in link (a. j) that occur while

node a is active have no impact in the information conveyed

by node a to its neighbors, until it becomes passive.

VI. CORRECTNESSOF DUAL

Once DUAL is proven to be loop-free, showing that it

converges is simple. The details of the convergence proof for

DUAL are presented in [9]; the proof is similar to the one

shown in [5]. The rest of this section proves that DUAL is

loop-free.

Because a routing-table loop is created with respect to

a particular destination and because nodes coordinate with

respect to the same ASG, loop freedom can be proven by

focusing on a single ASG. The following theorem considers

a graph G with stable topology in which DUAL is used

with SNC, and demonstrates that DUAL is loop-free at every

instant. Because topological changes do not affect DUAL’s

operation, this theorem suffices to prove loop freedom in an

arbitrary network or intemet in which topological changes can

occur. The proof is essentially the same if DIC or CSC is used.

The graph consisting of the set of nodes upstream of node

i that become active because of a query originated at node i

is called the arrive ASG of node i and is denoted by Sji (G).

The notation adopted in the proof of Theorem 1 is assumed

in the rest of this section.

Theorem 2: S1 (G) is loop-free at every instant if DUAL

is used in G. ❑

Proof The proof follows directly from the lemmas be-

low . ❑

Lemma 1: When a node becomes passive, it must send a

reply to its successor if it is not the origin of the diffusing

computation. ❑

Proof If node i receives a query from its successor (s;)

while it is passive, it sends a reply to its successor and sets

o; = 1 if it finds a feasible successor. Otherwise, if node i finds

no feasible successor, it propagates the diffusing computation

to all its neighbors, sets o; = 3. and becomes active. Node

,9; cannot send another query to node i until it receives node

i’s reply, and node i must send such a reply when it becomes

passive because o; = 3.

If node i receives a query from its successor while it is

already active, node i must be the origin of the diffusing com-

putation for which it is active (o; = 1) because its successor

cannot send two consecutive queries without receiving node

i’s reply. After processing its successor’s query, node i must

set o; = 2. When node i becomes passive, it either sends a

reply to its successor and sets O; = 1 after finding a feasible

successor, or forwards its successor’s query and sets o; = 3

if no feasible successor is found. Hence, if node i receives a

query from its successor while it is active, node i must send a

reply to its successor when it becomes passive. Therefore, the

lemma is true. ❑

Lemma 2: Consider that only a single diffusing computa-

tion takes place in G and that Sj (G) is loop-free before an

arbitrary time t. Then, independently of the state of other nodes

in Paj(t). if node !9[k. new] is passive at time t (i.e., either

it is passive immediately before time t or it becomes passive

during time t). it must be true that

‘~k’newl(t).‘;$:::’”] (t) > ‘p!k~l,new] (1)

❑

Proof Let node s[k. new] E Pal(t) be passive at time t.

Consider the case in which that node does not reset FDj[k’””w]

when it updates its distance or successor to join Pa,(t) at time

t,[k+l ,n,,vl ~ t. then according to SNC it must be true that

Hence, if node s[k – 1. new] processed the message that node

s[k, new] sent last before time t, then

simply because all link costs are positive. On the other hand,

if s [k – 1, new] did not process the message that node s [k.

new] sent last before time t. then

because SNC must be satisfied. Therefore, the lemma is true

for this case.

On the other hand, if node s(k, new] is passive at time t and

resets FDf[k’new] < t.when it joins Paj (t) at time ~s[k+l, new] —

I

138 IEEWACM TRANSACTIONS ON NETWORKING, VOL. 1, NO. 1, FEBRUARY 1993

then o~[&’new]must have been equal to 1 or 3, and node s [k,

new]’s distance through its new successor must be the shortest.

Therefore

~:k,new] (t) = D:Wn’Wl(t~[~+l ~,W1)~
J 3

(2)

‘~$flf~ld] (ts[k+l,new]) + ‘g~~fl~ld] (t~[k+l,new]).

Also, from time tk when node S[k: new] becomes active

to time t~[k+l,new]when it becomes passive, node s[k, new]

cannot change its successor, node s[k + 1, old], and it cannot

experience any increments in its distance through nodes [k+ 1,

‘[k’new] = O or 2.old], for otherwise it would have set 03

Therefore,

~s[k’new](tk) = ~j$~~:~ld] (tk) + ‘:~:fl:~d] ‘tk)
J

= ~~$~~~’l~j (~s[k+l,new])

+ l:~:~o;dl (ts[k+l,new]).

Substituting this result into (2), it follows that

@%newl(~) ~ @knew]. (3)

Furthermore, node s[k, new] must notify all its neighbors

about its distance at time tk, and all of them must reply to

node s [k, new] before time t~[k+l,newl,which follows from

the correctness proof of Dijkstra and Scholten’s algorithm [3]

(see also the proof of PIF [23]).

When node s[k – 1, new] updates its distance and makes

node s[k, new] its successor when it joins P.j (t) at time

t,[k,~,wl < t, it may or may not have processed any message
sent by node s[k, new] at time t.[~+l,.,W1 < i?when that node

joins Paj (t). Therefore, it must be true that either

Dj$~:::’”] (t) = @[k’new](t,[k+~ ~eW])

=
js[k+l,rwv](’)

~~[k,newl (t) > @@ew]

J

or

~j$:::](t) = L$[k’new](tk).

In either case, it follows from (3) that

~;$;:s:;] (~) > ~;&:iew] (~)

and the lemma is true in all cases. •1

Lemma 3: If only a single diffusing computation takes

place in G, then Sj (G) is loop-free at every instant, ❑

Proof By contradiction, assume that Sj (G) is loop-free

before an arbitrary time t and that node i is the first node in

G to create a loop Lj (t) c Sj (G) at time t after processing

an input event, i.e., it establishes the last hop of the loop.

Let node b = s~ when node z decides to change its successor

at time t.Because an active node cannot change its successor

after processing an input event, it follows that, for node i to

create Lj (t) at time t,it must be passive at time t and it must

change its successor to s;(t) = a # b.

When node i creates L3 (t) at time t,it must be true that

P.i (t) C Pij (t). If all the nodes in P.i (t) are passive at time

t, either all of them have always been passive before time t,

or at least one of them was temporarily active before time t,

If no node in P.i (t) was ever active before time t,it follows

from Theorem 1 that node z cannot create Lj (t) by making

a = s:(t). Therefore, for node i to create Lj (t) at time tin this

case, at least one node in P.i (t) must have been temporarily

active before time t.

Assume that all nodes in Pai (t) are passive at time t.

The inequality in (1) leads to the erroneous conclusion that

D;= (t)> D~a(t) when P.i (t) is traversed at time t. Accord-

ingly, node i cannot create Lj (t) if al} nodes in Pai(t) are

passive at time t.

Now assume that node s[k+n, new] (n z O) is the origin of

the only diffusing computation in G and that the computation

started at time tk+n < t.Further assume that the nodes in the

chain ‘s[k,new] s[k+n,new] (t) C Psi(t) KTOaitI active at time t.
Because node z must create Lj (t) at time t, it must be true

that s[k, new] # z # s[k + n, new].

Because all the nodes in Ps[k,n.w] s[k+n,n.w] (t) are active,

all of them must have received a query reflecting the change
s[k-+n,new]

in Dj made by node s[k + n, new] at time tk+n.

Hence, from the correctness proof of Dijkstra and Scholten’s

algorithm [3] and the facts that all link costs are positive and

a single diffusing computation exists in G, it follows that

,,[~+l,~,~l(t) > Dj[k+l’new](t)>... > D:Ik+~’new](t)
D:[k,new]

1

s[k+n, new]
= D~[k+’’’new] (tk+n) > ‘j~[k+n+l,new](t)

(4)

Because there is only one diffusing computation up to time

t and at that time node s[k + n + 1, new] is passive and is the

successor of the source of the diffusing computation, it follows

that the nodes in P~[k+n+l,neW,]i(t), who are downstream of

the source of the diffusing computation (node s[k + n, new]),

have always been passive. Therefore, the proof of Theorem

1 implies that

‘%::::G$(’) > Dj(’b).

Furthermore, (1) implies that

js[k+n+l,new]~t) > ‘j![k+n+2,new]

D:[k+n,new]
“ ‘+n+l’newl (t).

Substituting these two results in (4) yields

‘~~~~~~e~] (t) > D~(tb). (5)

Because d] of the nodes in Psi(t) - P~[k,neW1~[k+n,new](t)

and node z must be passive at time t,it follows from (1) that

D;a(t) > ~:[k-l,newl

~s[k, new]
(t). (6)

If node s[k – 1, new] processes the query sent by node

s[k, new] at time tk, whether or not node s[k – 1, new]

resets FD~ ‘k’new]to update its distance for the last time before

joining Lj (t), it must be true that

~;$;:~yl (t)= ll;[~’”’wl (~k)
= D:[JW4 (’) > Ddknewl

J je[k+l,new](t)o

GARCIA-LUNES-ACEVES: LOOP-FREE ROUTING USING DIFFUSING COMPUTATIONS I 39

Together with (5) and (6), this result leads to the conclusion

that ll~a(t) > D; (t~). However, as the next paragraph shows,

this is a contradiction.

If node i does not reset FD; when it updates its successor

when it creates Lj (t) at time t. then according to SNC, this

means that node i can choose node a as its new successor

at time t only if D~Q(t) < D$(tb) is true, which contradicts

the result of the previous paragraph. On the other hand, if

node i resets FDj to create LJ (t), then it must be true that

node i was active just before time t. that o; equals 1 or 3

when it decides to make node a its new successor, and that

it processed no query from node b or any input event that

increased Di. or 1: while it was active, for otherwise it mustjb

have set o; equal to 2 or O. Because in this case node i becomes

passive at time t and node a is upstream of node i at that

time, it follows from the comectness proof of Dijkstra and

Scholten’s algorithm that all the nodes in the path P.PI,I (t)

must be passive immediately before time t. where p[i] is the

predecessor of node i at time t. Hence, (1) can be used to

show that ll~a(t) > D~~] (t) = Dj(ti), where ti < t is the

time when node i becomes active. Furthermore, because Dj~

or l; cannot increase between times ti and t.it must be true

that D:a(t) > D~(tl) = D~.b(t)+l~(t). This is in contradiction

to SNC, which states that node i can set a = S; (t) only if

Dja(t) + Zj(t) < D;b(t) + ~i(t)
Alternatively, if by time t node s [k – 1. new] has not

processed the query sent by node s[ki new] at time tk, then

whether or not node s [k – 1, new] resets F’D~[k– 1‘new] to

update its distance for the last time before time t. node s[k,

tIeW] was ak’ays passive before time fk and therefore cannot

reset FD~[k’n’W’l to select s (k + 1, new] as its successor before

it becomes active at time tk, Given that node s[k + n + 1. new]

has always been passive, and that no node

S[k + Tn, IIeW] ● p~[k,new] ,s[k+n,netv] (t) (l<m<n)

could have reset F’D~[k+m ‘“’W’]to make node s[k + m, + 1.

new] its successor at time t~[k+~+l,~~~!] < tk+~, the path-

traversal technique used in Theorem 1 leads to the following

inequality:

s ‘+n+’’newl (t).‘~~k~~~~](t) > ‘~![k+n+2,new] (7)

Because the nodes in ~,[k+~+l.n,~]l (t) have dWayS

been passive, the proof of Theorem 1 implies that

D~$~~~~&~,l (t) > D; (tb).Combining this result with (7)

and (6) leads again to the erroneous conclusion that D$a(t) >

D; (tb), Therefore, node i cannot create a loop when it is

passive at time t and a set of nodes in Pa,(t) are still active

at that time.

It follows from the above that no loop can be formed

when Sj (G) is loop-free before time t and a single diffusing

computation occurs. However, as pointed out in the proof of

Theorem 1, Sj (G) must be loop-free at time t = O, and so the

lemma is true. ❑

Lemma 4: DUAL considers each computation individually

and in the proper sequence, ❑

Proofi Consider the case in which node i is the only

node that can start diffusing computations. If node i generates

a single diffusing computation, the proof is immediate. If node

i generates multiple diffusing computations, no node in SJi (G)

can send a new query before it receives all the replies to the

query for which it is currently active, Therefore, because all

the nodes in SYi(G) process each input event in FIFO order,

because all links transmit in FIFO order, and because each

node that becomes passive must send the appropriate reply

to its successor if it has any (Lemma 1), it follows that all

the nodes in Sj i (G) must process each diffusing computation

individually and in the proper sequence.

Consider now the case in which multiple sources of diffus-

ing computations exist in G. Note that once a node sends a

query, it must become passive before it can send another query.

Hence, a node can be part of only one active ASG at any given

time. Furthermore, when node i becomes active as a result of

a query from a neighbor k. only two things can happen. If

k = .9; . then node i is not the origin of the query, forwards

node k’s query, and becomes part of the same active ASG

to whom k already belongs. If k # .9; , then node i sends a

reply to node k before creating a diffusing computation, which

means that .Sji (G) is not part of the active ASG to whom

k belongs. Because the active ASGS of G have an empty

intersection at any given time, it follows from the previous

case that the lemma is true. ❑

VII. PERFORMANCE COMPARISON

A. Complexity of Algorithms

This section compares DUAL’s performance with the per-

formance of DBF, an ideal link-state algorithm (ILS), and the

Merlin–Segall algorithm. This comparison is made in terms of

the time and communication overhead required by the various

algorithms to converge to correct routing tables. Unfortunately,

the time required for a given state of a distributed algorithm to

occur depends on the timing with which the nodes execute the

algorithm and on the delays incurred in intemodal communica-

tion [3]. Consequently, this section assumes that the algorithms

under study behave synchronously, so that every node in

the network executes a step of the algorithm simultaneously

at fixed points in time. At each step, a node receives and

processes all input events originated during the preceding step

and, if needed, creates an update message after processing

each input event; all these update messages are transmitted in

the same step. The first step occurs when at least one node

detects a topological change and issues update messages to its

neighbors. During the last step, at least one node receives and

processes updates from its neighbors, after which all routing

tables are correct and nodes stop transmitting updates until

a new topological change takes place [13], [14]. Using this

assumption, the performance of an algorithm is quantified in

terms of the number of steps called time complexity or TC’.

and the number of messages called communication complexity

or CC’, required by each algorithm after a single change in

the cost or status of a link.

Because of its looping problems [7]. DBF performs very

poorly after a link failure or a link-cost increase, namely

140 tEEE/ACMTMNSACTSONS ON NETWORKING, VOL. 1, NO. 1, FEBRUARY 1993

TC = O(N), CC = 0(N2) [14], where N is the number

of network nodes. On the other hand, because tm loops can

exist in DBF after the addition of a link or a reduction in the

cost of a link [13], it has TC = O(d) and CC = 0(-/2) in

this case [15], where E is the number of links in the network

and d is the diameter of the network.1

ILS requires that each change in the topology of the network

be transmitted to every node; accordingly, it has TC = O(d)

and CC = 0(2E) after a single change in the cost or status

of a link because each link-state update traverses each link

at most once in each direction and there are two link costs

per link.

The Merlin-Segall algorithm has TC = 0(d2) [13], and

its required update coordination results in a large number of

update messages: CC = 0(N2) [22].

In the worst case, DUAL has the same time and communica-

tion complexity as the Jaffe-Moss algorithm after a single link

failure or link-cost increase, i.e., TC = O(z) [13], where z is

the number of nodes affected by the routing table perturbation.

To verify this, we note that in the worst case all nodes upstream

of a destination node j in Sj (G) must freeze their routing-table

entries for node j, which corresponds to the operation of the

Jaffe-Moss algorithm. DUAL’s communication complexity is

CC = 0(6D.z) after a single link failure or link-cost increase,

where D is the maximum degree of a node. This value is

derived from the fact that each adjacent link to a node affected

by the perturbation may have to transmit a query, a reply, and

an update in each direction. DUAL has the same complexity

as DBF after a single link addition or link-cost reduction. To

verify this, note that any node that receives a query reporting

a distance decrease must be able to find a feasible successor.

Accordingly, a node that sends a query after its distance de-

creases must receive immediate replies from all its neighbors,

without those neighbors having to forward the query.

It is clear from the above results that DUAL’s complexity

is comparable to or better than the complexity of all previous

distance-vector algorithms and comparable to the complexity

of ILS. The only concern with DUAL’s performance is when

nodes fail or the network partitions because, in such cases,

x=N.

B. Simulation Results

To obtain insight on the average performance of DUAL,

DBF, and ILS in a real network, they were analyzed by

simulation using the topologies of typical networks; SNC

was used in DUAL. The simulation uses link weights of

equal cost, zero link transmission delays, and the synchronous

operation of DUAL described in the previous section. During

each simulation step, a node processes input events received

during the previous step one at a time, and generates messages

as needed for each input event it processes. To obtain the

average figures, the simulation makes each link (node) in the

network fail, and counts the steps and messages needed for

each algorithm to recover. It then makes the same link (node)

recover and repeats the process. The average is then taken

over all link (node) failures and recoveries. The results of this

IThedi~eter of a network is the length of the longest shortest Path in

hops between any two of its podes.

TABLE I

SIMULATIONRESULTSFOR MILNET

Node Failure

Parameter DUAL DBF ILS

mean sdev mean sdev mean I sdev

event count 4500 I 4070 79300 [51400 686 I 284

message count 1480 720 60500 335 680 282

steps 31.6 21.8 144 0 10.1 1.31

operation count 5370 4420 80200 51600 492000 204000

Node Recoverv
J

Parameter DUAL I D~F lLS

mean sdev mean sdev mean I sdev

event count 2390 I 1680 I 2850] 1900 854 I 309

message count

II
644 166 743 259

I

848 307

steDs 10.2 1.11 9.32 1.11 10.4 1.18

operation count 3260 I 2080 II 3720 I 2300 625000 227000

Link Failure

Parameter DUAL DBF ILS

mean sdev mean sdev I mean I sdev

event count 2540 I 2120 11300 I 35200 506 I 90.2

-12”~ ‘1“1
T :-1. D-_--.-

0 I 35200 II 366000 I 66000

I

UIIK EWW .ery

Parameter I DU.4L DBF ILS

II mean sdev mean sdev mean sdev

1200 I 698 510 1 90.8
I ,, . .

event count II 1180 I 704

message count 232 118 341 168 508 90.8

steps 8.71 1.67 8.17 1.61 9.36 1.05

operation count 1460 704 1480 698 371000 66000

simulation for MILNET are shown in Table I. The table shows

the total number of events (updates and link-status changes

processed by nodes), the total number of update messages

transmitted, the total number of steps needed for the algorithms

to converge, and the total number of operations performed by

all the nodes in the network.

The details of the simulation analysis appear elsewhere [27],

[28]. However, it is worth noting that, as expected, DBF and

DUAL have better overall average performance than ILS after

the recovery of a single node or link. As it was also expected,

DBF performs very poorly after a node failure because of

the counting-to-infinity and looping problems. The simulation

results of Table I also indicate that, insofar as overhead traffic

and number of steps needed for convergence, the average

performance of DUAL is comparable to the performance of

ILS. In this respect, the only concern with DUAL is its

performance after nodal failures; in this case, it requires almost

twice as many messages and more than twice as many steps

as ILS. On the other hand, the CPU utilization in ILS is two

orders of magnitude larger than in DUAL. Accordingly, DUAL

appears to be a more scalable solution for routing in large

networks and intemets than ILS.

VIII. SUMMARY AND CONCLUSIONS

The preceding sections described a new family of algorithms

for distributed shortest-path routing called diffusing update

algorithms or DUAL and proved that it provides loop-free

paths at every instant regardless of the operational conditions

of the network or intemet. These results unify previous work

on loop-fres distance-vector algorithms by Jaffe and Moss and

thk author, and present a complete proof of loop freedom

GARCIA-LUNES-ACEVE.S LOOP-FREE ROUTING USING DIFFUSING COMPUTATIONS 141

for these types of algorithm for the first time in a journal

publication.

The previous section showed that DUAL matches or out-

performs previous loop-free distance-vector algorithms, and

that a practical DVP based on DUAL can be implemented in

a network or intemet with a performance comparable to or

better than that of an LSP.

The only concern regarding DUAL’s performance is after

node failures and network partitions, because in such cases

all network nodes have to be involved in the same diffus-

ing computation. Fortunate y, the performance degradation of

DUAL after node failures and network partitions can be easily

dealt with in practice. A solution is to require that a node wait

for a fixed “hold down” time to allow the node to receive

updated information from any downstream neighbors that can

be taken as feasible successors before the node is allowed to

update its routing table. No hold-down time is needed when no

feasible successors are found. The time complexity of DUAL

with hold-down time is TC = O(h), where h < z is the

length of the longest chain of the nodes participating in the

diffusing computation, This is easily verified by noting that,

with the synchrony assumption, a node that waits for a hold-

down time must receive and process the update messages

from all its downstream neighbors before it can send its

own update message. In most networks and intemets, a hold-

down time proportional to the transmission delay incurred

between two adjacent routers is enough to let a router near

a destination receive updated information from all neighbors

downstream before it is allowed to update its routing table.

However, estimating an effective hold-down time depends on

such factors as the topology of the network and the average

link and processing delays experienced by control messages.

ACKNOWLEDGMENT

The author wishes to thank Z. S. Su for many fruitful

discussions that helped in the design of DUAL, and W.T.

Zaumen for all the work that went into DUAL’s simulation.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[81

[9]

[10]

K. M. Chandy and J. Misra, “Distributed computation on graphs:

Shottest path algorithms,” Commun. ACM, vol. 25, no. 11, pp. 833-837,
Nov. 1982.

R. Coltun, “OSPF: An intemet routing protocol,” CormeXions, vol. 3,

no. 8, pp. 19-25, Aug. 1989.
E. W. Dijkstra and C. S. Scholten. “Termination detection for diffusing

computations,” hr~orrn. F’roce$s. Lerf., vol. 11, no, 1, pp. 1-4, Aug. 1980.

L, R, Ford and D. R. Fulkerson, Flows in Networks, Princeton, NJ:

Princeton Univ Press, 1962,

J. J. Garcia-Luna-Aceves, “A distributed loop-free, shortest-path routing

algorithm,” Proc. IEEE INFOCOM ’88, Mar. 1988.

“A minimum-hop routing afgorithm based on distributed infor-

xn’,” Compur. New. and ISDN Syst., vol. 16, no. 5, pp.367-382,

May 1989.
“Loop-free intemet routing and related issues,” CormeXiorrs,

~,’ no. 8, pp. 8-18, Aug. 1989,

—, “A unified approach for loop-free routing using link states or

distance vectors,” ACM C’ompuf. Commun. Re\,., vol. 19, no. 4, pp.

212-223, Sept. 1989,

—, “Diffusing update algorithms for message routing in computer

networks and intemetworks,” Invention Disclosure P-3089, SRI Int.,

Menlo Park, CA, Sept. 1991,

C. Hedrick, “Routing information protocol,” RFC 1058, Netw. Inform.

Cent., SRI Int., Menlo Park. CA, June 1988.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

R. Hinden and A, Sheltzer, “DARPA intemet gateway,” RFC 823, Netw,

Inform. Cent., SRI Int,, Menlo Pwk, CA, Sept. 1982,

Int. Stand. Org., %ttra-domain IS-IS routing protocol,” ISO/IEC

JTC l/SC6 WG2 N323, Sept. 1989,

J. M. Jaffe and F. M. Moss, “A responsive routing algorithm for

computer networks,” IEEE Trans. Ccmrmun., vol. COM-30, no. 7, pp.
1758-1762, Jtdy 1982.

M. J. Johnson, “Updating routing tables after resource failure in a
distributed computer network,” Networks, vol. 14, no. 3, pp. 379-392,

1984.
—, ‘<Analysis of routing table update activity after resource recovery

in a distributed computer network,” in Proc. Seventeenth Hawaii Irrt,

Con? Sysr. Sci., Honolulu, HI, 1984, pp. 96-102,

K. Lougheed and Y. RekJrter, “Border gateway protocol 3 (BGP-3),”

RFC 1267, SRI Int., Menlo Park, CA, Oct. 1991,

P. M. Merlin and A. SegaH, “A failsafe distributed routing protocol,”

IEEE Trans. Commwt., vol. COM-27, no, 9, pp. 1280-1288, Sept. 1979,

J. McQuillan, “Adaptive routing algorithms for distributed computer

networks,” BBN Rep. 2831, Bolt Beranek and Newman Inc., Cambridge,

MA, May 1974,
J. McQuillan et al., ‘The new routing algorithm for the ARPANET,”

IEEE Trans. Commurr., vol. COM-28, May 1980,
D. Mills, “Exterior gateway protocol formal specification,” RFC 904,

Netw, Inform, Cent., SRI Int., Menlo Park, CA, Dec. 1983.

J, B. Postel, “Transmission Control Protocol,” RFC 793, Netw, Inform,

Cent., SRI Int., Menlo Park, CA, Sept. 1981.
M. Schwartz, Telecommunication Ne~ork.r: Protocols, Modeling and

Analysis. Menlo Park, CA, Addison-Wesley, 1986, ch, 6.

A. Segall, “Distributed network protocols,” IEEE Trans. Inform. Theory,

vol. IT-29, no, 1, pp. 23–35, Jan, 1983.

J. Seeger and A. Khanna, “Reducing routing overhead in a grow-

ing DDN,” in Proc. MILCOM’86, Monterey, CA, Oct. 1986, pp.
15.3,1-15,3.13,

K. G. Shin and M. Chen, “Performance analysis of distributed routing

strategies free of ping-pong-t ype loo ping,” IEEE Trans. Comput., vol.

COMP-36, no. 2, pp. 129-137, Feb. 1987.

W. D. Tajibnapis, “A correctness proof of a topology information

maintenance protocol for a distributed computer network,” Commun.

ACM, VOI, 20, pp. 477485, 1977,

W, Zaumen and J. J, Garcia-Luna-Aceves, “Dynamics of distributed

shortest-path routing algorithms,” ACM Comput. Commun, Rev., vol.

21, no. 4, pp. 31=$2, Sept. 1991.

—, “Dynamics of link-state and loop-free distance-vector routing

algorithms,” J. lntemetwork., vol. 3, pp. 161-188, 1992.

J. J. Garcia-Luna-Aceve.x Wasbum in Mexico
City, Mexico on October 20, 1955. He received

the B.S. degree in electrical engineering from the

Universidad Iberoamericana, Mexico City, Mexico,

in 1977, and the M.S. and Ph.D. degrees in elec-

trical engineering from the University of Hawaii,

Honolulu, HI, in 1980 and 1983, respectively.

He is an Associate Professor in the Department of

Computer Engineering at the University of Califor-

nia, Santa Cmz, He is also Director of the Network

Information Systems Center of SRI International,

which he joined as an SRI International-Fellow in 1982. His current research

interests include the analysis and design of distributed network control

algorithms and multimedia information systems. He has published more than

60 technical articles related to computer communication research, He has

been Guest Editor of IEEE COMPUTER (1985) and the ACM SIGCOMM

Computer Communication Review (1988), and is an Editor of the Multimedia

Sys/ems Journal (Springer International). He is General Chair of the first ACM

conference on multimedia: ACM Multimedia ’93. He was Program Chair of

the IEEE Multimedia ’92 Workshop, General Chair of the ACM SIGCOMNf

’88 Symposium, Program Chair of the ACM SIGCOMM Symposia of 1986

and 1987, and member of the technical program or organizing committee of

numerous IEEE and ACM SIGCOMM conferences, IFIP 6.5 conferences, and

the High Performance Distributed Computing (HPDC) symposia of 1992 and

1993. He is ACM SIGCOMM Conference Coordinator, and is a member of the

steering committees for the ACM Multimedia Conference Series and the IEEE

Multimedia ’93 Workshop. He received the SRI Exceptional Achievement

Award in 1985 for his work on multimedia communications, and again in

1989 for his work on distributed routing algorithms,

Dr. Garcia-Luna is a member of the ACM and a pioneer member of the

Internet Society.

