
J
H
E
P
0
6
(
2
0
1
9
)
0
5
2

Published for SISSA by Springer

Received: March 7, 2019

Revised: May 14, 2019

Accepted: June 4, 2019

Published: June 13, 2019

Loop-induced direct detection signatures from

CP-violating scalar mediators

Fatih Ertas and Felix Kahlhoefer

Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University,

D-52056 Aachen, Germany

E-mail: ertas@physik.rwth-aachen.de, kahlhoefer@physik.rwth-aachen.de

Abstract: We investigate direct detection signatures of dark matter particles interacting

with quarks via a light spin-0 mediator with general CP phases. Since tree-level scattering

may be strongly suppressed in the non-relativistic limit, loop contributions play an im-

portant role and can lead to observable signals in near-future experiments. We study the

phenomenology of different mediator masses and CP phases with an emphasis on scenarios

with maximal CP violation and Higgs portal models. Intriguingly, the sum of the rates

obtained at tree- and loop-level can give a characteristic recoil spectrum not obtainable

from a single type of interaction. We furthermore develop a novel method for decomposing

the two-loop contribution to effective interactions between dark matter and gluons into

two separate one-loop diagrams, which in our case substantially simplifies the calculation

of the important top-quark contribution.

Keywords: Beyond Standard Model, Cosmology of Theories beyond the SM

ArXiv ePrint: 1902.11070

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP06(2019)052

mailto:ertas@physik.rwth-aachen.de
mailto:kahlhoefer@physik.rwth-aachen.de
https://arxiv.org/abs/1902.11070
https://doi.org/10.1007/JHEP06(2019)052


J
H
E
P
0
6
(
2
0
1
9
)
0
5
2

Contents

1 Introduction 1

2 Loop effects in direct detection 2

2.1 Low-energy effective Lagrangian 3

2.2 Effective description of two-loop processes 5

2.3 Matching onto effective operators 8

3 Phenomenological implication 10

3.1 General CP phases 11

3.2 Maximal CP violation 12

3.3 CP-violating Higgs portal 15

4 Conclusions 18

A One-loop Wilson coefficients 19

A.1 Loop functions 19

A.2 Box diagram computation and coefficients 20

B Details on two-loop calculations 22

B.1 Loop functions 22

B.2 Review of the two-loop computation 24

C Nuclear form factors 28

D UV-divergent loops in CP-violating Higgs portal 29

1 Introduction

Experiments aiming to directly detect the interactions of dark matter (DM) particles in

underground laboratories have made tremendous progress over the past decades and place

some of the strongest bounds on the parameter space of many DM models [1]. Indeed,

these experiments have become so sensitive that they can be relevant even for DM models

where the leading order interactions are momentum- or velocity-suppressed [2]. As a result

there has been a rapidly growing interest in the general effective field theory (EFT) of

non-relativistic interactions between DM and nuclei [3–12]. In these models it becomes

essential to include loop effects, which may reintroduce spin-independent interactions and

thereby substantially boost the expected event rates [13–19].

Particular attention has been paid to models in which DM scattering is mediated by a

pseudoscalar exchange particle [19–23], motivated partially by the interesting implications

for collider [24–33] and flavour [34–39] physics. At leading order the resulting interac-

tions are so strongly suppressed in the non-relativistic limit that they are well below the
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“neutrino floor” which indicates the ultimate reach of direct detection experiments [40].

However, several recent studies have shown that loop-induced spin-independent interac-

tions can change this picture dramatically, in particular when taking into account the in-

teractions between the pseudoscalar mediator and the SM Higgs boson required by gauge

invariance [41–44]. In fact, ref. [44] pointed out that for this particular model even two-

loop processes give a relevant contribution and need to be properly included for an accurate

estimate of experimental sensitivities.

In the present work we generalise these results by considering spin-0 mediators that

couple to DM and Standard Model (SM) quarks with arbitrary CP phases. We furthermore

treat the coupling between the mediator and SM Higgs bosons as a free parameter and

thus remain agnostic about the underlying ultraviolet (UV) completion. A particular

emphasis is placed on the impact of two-loop processes. We show that, at least for heavy

quarks, accurate results can be obtained by first integrating out the heavy quark and

then performing all further calculations in the resulting EFT. This approach substantially

simplifies and speeds up the evaluation of direct detection constraints.

We find that for general CP phases loop-induced spin-independent interactions may be

strong enough to lead to detectable signals in near-future direct detection experiments, such

as LZ [45] or XENONnT [46]. The importance of our results are illustrated for a number

of relevant scenarios. We show that for DM models with maximal CP violation (as studied

e.g. in the context of self-interacting DM [47]) loop effects can be comparable to the leading-

order contribution and change the shape of the recoil spectrum in important ways. Large

effects are also found in the CP-violating Higgs portal model, which has been the subject

of several recent studies [48–50]. In both cases loop-induced interactions enable direct

detection experiments to probe parameter regions that would otherwise be out of reach.

The paper is structured as follows. In section 2 we briefly introduce the general model

with free CP phases and then present our central results on how to perform the mapping

onto the low-energy EFT relevant for DM direct detection. We discuss in detail the im-

portance of two-loop processes and the matching onto non-relativistic effective operators.

Specific applications of the general results are presented in section 3, where we also cal-

culate the sensitivity of present and future direct detection experiments. We summarise

our findings and conclude in section 4. Detailed results from our one-loop and two-loop

calculations are presented in the appendices A and B, respectively. Finally, appendix C

provides details on nuclear form factors.

2 Loop effects in direct detection

We investigate a simplified model of a Dirac fermion DM particle χ interacting with SM

fermions f through a general spin-0 mediator a with mass ma greater than the bottom-

quark mass mb:

L = gχ a χ̄ (cosφχ + iγ5 sinφχ)χ+ gSM
∑

f

mf

v
a f̄ (cosφSM + iγ5 sinφSM) f , (2.1)

where φχ and φSM are CP phases, v ≈ 246GeV is the electroweak vacuum expectation

value, mf are the SM fermion masses and gχ as well as gSM denote the couplings of a to

– 2 –



J
H
E
P
0
6
(
2
0
1
9
)
0
5
2

DM and SM fermions, respectively. We have further assumed Yukawa-like couplings in

agreement with the hypothesis of minimal flavour violation (MFV) [51] such that flavour

physics constraints on the universal coupling gSM are weakened (see section 3.2).1 For

φχ = φSM = 0 we recover the well-known simplified model of a scalar mediator, whereas

for φχ = φSM = π/2 we obtain a CP-conserving theory with a pseudoscalar mediator [52].

In the former case constraints on the model from direct detection experiments are very

strong, whereas in the latter case they are almost entirely absent [41, 42, 44]. Here we

will treat the CP phases as free parameters in order to study the impact of different phase

combinations on the predictions for direct detection experiments.

The simplified model in eq. (2.1) does not respect all gauge symmetries of the SM before

electroweak symmetry breaking. The interactions between a and SM fermions are therefore

expected not to appear in isolation but in combination with additional interactions between

a and the SM Higgs boson h. In the present work, we will not discuss how these different

interactions can be linked in specific UV completions. Instead, we introduce an additional

free parameter λah and supplement eq. (2.1) by the interaction term

LHiggs
int =

1

2
λahvha

2 . (2.2)

We will show that this interaction can play a relevant role in the phenomenology of this

model. Moreover, it will be of particular importance in section 3.3 where we will identify

a with the SM Higgs boson h itself. Note that we neglect additional interaction terms

involving two Higgs bosons. Although such terms are in general expected to be present,

they do not give any relevant contribution to the calculation of direct detection signatures.

We finally note that for φSM 6= π/2 the mediator a can mix with the SM Higgs boson,

giving rise to direct interactions of the SM Higgs boson with DM particles. This mixing

is however required to be small given that the observed Higgs behaves SM-like in current

experiments. Furthermore, the Higgs boson mass is much larger than the values of ma that

we will consider, such that its contribution to direct detection is suppressed [42, 44]. We

will therefore not consider Higgs mixing within this work but emphasize that it would be

straightforward to include these contributions using the results presented below.

2.1 Low-energy effective Lagrangian

To calculate event rates in direct detection experiments, we need to determine the effective

interactions between DM and quarks that result from the three types of diagrams illustrated

in figure 1. For the discussion below it will be useful to distinguish between interactions that

lead to spin-independent (SI) and to spin-dependent (SD) scattering in the non-relativistic

limit.2 Starting with the tree-level exchange of a illustrated in the left panel of figure 1,

1In a generic MFV scenario a slightly more general Lagrangian than eq. (2.1) can be written down, as

different couplings to up- and down-type quarks are allowed. For the scope of this work, however, we will

focus on the case of one universal coupling.
2Note that here and below we use the term “spin-independent” to refer to all types of interactions that

do not depend on the nucleus spin, irrespective of whether or not they are suppressed in the non-relativistic

limit. Accordingly, the term “spin-dependent” refers to all interactions that are not spin-independent,

including momentum-suppressed interactions. Indeed, unsuppressed spin-dependent interactions are absent

in the model that we consider.
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Figure 1. Tree-level, Higgs-induced triangle as well as box diagram contribution to the cross section

relevant for direct searches of DM. All Feynman diagrams are drawn with TikZ-Feynman [53].

we obtain

LSI
tree =

∑

q=all

mq Ctree
(
cos(φχ) cos(φSM) χ̄χ+ sin(φχ) cos(φSM) χ̄iγ5χ

)
q̄q , (2.3)

LSD
tree =

∑

q=all

mq Ctree
(
cos(φχ) sin(φSM) χ̄χ+ sin(φχ) sin(φSM) χ̄iγ5χ

)
q̄iγ5q , (2.4)

where the sum runs over all quark species. Here we have defined the tree-level coefficient

Ctree =
gχ gSM
vm2

a

, (2.5)

and have kept the dependence on the two CP phases explicit.

Next we consider the Higgs-mediated exchange shown in the middle panel of figure 1,

which maps onto the purely spin-independent interaction

LSI
triangle =

∑

q=all

mqλah
m2

h

(
Ctriangle
S χ̄χ q̄q + Ctriangle

PS χ̄iγ5χ q̄q
)
, (2.6)

where the sum again runs over all quarks. We have further introduced the triangle

coefficients

Ctriangle
S =

g2χ
(4π)2

mχ

[
(1 + cos(2φχ))C0(m

2
χ, m

2
a, m

2
χ) + C2(m

2
χ, m

2
a, m

2
χ)
]
, (2.7)

Ctriangle
PS =

g2χ
(4π)2

mχ sin(2φχ)C0(m
2
χ, m

2
a, m

2
χ) , (2.8)

in terms of the loop functions C0(m
2
χ, m

2
a, m

2
χ) and C2(m

2
χ, m

2
a, m

2
χ), which are given in

appendix A.1.

Finally, we have to take into account the box diagram in the right panel of figure 1.

We expand the amplitude in terms of the quark momentum, which is the smallest scale in

the diagram [44], and obtain

LSI
box=

∑

q=u,d,s

(
mq Cbox

1,q χ̄χ q̄q+mq Cbox
2,q χ̄iγ5χq̄q

)

+
∑

q=u,d,s,c,b

(
Cbox
5,q χ̄i∂

µγνχOq
µν+Cbox

6,q χ̄i∂
µi∂νχOq

µν+Cbox
7,q χ̄iγ5i∂

µi∂νχOq
µν

)
,

(2.9)

LSD
box=

∑

q=u,d,s

(
mq Cbox

3,q χ̄χ q̄iγ5q+mq Cbox
4,q χ̄iγ5χq̄iγ5q

)
. (2.10)
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Figure 2. Two-loop processes for the evaluation of the heavy quark (Q = c, b, t) contributions to

effective DM-gluon interactions.

Computational details and the expressions of the different box diagram coefficients Cbox
i,q

are given in appendix A.2. Note that all of these coefficients share a common factor of

g2χ g
2
SMm2

q/v
2, which also constitutes the only quark dependence. In eq. (2.9) we have also

introduced the twist-2 quark operator

Oq
µν = q̄

(
i∂µγν + i∂νγµ

2
− 1

4
gµνi/∂

)
q . (2.11)

Since the corresponding form factors are evaluated at the scale of the Z boson mass mZ ,

we include the charm and bottom quark in the corresponding sums in eq. (2.9) [54, 55].

However, none of the heavy quarks have been included in the remaining terms of eqs. (2.9)

and (2.10), because they require a different treatment, which will be discussed next.

2.2 Effective description of two-loop processes

As the charm, bottom and top quark are heavier than the energy scale relevant for DM

direct detection experiments, they should be integrated out of the theory aiming to describe

interactions at the level of nuclei. For the tree-level and Higgs-induced triangle diagram

this can be done simply by replacing the heavy quarks by the corresponding effective gluon

interaction obtained from triangular heavy-quark loops [56]

mQQ̄Q→ − αs

12π
Ga

µνG
aµν , (2.12)

mQQ̄iγ5Q→ αs

8π
Ga

µνG̃
aµν , (2.13)

where Gaµν is the gluon field strength tensor and G̃aµν = 1
2ǫ

µναβGa
αβ with the conven-

tion ǫ0123 = 1. This procedure is justified for these two diagrams since the two steps of

integrating out the mediator a and integrating out the heavy quarks factorise.

The situation is however very different for the box diagram in the right panel of figure 1.

In this case one cannot make a simple factorization argument to integrate out heavy quarks.

This is visualised in figure 2, which shows the two-loop diagrams that need to be computed

to obtain the effective interactions between DM and gluons. Any attempt to simplify

this calculation by first integrating out the mediator a and then using eq. (2.12) would

neglect the contribution from the diagram on the right. For mQ ≪ ma, mχ the two-

loop computation hence cannot be simplified in this way without introducing potentially
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Q
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→
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g g
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χ χ

g g

Figure 3. Illustration of the decomposition of the two-loop process for mQ ≫ ma, mχ. After

first integrating out the heavy quark Q (first arrow) one can then match the resulting one-loop

diagram onto effective DM-gluon interactions (second arrow). The black dot represents an effective

interaction corresponding to a higher-dimensional operator.

large errors [44]. In the opposite case of mQ ≫ ma, mχ it was argued in ref. [44] that

a simplification is not possible because one cannot expand the box diagram amplitude

in terms of the external quark momentum, which is no longer the smallest scale in the

diagram. It was in particular stressed that for the top quark a full two-loop computation

is mandatory.

As we are now going to demonstrate, however, for mQ ≫ ma, mχ it is in fact possible

to decompose the underlying two-loop process into two separate one-loop diagrams by

integrating out the heavy quark Q first and the mediator a afterwards. This approach, in

which no diagrams are neglected, is illustrated in figure 3. Provided the mediator is light

compared to the heavy quark, it is thus possible to simplify the calculations significantly.

In the following we will be mostly interested in the case ma ≪ mt, such that the

approach outlined above can be applied to the top quark. Therefore, we first consider

the loop involving the top quark separately and integrate it out by performing a 1/mt

expansion of the (in total six) corresponding amplitudes. We employ Package-X [57] for

the evaluation and expansion of the loop computations. This then yields the following

leading order effective Lagrangian coupling a to gluons

LaaG
eff =

1

2
d eff
G aa

αs

12π
Ga

µνG
aµν +

1

2
d eff
G̃
aa

αs

8π
Ga

µνG̃
aµν . (2.14)

Here we have included a symmetry factor of 1/2 and defined3

d eff
G = −g

2
SM

v2
cos(2φSM) , d eff

G̃
=
g2SM
v2

sin(2φSM) , (2.15)

which are both independent of the top-quark mass. Now performing the second step

3Note that d eff

G vanishes for certain values of φSM such that one would need to include higher orders.

However, these specific cases are not of interest in the present work. While d eff

G̃
also vanishes for specific

values of φSM, the same is true for the full expression d full

G̃
, see eq. (B.31) in appendix B.2, i.e. this is not a

result of the heavy quark expansion.
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|

|CG,S
full |
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-
3
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eff |

|CG,S
top

|

|CG,S
full |

Figure 4. Comparison of |CG,S | in the effective approach for the top quark (red), the two-loop

contribution of the top quark (dotted green) and the two-loop result including all heavy quarks

(dashed grey) as a function of ma (left panel) and mχ (right panel). For both plots we set φχ = 0

and φSM = π/2.

visualised in figure 3, we obtain for the effective two-loop approach

LSI
2-Loop =

(
Ceff
G,S χ̄χ+ Ceff

G,PS χ̄iγ5χ
) −αs

12π
Ga

µνG
aµν , (2.16)

LSD
2-Loop =

(
Ceff
G̃,S

χ̄χ+ Ceff
G̃,PS

χ̄iγ5χ
) αs

8π
Ga

µνG̃
aµν , (2.17)

where the effective two-loop coefficients read

Ceff
G,S = d eff

G Ctriangle
S , Ceff

G,PS = d eff
G Ctriangle

PS , (2.18)

Ceff
G,S = −d eff

G̃
Ctriangle
S , Ceff

G̃,PS
= −d eff

G̃
Ctriangle
PS . (2.19)

An analogous calculation for the bottom and charm quark only gives a useful approx-

imation if ma ≪ mc, mb. For heavier mediator masses it is in general unavoidable to

perform the full two-loop calculation to accurately estimate the corresponding contribu-

tions (see appendix B.2 for more details). However, for the specific coupling structure that

we are interested in, bottom and charm quark are found to give only a small contribu-

tion.4 It is hence possible to obtain a very good approximate result of the total heavy

quark contribution to the effective DM-gluon interactions by including only the top-quark

contribution using our effective approach.

This is illustrated in figure 4, where we plot the absolute value of the coefficient CG,S

as a function of the mediator mass (left panel) and of the DM mass mχ (right panel). The

effective approach for the top quark (indicated by the solid red line) and the corresponding

two-loop calculation (dotted green) show very good agreement for ma ≪ mt across the

whole range of DM masses. Including also bottom and charm quark in the two-loop

4This conclusion could change for example in models with extended Higgs sectors, where couplings to

down-type quarks may receive a substantial enhancement.
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calculation has only slight influences for small values of ma (dashed grey). Similar results

can be obtained for the other coefficients.5 We conclude that it is possible to simplify

the full two-loop calculation in the case of mQ ≫ ma, mχ, which makes it possible to

circumvent the full two-loop calculation entirely if the top quark is expected to give the

dominant contribution. We will therefore use the effective approach for the remainder of

this work.

2.3 Matching onto effective operators

In this section we match the effective interactions of DM with quarks and gluons onto

non-relativistic DM-nucleon interactions in order to obtain predictions for direct detection

experiments. The first step is to perform the matching of quark and gluon fields onto

nucleon fields, which yields the following effective Lagrangian:

Leff
χN =

(
CSI
eff,N χ̄χ+ CSI,CPV

eff,N χ̄iγ5χ
)
N̄N +

(
CSD,CPV
eff,N χ̄χ+ CSD

eff,N χ̄iγ5χ
)
N̄iγ5N , (2.20)

where N = p, n is a nucleon field and ‘CPV’ indicates terms that only arise when CP is

violated. The coefficients Ceff depend on the various coefficients we derived in the previous

two sections as well as on the nuclear form factors that parametrise the quark and gluon

contents of a nucleon. Note that in general the nuclear form factors and hence the effective

coefficients are different for protons and neutrons: Ceff,p 6= Ceff,n.

For the SI coefficients, we find

CSI
eff,N =

∑

q=u,d,s

mNf
N
q

(
cos(φχ) cos(φSM) Ctree +

λah
m2

h

Ctriangle
S + Cbox

1,q

)

+ 3 · 2

27
mNf

N
G

(
cos(φχ) cos(φSM) Ctree +

λah
m2

h

Ctriangle
S

)
(2.21)

+
∑

q=u,d,s,c,b

3

4
mNmχ

(
qN (2) + q̄N (2)

)(
Cbox
5,q +mχ Cbox

6,q

)
+

2

27
mNf

N
G Ceff

G,S ,

as well as

CSI,CPV
eff,N =

∑

q=u,d,s

mNf
N
q

(
sin(φχ) cos(φSM) Ctree +

λah
m2

h

Ctriangle
PS + Cbox

2,q

)

+ 3 · 2

27
mNf

N
G

(
sin(φχ) cos(φSM) Ctree +

λah
m2

h

Ctriangle
PS

)
(2.22)

+
∑

q=u,d,s,c,b

3

4
mNm

2
χ

(
qN (2) + q̄N (2)

)
Cbox
7,q +

2

27
mNf

N
G Ceff

G,PS ,

where the nuclear form factors fNq,G, q
N (2) and q̄N (2) are defined in appendix C.

5For specific parameter points cancellations might occur within the coefficients CG and CG̃ like in d eff

G

for φSM ≈ π/4. In this parameter region the two-loop result and the effective approach differ. However,

this discrepancy does not affect any of the scenarios studied in detail below.

– 8 –



J
H
E
P
0
6
(
2
0
1
9
)
0
5
2

Likewise, we obtain for the SD coefficients

CSD,CPV
eff,N =

∑

q=u,d,s

F
q/N
P

(
cos(φχ) sin(φSM) Ctree + Cbox

3,q

)

+ FN
G̃

(
3 cos(φχ) sin(φSM) Ctree + Ceff

G̃,S

)
,

(2.23)

and

CSD
eff,N =

∑

q=u,d,s

F
q/N
P

(
sin(φχ) sin(φSM) Ctree + Cbox

4,q

)

+ FN
G̃

(
3 sin(φχ) sin(φSM) Ctree + Ceff

G̃,PS

)
.

(2.24)

The form factors F
q/N
P and FN

G̃
are given in appendix C. Because of non-negligible contri-

butions from the π and η pole, these form factors depend on the momentum exchange qµ

between DM and nucleons.

In the non-relativistic limit the effective Lagrangian from eq. (2.20) can be matched

onto a basis of effective operators:

Leff
χN →

∑

i

cNi ON
i , (2.25)

where the operators ON
i depend only on the spins ~Sχ and ~SN of DM and the nucleon,

respectively, as well as on the momentum transfer ~q and the DM-nucleon relative velocity

~v [3, 4, 58]. For the model that we consider, only four different operators are generated,

namely

ON
1 = 1 ,

ON
6 =

(
~Sχ · ~q

mN

)(
~SN · ~q

mN

)
,

ON
10 = i

(
~SN · ~q

mN

)
,

ON
11 = i

(
~Sχ · ~q

mN

)
.

(2.26)

The corresponding coefficients can be directly read off from Leff
χN [4]:

cN1 = CSI
eff,N , cN6 =

mN

mχ
CSD
eff,N , cN10 = CSD,CPV

eff,N , cN11 = −mN

mχ
CSI,CPV
eff,N . (2.27)

Note that like the form factors F
q/N
P and FN

G̃
the coefficients cN6 and cN10 also depend on the

momentum transfer. This final step completes the derivation of the effective interactions

relevant for DM direct detection from the general Lagrangian of a spin-0 mediator given

in eq. (2.1).
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3 Phenomenological implication

In this section we use the results from above to predict the differential event rates in past

and future direct detection experiments and to calculate the resulting exclusion limits and

expected sensitivities. In models that predict dominantly spin-independent scattering, this

can be done by simply calculating the corresponding scattering cross section

σSIN =
µ2N |cN1 |2

π
, (3.1)

where µN = mχmN/(mχ +mN ) is the DM-nucleon reduced mass. For cp1 ≈ cn1 the differ-

ential event rate with respect to recoil energy ER is then simply given by

dR

dER
=
ρ0 σ

SI
p A2 F 2(ER)

2µ2pmχ
g(vmin) , (3.2)

where ρ0 is the local DM density, A is the mass number of the target nucleus and F 2(ER)

denotes the nuclear form factor. The factor g(vmin) =
∫
vmin

f(v)/v dv denotes the velocity

integral as a function of the minimum velocity vmin(ER) =
√
mAER/(2µ2) with mA being

the mass of the target nucleus and µ being the corresponding reduced mass. Direct de-

tection experiments typically assume this particular form of the differential cross section

in order to produce exclusion limits and quote expected sensitivities in terms of σSIp as a

function of mχ.

In the presence of additional interactions, however, the calculation of the differential

event rate becomes much more involved. We do not review the corresponding formalism

here and instead refer to refs. [3, 4, 10]. Crucially, for momentum-dependent interactions

it is no longer possible to capture the model prediction in terms of a single cross section

at fixed momentum transfer which can then be compared to published exclusion limits.

To evaluate experimental sensitivity it thus becomes necessary to reproduce experimental

analyses for the appropriate recoil spectra and include information on detection efficiencies

and background levels in order to obtain approximate likelihood functions.

This process has been automated for the most general set of non-relativistic effective

operators in the public code DDCalc v2.1 [49, 59], which includes an extensive database of

existing and planned direct detection experiments. Furthermore, DDCalc contains an auto-

mated interface with DirectDM [60], which we use for the matching of the spin-dependent

coefficients in eq. (2.27) and the evaluation of the corresponding nuclear form factors. We

can therefore simply pass the coefficients Ceff,N calculated for our model to DDCalc and

obtain the likelihoods for existing direct detection experiments and the predicted number

of events in future experiments. In the following, we will indicate the regions of parameter

space that are excluded by the most recent XENON1T results [61] and the regions that

predict at least 5 events in the next-generation LZ experiment [45].6 Similar exclusion lim-

its are obtained from the Panda-X [2, 62] and LUX [63, 64] experiments, while comparable

sensitivities are expected for the XENONnT experiment [46].

6This number of events corresponds approximately to the median expected sensitivity using a cut-and-

count analysis with a background expectation of 6.49 events. A better sensitivity may be achieved by

exploiting differences in the differential distributions between signal and background.
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Figure 5. Direct detection constraints as a function of the CP-violating phases φχ and φSM. For

both panels we have fixed gχ = gSM = 1 and λah = 0. The dotted lines indicate the ratio of

the predicted number of events in LZ when including both tree-level and loop-level diagrams and

when only including tree-level diagrams. This ratio can be smaller than unity due to destructive

interference.

3.1 General CP phases

We first visualize the general aspects of our model by considering in figure 5 the most

general case, in which φχ and φSM can take arbitrary values between 0 (corresponding to

purely scalar couplings) and π/2 (corresponding to purely pseudoscalar couplings). For the

purpose of this figure we have fixed gSM = gχ = 1 and λah = 0 and consider two different

combinations of mχ and ma in the two panels. Note that we assume that the correct relic

density is reproduced at each point in both plots without invoking a specific mechanism.

The blue shading indicates the parameter region excluded by XENON1T, while the dashed

green line provides an estimate for the reach of LZ. The black dotted lines indicate the

ratio of the total number of predicted events in LZ to the number of events predicted at

tree-level.

For φχ, φSM ≪ π/2 the tree-level exchange of a dominates the spin-independent co-

efficient CSI
eff,N from eq. (2.20) and therefore also the whole scattering process. In such

a scenario current direct detection bounds rule out a large part of the parameter space

and constrain gSM to be very small [47, 65]. As the two phases approach π/2, tree-level

scattering becomes more and more suppressed, leading to a reduced sensitivity of direct

detection experiments and a greater importance of loop effects.

For φχ = 0 and φSM = π/2, i.e. the top-left corner of figure 5, CP violation is maximal.

In this case the tree-level contribution maps onto the non-relativistic operator ON
10, which is

suppressed in the non-relativistic limit and furthermore depends on the spin of the nucleus.

Existing direct detection constraints can thus be evaded even with O(1) couplings [21].

However, spin-independent contributions arise at loop-level and can dominate the event

rate and yield potentially observable signals. The importance of loop-effects can also be

seen for φχ ≈ 0 and 10−4 . π/2− φSM . 10−3, where the total event rate is smaller than

the one predicted at tree-level due to the destructive interference between spin-independent
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interactions present at tree-level and those induced at loop-level. We discuss the case of

maximal CP violation in more detail in section 3.2.

For the opposite scenario of φχ = π/2 and φSM = 0, i.e. the bottom-right corner

of figure 5, the tree-level contribution to spin-independent scattering maps onto the non-

relativistic operator ON
11, which depends on the DM spin and the momentum transfer.

While the scattering cross section does receive a coherent enhancement in this case, it is

suppressed by an additional factor of m2
N/m

2
χ. We will therefore study the influence of

purely spin-independent contributions emerging at loop-level in the context of the CP-

violating Higgs-portal model in section 3.3.

Finally, in the top-right corner of figure 5, corresponding to almost purely pseudoscalar

interactions, the loop-induced event rate dominates over the tree-level prediction by many

orders of magnitude. However, as observed previously [44], the sensitivity of direct detec-

tion experiments is strongly suppressed in this limit, so that the case of pure pseudoscalar

interactions is out of reach for current direct detection experiments. A crucial conclusion

from figure 5 is that loop effects become increasingly important as experimental sensitivity

improves. For the couplings and masses considered, XENON1T is only sensitive to those

regions in parameter space where loop-induced interactions give a sub-leading contribution.

LZ on the other hand will be sensitive to interactions that are more strongly suppressed at

tree-level, giving greater importance to an accurate calculation of loop-level contributions.

3.2 Maximal CP violation

Let us take a closer look at the case φχ = 0 and φSM = π/2, corresponding to the top-

left corner in figure 5. In this case spin-independent interactions are completely absent at

tree-level, making loop effects particularly important. Indeed, for the masses and couplings

considered in figure 5 this scenario is not excluded by the bounds from XENON1T but can

be tested with LZ. However, the loop contributions depend sensitively on the strength of

the couplings, which enter quadratically into the Wilson coefficients. In order to fully assess

the importance of loop effects, it is therefore important to consider alternative constraints

on the couplings gSM, gχ and λah.

For given values of ma, mχ and gSM we can fix gχ by the requirement that the observed

DM relic abundance can be explained in terms of thermal freeze-out via the annihilation

processes χχ̄ → qq̄ and χχ̄ → aa. If the latter process is kinematically allowed, i.e. for

ma < mχ, it will typically give the dominant contribution for gSM ≪ 1, such that the

required value for gχ becomes independent of gSM. In this limit, we find gχ ∝ m
1/2
χ with

gχ = 1 for mχ ≈ 500GeV. For larger gSM the calculation becomes more involved and we

use micrOmegas v5.0.6 [66] to determine the required value for gχ numerically.

The coupling of the light spin-0 boson to SM particles can be constrained through

a range of flavour physics observables. For ma . mB ≈ 5.2GeV, these constraints are

very strong and effectively exclude the possibility of obtaining observable direct detection

signatures [37]. However, almost all of these constraints disappear for larger values of ma.

Bounds from radiative Υ decays [67, 68] extend to slightly larger masses, but also disap-

pear for ma & 7GeV. Provided the pseudoscalar couples also to leptons (with coupling

strength gSMmℓ/v), another important constraint arises from Bs → µ+µ−, which can arise
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from loop-induced flavour-changing interactions with an off-shell mediator. The resulting

branching ratio is given by [37, 69]

BR(Bs→µ+µ−)NP

BR(Bs→µ+µ−)SM
≃

g4SMm
4
t m

4
Bs

16m4
W sin(θW )4|CSM

10 |2
(
(m2

Bs
−m2

a)
2+Γ2

am
2
a

) log2
(
Λ2

m2
t

)
, (3.3)

where CSM
10 = −4.103 and Λ is the scale of new physics (such as additional charged

Higgs bosons needed in a gauge-invariant UV completion). For Λ = 1TeV and assum-

ing ma ≫ mBs , this expression simplifies to

BR(Bs → µ+µ−)NP

BR(Bs → µ+µ−)SM
≈
(
7.9GeV gSM

ma

)4

. (3.4)

The branching ratio of Bs → µ+µ− has been measured with a precision of 20% [70] and is

found to be in agreement with the SM prediction [71]. To obtain an approximate bound on

gSM we therefore require the new-physics contribution not to exceed 40% of the SM value.

This gives

gSM . 1.0
( ma

10GeV

)
. (3.5)

In other words, even for spin-0 bosons as light as 10GeV the coupling strength gSM can

be of order unity. Constraints of comparable strength have been derived from LHCb dark

photon searches within a di-muon channel, see refs. [32, 72].7

The situation is quite different for the coupling λah between a and the SM Higgs boson.

This coupling induces the decay h→ aa with partial width [48]

Γh→aa =
λ2ah v

2

32πmh

(
1− 4m2

a

m2
h

)1/2

. (3.6)

The presence of this decay mode gives rise to exotic Higgs decays and leads to a suppres-

sion of the Higgs signal strength in the conventional channels. While the former provide

a promising strategy for future searches [32], at present the strongest constraints come

from a global fit of the measured properties of the SM-like Higgs boson at ATLAS and

CMS [78]. These fits imply BR(h → aa) < 0.34, corresponding to Γh→aa . 2MeV, when

simultaneously allowing for modifications of the Higgs boson production cross section, or

BR(h → aa) < 0.13, corresponding to Γh→aa . 0.6MeV, when assuming the production

cross section to be given by the SM prediction. For ma ≪ mh/2, these bounds translate

to λah . 0.02 and λah . 0.01, respectively. We will conservatively show the weaker bound

in the following.

Figure 6 summarises the constraints on gSM (left) and λah (right) as a function of

mχ. At each point in the two plots gχ is determined by the relic density requirement and

we have set ma = 15GeV. Again the solid blue region is excluded by XENON1T and

the parameter points for which 5 events are predicted in LZ are indicated by the dashed

7For φSM different from π/2 there would be additional constraints from observables sensitive to CP-

violation, in particular electric dipole moments of leptons [73, 74], nuclei [75] and atoms [76, 77]. However,

for φSM ≈ π/2 the spin-0 mediator behaves like a pure pseudoscalar in all observables involving only SM

particles, such that these constraints are absent.
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Figure 6. Constraints on gSM (left) and λah (right) as a function ofmχ in a model with maximal CP

violation (φχ = 0, φSM = π/2). At each point the coupling gχ is fixed in such a way that the observed

DM relic abundance is reproduced. The dotted lines indicate the ratio of the predicted number

of events in LZ from loop-induced spin-independent interactions and from tree-level momentum-

suppressed interactions.

green line. Dotted black lines in the left panel indicate the ratio of loop-induced spin-

independent interactions and tree-level momentum suppressed interactions in terms of the

number of predicted events in LZ. As expected, the importance of loop effects grows with

increasing gSM and with increasing mχ, corresponding to increasing gχ. The kinks for

mχ ≈ 175GeV result from the fact that for larger DM masses annihilation into top quarks

becomes kinematically allowed and provides an efficient annihilation channel, reducing the

required value of gχ.

Since direct constraints on gSM are quite weak, we find large regions of parameter space

where the model can be discovered by LZ. If the interactions of DM arise dominantly from

λah, on the other hand, the strong constraints from Higgs measurements imply that there

remains only a small region of allowed parameter space that can be explored with LZ. We

note that the constraints in the right panel are completely independent of φSM and would

hence also apply to a pure pseudoscalar.

For parameter points close to the XENON1T exclusion bound in the left panel loop

effects give a sizeable contribution to the total event rate in direct detection experiments.

This observation is illustrated further in figure 7, which compares the predicted differential

event rates at tree-level and loop-level in LZ for mχ = 200GeV, ma = 15GeV and gSM =

0.6, corresponding to gχ = 0.6. The tree-level interactions are momentum-suppressed and

therefore vanish in the limit ER → 0, leading to a maximum around ER ∼ 30 keV. The dif-

ferential event rate from loop-induced spin-independent interactions, on the other hand, de-

creases monotonically with increasing recoil energy. Intriguingly, the two contributions con-

spire to give a total event rate that is approximately constant across the entire search region.

Such a spectrum cannot be obtained from any single non-relativistic operator and could

therefore, given enough statistics, be used to identify models like the one discussed here.
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Figure 7. Predicted differential event rate in LZ for a specific parameter point in the model with

maximal CP violation (φχ = 0, φSM = π/2) consistent with all current constraints.

A similar interplay between tree level and loop level can arise for φχ = π/2, φSM = 0,

in which case the tree-level process is coherently enhanced but suppressed by a factor

mN/mχ in c11, see eq. (2.27). The two scenarios however differ in their dependence on the

target material. In particular, if tree-level scattering is spin-dependent, it will be absent

in target materials with no nuclear spin, leading to a monotonically falling recoil spectrum

from loop-induced spin-independent interactions.

Let us finally revisit the discussion of how to approximate two-loop effects in our

model. We compare in figure 8 the spin-independent scattering cross section obtained with

our approach (outlined in section 2.2) with the result of a full two-loop calculation including

all heavy quarks. The left panel corresponds to the case of maximal CP violation (φχ = 0,

φSM = π/2), the right panel corresponds to the pure pseudoscalar case (φχ = φSM = π/2).

In both cases we fix gχ by the relic density requirement and set gSM = 0.6, consistent with

the bounds discussed above (which are independent of φχ). We find very good agreement

between the two approaches, confirming our approach for integrating out top quarks and

neglecting the contribution from bottom and charm quarks. In the right panel we also show

the cross section obtained if the pseudoscalar is integrated out before all heavy quarks, as

previously suggested in refs. [41, 42].8 As pointed out previously [44], this approach leads

to a vast overestimation of the loop contribution.

3.3 CP-violating Higgs portal

As a final example for the importance of loop-effects we consider the fermionic Higgs portal

model [48–50]:

L = LSM + χ(i/∂ − µ)χ− λhχ
Λ

(cosψ χχ+ sinψ χiγ5χ)H
†H , (3.7)

where H denotes the SM Higgs doublet and Λ parametrises the unknown scale of new

physics. At first sight, this Lagrangian bears little resemblance to the simplified model

8Here we have used the coefficient CS,q from ref. [41] for the top quark and have fixed the overall sign

following ref. [44].
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Figure 8. Comparison of the effective approach and the full two-loop result for two benchmark

points in mχ − σSI
p − plane. In the left panel we consider maximal CP violation with φSM = π/2

and φχ = 0, whereas in the right panel we fix φSM = φχ = π/2, i.e. pure pseudoscalar phases, and

also show the curve corresponding to previous calculational approaches of the two-loop diagram. In

both panels λah is set to zero and gχ is fixed such that the correct relic density is reproduced. Note

that additional contributions to the differential event rate from momentum-dependent interactions

at tree-level may lead to stronger exclusion limits than the ones shown in this plot.

discussed so far. After electroweak symmetry breaking, however, the following interactions

are generated:

L ⊃ −λ v h3 − h

v

∑

q

mqqq −
λhχ v

Λ
h (cosφχχ+ sinφχiγ5χ) , (3.8)

where λ denotes the quartic Higgs self-coupling and

cosφ =
µ

mχ

(
cosψ +

1

2

λhχ
Λ

v2

µ

)
, (3.9)

with

mχ =

√(
µ+

1

2

λhχ
Λ
v2 cosψ

)2

+

(
1

2

λhχ
Λ
v2 sinψ

)2

. (3.10)

We can therefore directly apply all the results from section 2 with the replacements

ma=mh, gχ=
λhχv

Λ
, gSM=1, φSM=0, φχ=φ, λah=−6λ=−3

m2
h

v2
. (3.11)

The factor of 6 in the last expression is necessary to ensure that the correct Feynman rule

is obtained in spite of different combinatorial factors. The free parameters of this model

are hence mχ, λhχ/Λ and φ.
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Figure 9. Constraints and preferred parameter regions for the CP-violating Higgs portal model

with φ = π/2. The dotted lines indicate the ratio of loop-induced spin-independent interactions

and tree-level momentum-suppressed interactions in terms of the predicted number of events in LZ.

Note that, since we study loop processes within this model, one should in principle

include all operators involving DM particles and SM fields that contribute at the order of

1/Λ2, in particular dimension six operators coupling the DM vector and axial-vector current

to the corresponding SM quark currents. Here we implicitly assume the absence of new spin-

1 particles at the high energy scale Λ that would induce such operators. Operators including

scalar, pseudoscalar or tensor couplings between DM and quarks would generally be accom-

panied with a factor of mq and would therefore only contribute at higher order, i.e. 1/Λ3.

For φ 6= 0 the model violates CP and spin-independent scattering is suppressed propor-

tional to cos2 φ. As φ approaches π/2, loop effects are therefore expected to become increas-

ingly important. We confirm this expectation in figure 9, which shows constraints on λhχ/Λ

as a function of mχ. Dotted lines indicate the ratio of loop-induced spin-independent inter-

actions to tree-level momentum-suppressed interactions (in terms of the expected number

of events in LZ). In the parameter range that can be probed by direct detection experi-

ments, this ratio is significantly larger than unity, implying that the sensitivity of direct

detection experiments stems almost exclusively from loop-induced interactions.9

In figure 9 we also indicate the parameter regions excluded by the constraint BR(h→
inv) < 0.26 [79, 80] as well as the combinations of λhχ/Λ and mχ for which the observed

DM relic abundance can be reproduced via annihilations into SM particles [48]. The re-

quirement of EFT validity, λhχ/Λ < 2π/mχ [49], is satisfied in the entire parameter region

shown in figure 9. We find that for φ = π/2 constraints from direct detection experiments

are rather weak and only probe parameter regions where the standard freeze-out calcu-

lation predicts χ to be a sub-dominant DM component. For these parameter regions we

9We note that our effective description of top-quark loops overestimates the contribution to the Wilson

coefficient for spin-independent scattering by up to a factor of 3 compared to the full two-loop result.

However, by far the dominant contribution to this coefficient arises from triangle diagrams, making the

difference between the effective description and the full two-loop calculation irrelevant.
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implicitly assume that the abundance of χ is set by a non-standard mechanism (e.g. a

particle-antiparticle asymmetry) such that χ accounts for all of the DM. If, on the other

hand, bounds from direct detection experiments are rescaled based on the abundance of χ

obtained from standard freeze-out, as done e.g. in ref. [49], loop-induced direct detection

signals do not provide relevant constraints on the CP-violating Higgs portal model for the

foreseeable future.

We point out that within this model two additional loop diagrams with one insertion

each of hχ̄iγ5χ and h2χ̄iγ5χ contribute to the amplitudes relevant for direct detection.

These diagrams are however UV divergent, which indicates a dependence on the specific

UV completion of the effective Higgs portal operator. Replacing the UV divergence with

log (Λ2/m2
χ) and setting Λ = 1TeV, we find that these loops can be numerically important

and increase the predicted event rates (see appendix D for additional details). Nevertheless,

these additional contributions are still not large enough for near-future direct detection

experiments to reach the relic density line shown in figure 9. To make this statement more

precise would require the choice of a specific UV completion.

4 Conclusions

Future direct detection experiments will reach such a high level of sensitivity to the inter-

actions between DM and quarks that loop effects become increasingly important. This is

particularly true in models where tree-level scattering is suppressed, such that loop-induced

interactions may give the dominant contribution and yield potentially observable signals.

In the present work we have studied such a set-up in the context of a spin-0 particle a me-

diating the interaction between DM and SM fermions. In contrast to previous studies, we

allow general CP phases and therefore cover scalar, pseudoscalar and CP-violating interac-

tions. Moreover, we include a trilinear coupling between a and the SM Higgs boson which

generally arises in UV completions of this model and can have important phenomenological

consequences.

For certain combinations of CP phases standard spin-independent contributions are

strongly suppressed or even fully absent at tree-level, such that a proper calculation of the

interactions induced at loop-level is crucial. In our model, these arise from Higgs-induced

triangle diagrams, box diagrams for light quarks (both shown in figure 1) as well as the two-

loop process involving heavy quarks shown in figure 3. In particular the two-loop process

gives an important contribution, which is difficult to estimate without performing the full

calculation. To address this challenge, we have presented a novel approach for simplifying

the two-loop calculation significantly for heavy quark masses (schematically illustrated in

figure 3). Provided the top quark gives the dominant contribution and the mediator is light

compared to the top quark, this approach makes it possible to circumvent the two-loop

calculation entirely and obtain an accurate estimate that is much easier to calculate and

implement. A comparison between the two approaches is provided in figure 4.

As illustrated in figure 5, loop effects are most important when at least one of the

CP phases is close to π/2 (corresponding to pseudoscalar interactions). Moreover, they

gain in importance as the sensitivity of direct detection experiments improves. A particu-
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larly interesting observation is that the recoil rates induced at tree- and loop-level can be

comparable, resulting in a roughly constant event rate over the whole energy window (see

figure 7). Since such a spectrum cannot be generated from a single type of interaction, it

will be very interesting to perform a detailed statistical analysis of how to discriminate the

model studied here from alternative hypotheses.

Finally, we have studied the impact of spin-independent loop-induced interactions on

the CP-violating fermionic Higgs portal model. Our results show that loop-level effects

allow future direct detection experiments to probe parameter regions that would be other-

wise inaccessible. Nevertheless, loop-level contributions are still too small to enable direct

detection experiments to reach the parameter regions preferred by thermal freeze-out if the

CP phase is close to π/2.

Based on the results presented in this work, we conclude that a general spin-0 mediator

offers an interesting possibility to evade current direct detection bounds even with O(1) cou-

plings while still maintaining promising detection prospects for future years. It will there-

fore be important to investigate how such a simplified model can arise from a more complete

theory, such as an extended Higgs sector with spontaneous CP breaking. Such an embed-

ding will provide new insights on the relations between the different couplings and allow for

a more accurate analysis of the constraints from flavour physics and precision observables.
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A One-loop Wilson coefficients

In this appendix we provide details on the one-loop calculations relevant for section 2.1.

A.1 Loop functions

We define the Passarino-Veltman functions Ci that appear in our one-loop calculations

according to the standard notation [81]

∫
d4k

(2π)4
1

[(p+ k)2 −M2] [k2 −m2]2
=

i

(4π)2
C0(p

2, m2, M2) , (A.1)

∫
d4k

(2π)4
kµ

[(p+ k)2 −M2] [k2 −m2]2
=

i

(4π)2
pµC2(p

2, m2, M2) . (A.2)

The X2 and Y2 functions are given by [82]

∫
d4k

(2π)4
1

[(p+ k)2 −M2] k2 [k2 −m2]2
=

i

(4π)2
X2(p

2, M2, 0, m2) , (A.3)

∫
d4k

(2π)4
kµ

[(p+ k)2 −M2] k2 [k2 −m2]2
=

i

(4π)2
pµ Y2(p

2, M2, 0, m2) , (A.4)
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which will reappear in the full two-loop approach in appendix B.1. Finally, we define the

Z functions
∫

d4k

(2π)4
kµkν

[(p+ k)2 −M2] k4 [k2 −m2]2

=
i

(4π)2

(
pµpν Z11(p

2, M2, m2) + gµν Z00(p
2, M2, m2)

)
,

(A.5)

∫
d4k

(2π)4
kµkνkα

[(p+ k)2 −M2] k4 [k2 −m2]2

=
i

(4π)2

(
pµpνpα Z111(p

2, M2, m2) +
(
gµνpα + gαµpν + gναpµ

)
Z001(p

2, M2, m2)
)
.

(A.6)

All of these functions can be calculated readily with Package-X [57]. As examples, we

quote the expression for C0(p
2, m2, M2),

C0(p
2, m2, M2)=−

log
(

m2

M2

)

2p2
+

[ (
m2−M2−p2

)

p2
√
m4−2m2M2−2m2p2+M4−2M2p2+p4

(A.7)

×log

(
m2+

√
m4−2m2M2−2m2p2+M4−2M2p2+p4+M2−p2

2mM

)]
,

and Z11(M
2, M2, m2) evaluated using the on-shell condition p2 =M2,

Z11(M
2, M2, m2)=

1

3m2M4
−
log
(

m2

M2

)

6M6
(A.8)

+

√
m2 (m2−4M2)

(
m4−2m2M2−2M4

)
log

(√
m2(m2−4M2)+m2

2mM

)

3m4M6 (m2−4M2)
.

The remaining coefficients can be computed analogously.

A.2 Box diagram computation and coefficients

For the computation of the box and its crossed diagram shown in figure 10 we follow the

procedure from ref. [44], which allows us to derive the coefficients for the twist-2 operators.

We first start with the amplitude, which can be expressed as

iMBox = g2χ g
2
SM

m2
q

v2

× ūχ(pχ)

∫
d4k

(2π)4

(
/k

(k + pχ)2 −m2
χ

+
2mχ [cos

2(φχ) + iγ5 sin(φχ) cos(φχ)]

(k + pχ)2 −m2
χ

)
uχ(pχ)

× 1

(k2 −m2
a)

2
ūq(pq)

( −/k
(k − pq)2 −m2

q

+
2mq [cos

2(φSM) + iγ5 sin(φSM) cos(φSM)]

(k − pq)2 −m2
q

)
uq(pq)

+ crossed diagram , (A.9)

where the crossed diagram is obtained by the replacement k → −k within ūq(pq) . . . uq(pq)

and we have suppressed the sum over the quark species. Now we expand the amplitude in
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χ χ

q q

pχ k + pχ pχ

pq −k + pq pq

ka k a

χ χ

q q

a a

pχ k + pχ pχ

pq k + pq pq

k k

Figure 10. Box and corresponding crossed diagram including visualization of the momentum flow

in the limit of no momentum transfer.

terms of pq, as this is the smallest scale involved in the diagram:

−1

(k − pq)2 −m2
q

+
1

(k + pq)2 −m2
q

=
−4 k · pq

k4
+O((pq)

2) , (A.10)

1

(k − pq)2 −m2
q

+
1

(k + pq)2 −m2
q

=
2

k2
+O((pq)

2) , (A.11)

where we have employed the on-shell condition (pq)
2 = m2

q . The amplitude then reads

iMBox = g2χ g
2
SM

m2
q

v2

× ūχ(pχ)

∫
d4k

(2π)4

(
/k

(k + pχ)2 −m2
χ

+
2mχ [cos

2(φχ) + iγ5 sin(φχ) cos(φχ)]

(k + pχ)2 −m2
χ

)
uχ(pχ)

× 1

(k2 −m2
a)

2
ūq(pq)

(−/k 4 k · pq
k4

+
4mq [cos

2(φSM) + iγ5 sin(φSM) cos(φSM)]

k2

)
uq(p2)

+O((pq)
2) . (A.12)

We can now identify the loop functions defined in appendix A.1, construct the correspond-

ing effective Lagrangian and use the following decomposition:

q̄i∂µγνq = Oq
µν + q̄

i∂µγν − i∂νγµ

2
q +

1

4
gµνmq q̄q . (A.13)

This then yields the effective box diagram Lagrangian given in eqs. (2.9) and (2.10) with

the coefficients given by

Cbox
1,q = κqmχ

(
−m2

χ Z111(m
2
χ, m

2
χ, m

2
a)− 6Z001(m

2
χ, m

2
χ, m

2
a)

+ 4 cos2(φSM)Y2(m
2
χ, m

2
χ, 0, m

2
a)− 2m2

χ cos
2(φχ)Z11(m

2
χ, m

2
χ, m

2
a) (A.14)

− 8 cos2(φχ)Z00(m
2
χ, m

2
χ, m

2
a) + 8 cos2(φχ) cos

2(φSM)X2(m
2
χ, m

2
χ, 0, m

2
a)
)
,

Cbox
2,q = κqmχ

(
− 2m2

χ cos(φχ) sin(φχ)Z11(m
2
χ, m

2
χ, m

2
a)

− 8 cos(φχ) sin(φχ)Z00(m
2
χ, m

2
χ, m

2
a) (A.15)

+ 8 cos(φχ) sin(φχ) cos
2(φSM)X2(m

2
χ, m

2
χ, 0, m

2
a)
)
,

Cbox
3,q = κqmχ

(
4 cos(φSM) sin(φSM)Y2(m

2
χ, m

2
χ, 0, m

2
a)

+ 8 cos2(φχ) cos(φSM) sin(φSM)X2(m
2
χ, m

2
χ, 0, m

2
a)
)
,

(A.16)
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Cbox
4,q = 8κqmχ cos(φχ) sin(φχ) cos(φSM) sin(φSM)X2(m

2
χ, m

2
χ, 0, m

2
a) , (A.17)

Cbox
5,q = −8κq Z001(m

2
χ, m

2
χ, m

2
a) , (A.18)

Cbox
6,q = κqmχ

(
− 4Z111(m

2
χ, m

2
χ, m

2
a)− 8 cos2(φχ)Z11(m

2
χ, m

2
χ, m

2
a)
)
, (A.19)

Cbox
7,q = −8κqmχ cos(φχ) sin(φχ)Z11(m

2
χ, m

2
χ, m

2
a) , (A.20)

where we have used the shorthand notation

κq =
g2χ g

2
SMm2

q

16v2π2
. (A.21)

B Details on two-loop calculations

In this appendix we provide details on the two-loop calculations relevant for section 2.2.

B.1 Loop functions

For the two-loop computation presented in appendix B.2, we will need further loop func-

tions. The Passarino-Veltman functions Di read in their standard notation [81]

∫
d4k

(2π)4
1

[(p+ k)2 −M2] [k2 −m2]3
=

i

(4π)2
D0(p

2, m2, M2) , (B.1)

∫
d4k

(2π)4
kµ

[(p+ k)2 −M2] [k2 −m2]3
=

i

(4π)2
pµD3(p

2, m2, M2) . (B.2)

We further define the Xn and Yn functions by [82]

∫
d4k

(2π)4
1

[k2− m2
q

x(1−x) ]
n [(pχ+k)2−m2

χ] [k
2−m2

a]
=

i

(4π)2
Xn

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)
, (B.3)

∫
d4k

(2π)4
kµ

[k2− m2
q

x(1−x) ]
n [(pχ+k)2−m2

χ] [k
2−m2

a]
=

i

(4π)2
pµχYn

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)
. (B.4)

Using partial fraction decomposition, we can derive the following relations for Xn

X1

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)

=
1

m2
a−

m2
q

x(1−x)

(
B0

(
p2χ, m

2
a, m

2
χ

)
−B0

(
p2χ,

m2
q

x(1−x) , m
2
χ

))
,

(B.5)

X2

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)

=
1

m2
a−

m2
q

x(1−x)

(
X1

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)
−C0

(
p2χ,

m2
q

x(1−x) , m
2
χ

))
,

(B.6)

X3

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)

=
1

m2
a−

m2
q

x(1−x)

(
X2

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)
−D0

(
p2χ,

m2
q

x(1−x) , m
2
χ

))
,

(B.7)
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as well as for Yn [44]

Y1

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)
=

1

m2
a−

m2
q

x(1−x)

(
B1

(
p2χ, m

2
a, m

2
χ

)
−B1

(
p2χ,

m2
q

x(1−x) , m
2
χ

))
, (B.8)

Y2

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)
=

1

m2
a−

m2
q

x(1−x)

(
Y1

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)
−C2

(
p2χ,

m2
q

x(1−x) , m
2
χ

))
,

(B.9)

Y3

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)
=

1

m2
a−

m2
q

x(1−x)

(
Y2

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)
−D3

(
p2χ,

m2
q

x(1−x) , m
2
χ

))
,

(B.10)

where the loop functions denoted by B0(p
2, m2, M2) and B1(p

2, m2, M2) are implemented

in LoopTools [83].10 We further need the derivatives of these functions with respect to m2
a

∂

∂m2
a

X1

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)

=
1

m2
a−

m2
q

x(1−x)

(
C0(p

2
χ, m

2
a, m

2
χ)−X1

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

))
,

(B.11)

∂

∂m2
a

X2

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)

=
1

m2
a−

m2
q

x(1−x)

(
∂

∂m2
a

X1

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)
−X2

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

))
, (B.12)

∂

∂m2
a

X3

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)

=
1

m2
a−

m2
q

x(1−x)

(
∂

∂m2
a

X2

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)
−X3

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

))
, (B.13)

as well as [44]

∂

∂m2
a

Y1

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)

=
1

m2
a −

m2
q

x(1−x)

(
C2(p

2
χ, m

2
a, m

2
χ)− Y1

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

))
,

(B.14)

∂

∂m2
a

Y2

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)

=
1

m2
a −

m2
q

x(1−x)

(
∂

∂m2
a

Y1

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)
− Y2

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

))
, (B.15)

∂

∂m2
a

Y3

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)

=
1

m2
a −

m2
q

x(1−x)

(
∂

∂m2
a

Y2

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)
− Y3

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

))
. (B.16)

10We could in principle evaluate the functions Xn and Yn directly with Package-X [57] and then perform

the numerical integration appearing in the two-loop calculation using their explicit expressions. Numerical

stability improves, however, when the functions are decomposed as presented here.
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B.2 Review of the two-loop computation

The two-loop computation was recently presented for a purely pseudoscalar mediator in

the context of a 2HDM [44]. For our model, however, we have to generalise the results

to arbitrary CP phases in the SM and dark sector. We use the opportunity to present

intermediate calculational steps of the derivation not explicitly shown in ref. [44]. Our

starting point is the calculation of the leading order effective vertices between the spin-0

mediator a and gluons, which we treat as background. To simplify the computation we

employ the Fock-Schwinger gauge, in which the gluon field can directly be expressed in

terms of the field strength [54, 84].

The general amplitude can thus be written as

iMaaG
2-Loop=−

∑

q=c,b,t

(
igSMmq

v

)2

(B.17)

×
∫

d4p

(2π)4
TrDirac

Colour

[[
cos(φSM)+iγ5 sin(φSM)

]
iS(p)

[
cos(φSM)+iγ5 sin(φSM)

]
iS̃(p−q)

]
,

where two different coloured fermion propagators, S(p) and S̃(p − q), occur, as the Fock-

Schwinger gauge breaks translational invariance. Since we are interested in the effec-

tive vertices aaGa
µνG

aµν and aaGa
µνG̃

aµν , we have to consider the following terms in the

propagators11

iS(p) = iS(0)(p) +

∫
d4k1 iS

(0)(p) gsγ
α 1

2
Gµα

(
∂

∂k1µ
δ(4)(k1)

)
iS(0)(p− k1)

+

∫
d4k1d

4k2 iS
(0)(p) gsγ

α 1

2
Gµα

(
∂

∂k1µ
δ(4)(k1)

)
iS(0)(p− k1) (B.18)

× gsγ
β 1

2
Gνβ

(
∂

∂k2ν
δ(4)(k2)

)
iS(0)(p− k1 − k2) + . . . ,

iS̃(p) = iS(0)(p) +

∫
d4k1 iS

(0)(p+ k1) gsγ
β 1

2
Gνβ

(
∂

∂k1ν
δ(4)(k1)

)
iS(0)(p)

+

∫
d4k1d

4k2 iS
(0)(p+ k1 + k2) gsγ

α 1

2
Gµα

(
∂

∂k2µ
δ(4)(k2)

)
(B.19)

× iS(0)(p+ k1) gsγ
β 1

2
Gνβ

(
∂

∂k1ν
δ(4)(k1)

)
iS(0)(p) + . . . ,

where terms with derivatives acting on Gµν are neglected since they are not relevant for

the present work. Further we have used iS(0)(p) = i(/p+m)/(p2 −m2) and Gµν = Gaµν ta

with ta being an SU(3) generator fulfilling Tr[tatb] = δab/2. Inserting these expressions into

eq. (B.17), we identify three terms relevant for the computation of vertices involving two

gluon field strength tensors. These terms are visualised in figure 11. We will present the

various calculational steps for the term involving a gluon field strength tensor each from

11Our expressions for S(p) and S̃(p) differ from ref. [54] by the replacement Ga
µν → Ga

νµ. The resulting

minus sign drops out, however, as we are only interested in terms involving two gluon field strength tensors.
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a a

p′ + k2 p′

q q

k1

k2

p− k1 p

a a

p− k1 − k2 p

q q

k2 k1

p′

p− k1
a a

p′ + k1 + k2 p′p′ + k1

q q

k2 k1

p

Figure 11. Visualization of the first step in the two-loop calculation where we compute the heavy

quark loop contribution to the effective vertices between a and gluons [84]. Here p′ is given by

p′ = p− q.

S(p) and S̃(p− q), illustrated in the left panel in figure 11. The corresponding term reads

iMaaG
2-Loop⊃−

∑

q=c,b,t

(
igSMmq

v

)2

× g2s
8
Ga

αµG
a
βν

∫
d4p

(2π)4
∂

∂k1µ

∂

∂k2ν
TrDirac

[[
cos(φSM)+iγ5 sin(φSM)

] /p+m
p2−m2

γα
/p−/k1+m

(p−k1)2−m2

×
[
cos(φSM)+iγ5 sin(φSM)

] /p−/q+/k2+m
(p−q+k2)2−m2

γβ
/p−/q+m

(p−q)2−m2

]

k1=k2=0

, (B.20)

where we performed the trace over colour indices as well as partial integration regarding

k1 and k2 and switched the indices of the gluon field strengths. After performing the

derivatives with respect to k1µ and k2ν , setting k1 = k2 = 0 afterwards and evaluating the

trace using Package-X [57], we now have to project out the leading spin-independent and

spin-dependent term. The spin-independent term can be obtained by rewriting12

Ga
αµG

a
βν =

1

12
Ga

ρσG
aρσ(gαβgµν − gανgβµ) +

1

2
gαβ OG

µν

+
1

2
gµν OG

αβ − 1

2
gαν OG

βµ − 1

2
gβµOG

αν +OG
αµβν ,

(B.21)

where we have introduced the twist-2 gluon operator OG
µν and a higher spin operator OG

αµβν

OG
µν = Gaρ

µG
a
ρν −

1

4
gµνG

a
ρσG

aρσ , (B.22)

OG
αµβν = Ga

αµG
a
βν −

1

2
gαβG

aρ
µG

a
ρν −

1

2
gµνG

aρ
αG

a
ρβ

+
1

2
gανG

aρ
βG

a
ρµ +

1

2
gβµG

aρ
αG

a
ρν

+
1

6
Ga

ρσG
aρσ(gαβgµν − gανgβµ) .

(B.23)

12The signs in front of OG
µν and OG

αβ differ from eq. (50) in ref. [54]. As we are not including the terms

containing the twist-2 operator, this difference will not play a role.
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These operators do not contribute to Ga
ρσG

aρσ and give sub-leading SI interactions such that

they are neglected in the present work. We therefore only have to consider the replacement

Ga
αµG

a
βν → 1

12
Ga

ρσG
aρσ(gαβgµν − gανgβµ) , (B.24)

for the spin-independent term. The spin-dependent term involving Ga
µνG̃

aµν can be ob-

tained straightforwardly by isolating the term in the trace containing the ǫ-tensor. Putting

both contributions together, we then obtain

iMaaG
2-Loop ⊃ −

∑

q=c,b,t

(
igSMmq

v

)2
{
g2s
96
Ga

ρσG
aρσ

∫
d4p

(2π)4
−48 [2m2

q cos(2φSM) + p · (p− q)]

[p2 −m2
q ]
2 [(p− q)2 −m2

q ]
2

+ g2s G
a
ρσG̃

aρσ

∫
d4p

(2π)4
m2

q sin(2φSM)

[p2 −m2
q ]
2 [(p− q)2 −m2

q ]
2

}
. (B.25)

Since the momentum q corresponds to the second loop momentum of the full two-loop

diagram it is not helpful to simply perform the loop integral over p, as one has to perform

a second loop integral afterwards. It is more advantageous to use a Feynman parameter

x instead:

1

A2B2
=

∫ 1

0
dx

6x(1− x)

(xA+ (1− x)B)4
, (B.26)

x((p− q)2 −m2) + (1− x)(p2 −m2) = (p− qx)2 −m2 − q2x(−1 + x) . (B.27)

Shifting p→ p+ qx and performing the loop integral over p, we obtain finally

iMaaG
2-Loop ⊃ i

∑

q=c,b,t

(gSMmq

v

)2 g2s
32π2

Ga
ρσG

aρσ

×
∫ 1

0
dx

{
−2m2

q [cos(2φSM)− 1
2 ]x(1− x)

[m2
q − q2x(1− x)]2

+
x(1− x)

[m2
q − q2x(1− x)]

}

+ i
∑

q=c,b,t

(gSMmq

v

)2 g2s
16π2

Ga
ρσG̃

aρσ

∫ 1

0
dx

m2
q sin(2φSM)x(1− x)

[m2
q − q2x(1− x)]2

. (B.28)

One can proceed in a similar fashion for the remaining two terms in eq. (B.17), which

contribute equally to the amplitude, such that the full amplitude reads

iMaaG
2-Loop = i d full

G (q2)
αs

12π
Ga

ρσG
aρσ + i d full

G̃
(q2)

αs

8π
Ga

ρσG̃
aρσ , (B.29)

with

d full
G (q2)=

∑

q=c,b,t

(gSMmq

v

)2∫ 1

0
dx

{
3
2 x(1−x)

[m2
q−q2x(1−x)]

(B.30)

+
m2

q

2

3(1−x)x+2(−1−x+x2) cos(2φSM)

[m2
q−q2x(1−x)]2

−m4
q

1−3x+3x2−(1−x)x cos(2φSM)

[m2
q−q2x(1−x)]3

}
,

d full
G̃

(q2)=
∑

q=c,b,t

(gSMmq

v

)2∫ 1

0
dx

m2
q sin(2φSM)

[m2
q−q2x(1−x)]2

, (B.31)
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where we have made the integral over the Feynman parameter symmetric under x→ 1−x.
This result agrees with eq. (B.73) from ref. [44] for φSM = π/2. Moreover, when performing

a heavy quark expansion on eq. (B.29), we recover the effective Lagrangian from eq. (2.14).

It is now straightforward to perform the integration from the remaining triangle dia-

gram of the full two-loop approach, visualised after the first arrow in figure 3, for which

the amplitude can be written as

iMSI
2-Loop = −ūχ(pχ) g2χ

∫
d4q

(2π)4
/q + 2mχ [cos

2(φχ) + iγ5 sin(φχ) cos(φχ)]

[(pχ + q)2 −m2
χ] [q

2 −m2
a]

2
uχ(pχ)

×
[
d full
G (q2)

αs

12π
Ga

ρσG
aρσ + d full

G̃
(q2)

αs

8π
Ga

ρσG̃
aρσ

]
.

(B.32)

In terms of the various loop functions defined in appendix B.1, we can map this amplitude

onto

LSI
2-Loop =

(
Cfull
G,S χ̄χ+ Cfull

G,PS χ̄iγ5χ
) −αs

12π
Ga

µνG
aµν , (B.33)

LSD
2-Loop =

(
Cfull
G̃,S

χ̄χ+ Cfull
G̃,PS

χ̄iγ5χ
) αs

8π
Ga

µνG̃
aµν , (B.34)

with

Cfull
G,S =

1

(4π)2

∑

q=c,b,t

(gχ gSMmq

v

)2
(B.35)

×
{
mχ FY (p

2
χ, m

2
χ, m

2
a, m

2
q) + 2mχ cos

2(φχ)FX(p2χ, m
2
χ, m

2
a, m

2
q)

}
,

Cfull
G,PS =

1

(4π)2

∑

q=c,b,t

(gχ gSMmq

v

)2
2mχ sin(φχ) cos(φχ)FX(p2χ, m

2
χ, m

2
a, m

2
q) , (B.36)

Cfull
G̃,S

= − 1

(4π)2

∑

q=c,b,t

(gχ gSMmq

v

)2
(B.37)

×
{
mχEY (p

2
χ, m

2
χ, m

2
a, m

2
q) + 2mχ cos

2(φχ)EX(p2χ, m
2
χ, m

2
a, m

2
q)

}
,

Cfull
G̃,PS

= − 1

(4π)2

∑

q=c,b,t

(gχ gSMmq

v

)2
2mχ sin(φχ) cos(φχ)EX(p2χ, m

2
χ, m

2
a, m

2
q) . (B.38)

Here we have introduced the shorthand notation

FΛ(p
2
χ, m

2
χ, m

2
a, m

2
q)=

∫ 1

0
dx

[
− 3

2

∂

∂m2
a

Λ1

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)

+
m2

q

2

3(1−x)x+2(−1−x+x2) cos(2φSM)

x2(1−x)2
∂

∂m2
a

Λ2

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)

+m4
q

1−3x+3x2−(1−x)x cos(2φSM)

x3(1−x)3
∂

∂m2
a

Λ3

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)]
, (B.39)

EΛ(p
2
χ, m

2
χ, m

2
a, m

2
q)=

∫ 1

0
dx

[
m2

q

sin(2φSM)

x2(1−x)2
∂

∂m2
a

Λ2

(
p2χ, m

2
χ, m

2
a,

m2
q

x(1−x)

)]
, (B.40)

with Λ = X,Y .
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C Nuclear form factors

In this appendix we define the nuclear form factors required to calculate the effective

interactions between DM and nucleons. For the spin-independent interactions we need the

following nuclear form factors [56, 85]:

q = u, d, s : 〈N |mq q̄q|N〉 = mNf
N
q , (C.1)

Q = c, b, t : 〈N |mQQ̄Q|N〉 = 〈N | − αs

12π
Ga

µνG
aµν |N〉 = 2

27
mNf

N
G , (C.2)

q = u, d, s, c, b : 〈N |Oq
µν |N〉 = 1

mN

(
pNµ p

N
ν − 1

4
m2

Ngµν

)(
qN (2) + q̄N (2)

)
, (C.3)

where fNq and fNG are form factors, mN is the nucleon mass, qN (2) and q̄N (2) are the second

moments of the quark parton distribution functions and pNµ is the nucleon four-momentum.

The values of the form factors for light quarks are taken from micrOmegas [66]13

fpu = 0.01513 , fpd = 0.0191 , fps = 0.0447 , (C.4)

fnu = 0.0110 , fnd = 0.0273 , fns = 0.0447 , (C.5)

which are related to the gluon form factor via [85]

fpG = 1−
∑

q=u,d,s

fpq = 0.92107 , fnG = 1−
∑

q=u,d,s

fnq = 0.917 . (C.6)

The second moments are calculated at the scale µ = mZ by using CTEQ PDFs [44, 87].

For the proton, one finds

up(2) = 0.22 , ūp(2) = 0.034 , (C.7)

dp(2) = 0.11 , d̄p(2) = 0.036 , (C.8)

sp(2) = 0.026 , s̄p(2) = 0.026 , (C.9)

cp(2) = 0.019 , c̄p(2) = 0.019 , (C.10)

bp(2) = 0.012 , b̄p(2) = 0.012 , (C.11)

whereas for the neutron the up- and down-quark values have to be interchanged.

For the spin-dependent interactions we need the following form factors:

q = u, d, s : 〈N ′|mq q̄iγ5q|N〉 = F
q/N
P (q2) , (C.12)

Q = c, b, t : 〈N ′|mQQ̄iγ5Q|N〉 = 〈N ′|αs

8π
Ga

µνG̃
aµν |N〉 = FN

G̃
(q2) , (C.13)

where N ′ refers to a change of nucleon momentum. This explicit dependence on the

momentum transfer qµ arises from non-negligible π and η pole contributions. The corre-

sponding expressions are given in eqs. (A30) and (A42) of ref. [88] and are implemented in

DirectDM [60].

13We refer to ref. [86] for a discussion of the uncertainties of these form factors, in particular regarding

the strange quark matrix element.
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Figure 12. Additional loop diagrams within the CP-violating Higgs portal model which also induce

purely spin-independent interactions for φ = π/2.
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Figure 13. Same as figure 9 but including the UV-divergent diagrams shown in figure 12 for

Λ = 1TeV.

D UV-divergent loops in CP-violating Higgs portal

In this appendix we provide further details on the additional loop diagrams occurring in

the CP-violating Higgs portal model, which are shown in figure 12. Like the diagrams

considered in the main text, these diagrams contribute at the order 1/Λ2 and induce spin-

independent interactions for φ = π/2. The contribution of these diagrams to the triangle

coefficients defined in eqs. (2.7) and (2.8) are given by

Ctriangle
S → Ctriangle

S +
g2χ

(4π)2
2mχ

3m2
h

[
(1 + cos(2φ))B0(m

2
χ, m

2
h, m

2
χ) +B1(m

2
χ, m

2
a, m

2
χ)
]
,

Ctriangle
PS → Ctriangle

PS +
g2χ

(4π)2
2mχ

3m2
h

sin(2φ)B0(m
2
χ, m

2
h, m

2
χ) ,

(D.1)

where we have used the replacements from eq. (3.11). The loop integrals B0 and B1 are

UV divergent and we replace the divergences by a logarithmic dependence on the new

physics scale Λ from eq. (3.7) according to 1/ǫ+ ln(µ2/m2
χ) → ln(Λ2/m2

χ) [13]. We study

the impact of this additional contribution in figure 13 for Λ = 1TeV. We observe that,

while the additional diagrams make the loop-contributions more important, the general

conclusions drawn from figure 9 are not changed.
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