
Loop Parallelisation for the Jikes RVM

Jisheng Zhao, Dr. Ian Rogers, Dr. Chris Kirkham, Prof. Ian Watson
The University of Manchester

{jisheng.zhao, ian.rogers, christopher.kirkham, ian.watson}@manchester.ac.uk

Abstract
Increasing the number of instructions executing in parallel

has helped improve processor performance, but the technique is
limited. Executing code on parallel threads and processors has
fewer limitations, but most computer programs tend to be serial
in nature. This paper presents a compiler optimisation that at
run-time parallelises code inside a JVM and thereby increases
the number of threads. We show Spec JVM benchmark results
for this optimisation. The performance on a current desktop
processor is slower than without parallel threads, caused by
thread creation costs, but with these costs removed the perfor-
mance is better than the serial code. We measure the threading
costs and discuss how a future computer architecture will en-
able this optimisation to be feasible in exploiting thread instead
of instruction and/or vector parallelism.

1. Introduction
Parallelising compilers, sometimes known as supercompil-

ers, will soon be common place with GCC 4, where support
comes in the form of vectorisation [12]. Vectorisation is used
to produce code for the single-instruction multiple-data (SIMD)
instruction sets of modern multimedia architectures. An alter-
native form of parallelisation to vectorisation is thread based.
Threads can execute on separate computing resources and hence
in parallel with each other.

Vectorisation requires analysis of inner loops of code and to
determine if they can be made to work on several data operands
at the same time. Parallelisation can work on any loop of code,
but the cost of thread creation and completion detection mean it
is best performed on outer loops [9, 16]. Outer loops invariably
have more complex data dependencies within them, and thus
detecting loops to parallelise often isn’t possible. Consequently
current microprocessors offer good vector support and limited
support for the threading model.

In this work we take the view that vectorisation, as with ILP,
will become limited and that a better compromise in the de-
sign balance may be for more parallel execution units (i.e. more
cores in a chip multi-processor) rather than extending hardware
support for vectors and ILP. We present a new implementation
of the well-known and simplistic DOALL parallelisation com-
piler optimisation [9, 16]. Uniquely for our system we imple-
ment this in the environment of a JVM, to allow for parallelisa-
tion to occur at run-time and, compared to prior JVM oriented
systems, without the involvement of the programmer.

Our work assumes that all loops are best parallelised into
threads, a technique which, as described above, is overly eager
for current microprocessors. However, if the cost of maintaining
a thread were brought close to the cost of farming work to vector

processing units then we believe threads are to be preferred to
vectors as the parallel execution units are general purpose. This
is the model currently proposed by our Jamaica architecture [1].
However, it may ultimately be likely that the best situation is a
compromise of vector and parallel resources in a heterogeneous
chip multiprocessor environment.

This paper is split into 5 further sections. Section 2 describes
an initial set of loop optimisations used to make Java bytecode
amenable to parallelisation. Section 3 describes the loop paral-
lelisation optimisation itself. We perform a performance anal-
ysis of thread creation and completion costs, and then measure
our performance, the current performance and the performance
without thread costs, in Section 4. Section 5 discusses runtime
parallelisation, as has been demonstrated in this paper, motivat-
ing future computer architecture and compiler research. Sec-
tion 6 concludes the paper.

2. Making Java Loops Parallelisable
The existing work such as javar, High Performance Fortran

and OpenMP have allowed programmers to express which loops
were amenable to thread parallelisation and the compiler could
forget dependence analysis [3, 7, 4]. Substantial research work
has shown how programs can be transformed by the compiler
and better exploit available parallelism. This work has included
automatic parallelisation, that has no need for programmer in-
tervention or compiler constructs that imply dependencies can
be ignored. GCC 4 fits this criterion, as do Intel’s Fortran/C
compiler and Matlab*P [12, 2, 6].

These previous solutions have looked at statically determin-
ing parallelism and then creating binaries to utilise it. We
propose using similar techniques in the dynamic compilation
environment of Java - specifically the Jikes Research Virtual
Machine (RVM) [8]. Dynamic compilation enables run-time
feedback to guide where optimisation could be performed.
The loops we are looking for are the simplest form to paral-
lelise, DOALL amenable loops. These loops have no loop car-
ried dependencies. So we could consider parallelising an ar-
ray fill routine such as this from the GNU Classpath library’s
java.util.Arrays implementation:

for (i n t i = fromIndex ; i < to Index ; i ++)
a [i] = va l ;

Figure 1. DOALL amenable memory assignment
loop
Java adds a complication to dependency analysis - excep-

tions. The loop above when in the internal form of the Jikes
RVM has guards added that capture these dependencies and im-
plicitly adds exception edges to the control-flow graph (CFG).

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05)
0-7695-2405-2/05 $20.00 © 2005 IEEE

The resulting loop with the exception dependencies captured
looks like the one below:

for (i n t i = fromIndex ; i < to Index ; i ++) {
g1 = nu l l check a ;
g2 = bounds check a , g1 ;
g3 = guard combine (g1 , g2) ;
a [i] = val , g3 ;

}

Figure 2. Previously DOALL amenable memory as-
signment loop after the introduction of excep-
tions
The compiler can use code motion to move the null check

out of the loop, but the array bounds check must be performed
on each iteration. We have solved this problem for the loops
we are interested in parallelising using explicit guard tests and
loop duplication. This technique is presented in Section 2.2, but
first we present the auxiliary intermediate form used to capture
loop dependencies for the loop duplication and the parallelisa-
tion optimisations.
2.1. Annotated Loop Structure Trees

Loops are detected by a back-edge in the CFG [11]. Our
auxiliary form defines the header to be the basic block, reach-
able from outside of the loop, that has a back-edge to it. We
similarly define the exit basic block to be the block that has the
back-edge to the loop header or that terminates the loop. The
loop header and exit basic blocks may be the same basic block.

After determining the loop header and exit basic blocks, we
inspect the exit block’s branch instruction. The branch instruc-
tion has two parameters and a condition. The parameters are
inspected to see which vary within the loop body, as shown in
Table 1.

Parameter 1 invariant Parameter 1 variant
Parameter
2 invariant

Single or infinite loop,
not considered for opti-
misation.

1st parameter is the loop iterator,
2nd parameter is the terminating
value for the loop.

Parameter
2 variant

2nd parameter is the
loop iterator, 1st pa-
rameter is the terminat-
ing value for the loop.

Loop too complex to optimise.

Table 1. Loop parameters and the implication for
the loop bounds.
We then inspect the value of the loop iterator coming into the

loop to determine its initial value, and inspect the assignment to
the iterator within the loop to determine a loop stride. When
a loop doesn’t match this format then we don’t optimise it and
leave the intermediate representation unchanged. We see in the
future extensions to this form, for example, to capture break-out
paths.

The nested nature of loops allows for their representation as
trees. Loop structure trees (LSTs) are already present within the
Jikes RVM; to differentiate our form we call them annotated
LSTs. Their form proves convenient for recursively applying
our transformations.

Our optimisations are performed on the Extended Array SSA
form [5] that has the following key features:

1. static single assignment (SSA) form means that all vari-
ables are assigned once, guaranteeing no output or anti de-
pendencies. Dataflow confluences are captured in the in-
termediate representation as special instructions known as
phi instuctions.

2. array form extends SSA form to consider memory accesses
to arrays. phi instructions capture the non-killing nature of
array stores (ie. two array stores may or may not be to the
same location), arrays of different types are considered to
be of different heap types meaning they are always differ-
ent locations in memory.

3. the extended nature of the form comes from its application
to Java. Specifically it means the form can determine that
fields within different classes are definitely the same or dif-
ferent, and it captures exception dependencies so that code
can’t be re-ordered around them.

The structure of a recognised loop is shown in Figure 3.

Figure 3. Loop structure for an annotated LST
node
Using Extended Array SSA form means our loop analysis is

simplified from considering many different kinds of dependence
structures within the loop. The drawback is that the form re-
quires construction (wasteful of time) and careful maintenance.
As such our optimisations are only enabled during the compi-
lation of hot methods. For off-line compilers such as those de-
scribed in 9, the cost of generating the SSA form isn’t important.
2.2. Loop Duplication

Having a fuller picture of a loop enables us to perform loop
duplication, to remove null and bound checks, as well as differ-
ent forms of loop unrolling. We concentrate here on loop dupli-
cation and disable loop unrolling optimisations before paralleli-
sation. Results of using the annotated LSTs for loop unrolling
have been presented in 17.

The loop duplication transformation works up from the
leaves of the annotated LST. For each loop, that is in the form
presented in Section 2.1, it firstly collects all array accesses and
their associated guards. If no guards are present then the opti-
mization does nothing, otherwise the following stages are per-
formed:

1. creation of explicit tests - we create explicit tests for the
null and bound check instructions we hope to eliminate.
Bound check instructions can be eliminated from the loop
if they are constant or related to the loop iterator (ie the
loop iterator itself or a fixed offset from it). The guard
values defined by these branch tests are recorded in a map
against the original null and bound check guards. These
are used to capture the dependency between the eliminated
checks and these explicit tests, and avoid illegal code re-
structuring.

2. creation of phi instructions - two loops will be created
from the original. These two loops will both define vari-
ables. To keep the SSA form we create new variables to be

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05)
0-7695-2405-2/05 $20.00 © 2005 IEEE

defined in the loops. The original variable’s assignment is
altered so that it is a phi instruction merging the definitions
that will come from the two loops.

3. creation of two duplicate loops - we duplicate the orig-
inal loop twice to avoid altering dependencies on the ba-
sic blocks for loop entry and exit. One of the duplicated
loops is generated without the guards that can be explic-
itly tested, its guards are looked up from the map recorded
earlier.

4. linking of basic blocks and eliminating the original loop
- the original loop has its instructions removed, the loop
header goes to the explicit null and bound checks which if
they all pass goes to the loop without guards, otherwise the
tests branch to the loop that will check for exceptions. The
exit from the duplicated loops is to the block containing the
phi instructions which in turn goes to the loop exit block.

The loop presented in Figure 1 is shown in the Jikes RVM’s
internal representation in Figure 4; after loop duplication the
internal representation is shown in Figure 5.

[...]
19 LABEL4 Frequency: 8.999998
-9 phi t30pi(I) = 0, BB3, t31pi(I), BB4
19 G yieldpoint backedge
23 EG bounds check t26v(GUARD) = l0pa([Z,d), t30pi(I), t2pv(GUARD)
23 guard combine t27v(GUARD) = t2pv(GUARD), t26v(GUARD)
23 byte astore l1pi(Z,d), l0pa([Z,d), t30pi(I), <mem loc: array

<BootstrapCL, Z >[]>, t27v(GUARD)
24 int add t31pi(I) = t30pi(I), 1
30 int ifcmp t32v(GUARD) = t31pi(I), t3pi(I), <, LABEL4,

Probability: 0.9
-1 goto LABEL6
-1 bbend BB4
[...]

Figure 4. Potential DOALL amenable loop prior to
duplication
The original loop, shown in Figure 4, is a single basic block

in the Jikes RVM High-level Intermediate Representation (HIR)
this is basic block 4 and is consequently the header and exit
block of the loop. The loop iterator is t30/t31, which has an
initial value of 0 and a terminal value constrained by a less-
than on t3 (which is loop invariant). In Figure 5, the duplicated
loops are in basic blocks 9 and 11, the phi instructions are in
the original exit basic block 4. The explicit test is performed in
basic block 12, it checks that t3 is greater than array length of
the array that is part of the bounds check. The explicit test is the
guard controlling the array assignment in the DOALL amenable
loop in basic block 11.

Eliminating null and bound checks in this way allows for a
performance improvement of up to 3% in the Spec JVM bench-
marks [17, 14]. However, for one benchmark the extra analysis
results in a 1.5% slow down. The overall performance improve-
ment of annotated LST node based loop optimisations, without
loop parallelisation, is 0.25%. We believe work on the adaptive
compilation system will further improve the optimisation.
3. Loop Parallelisation

Figure 5 shows a loop with no dependencies that would in-
hibit loop DOALL parallelisation. To recognise this loop the an-
notated LST is recreated as described in Section 2.1. The tree is
traversed from the root down in order to generate parallel outer
loops. The intermediate form is first checked that no excep-
tion throwing or method calls are present within the loop. We
also don’t parallelise certain methods in the Jikes RVM garbage
collection and threading mechanisms. Next the dependencies

[...]
-16 LABEL12 Frequency: 8.999998
-1 arraylength t43i(I) = l0pa([Z,d), t2pv(GUARD)
-1 int ifcmp t36v(GUARD) = t3pi(I), t43i(I), >U, LABEL8,

Probability: 0.00999999
-1 bbend BB12

-16 LABEL13 Frequency: 8.999998
-1 goto LABEL10
-1 bbend BB13

19 LABEL4 Frequency: 8.999998
-1 phi t30pi(I) = t39i(I), BB9, t40i(I), BB11
-1 phi t26v(GUARD) = t35v(GUARD), BB9, t36v(GUARD), BB11
-1 phi t27v(GUARD) = t37v(GUARD), BB9, t38v(GUARD), BB11
-1 phi t31pi(I) = t39i(I), BB9, t40i(I), BB11
-1 phi t32v(GUARD) = t41v(GUARD), BB9, t42v(GUARD), BB11
-1 goto LABEL6
-1 bbend BB4
[...]

-16 LABEL8 Frequency: 8.999998
-1 bbend BB8

19 LABEL9 Frequency: 8.999998
-9 phi t33i(I) = 0, BB8, t39i(I), BB9
19 G yieldpoint backedge
23 EG bounds check t35v(GUARD) = l0pa([Z,d), t33i(I), t2pv(GUARD)
23 guard combine t37v(GUARD) = t2pv(GUARD), t35v(GUARD)
23 byte astore l1pi(Z,d), l0pa([Z,d), t33i(I), <mem loc: array

<BootstrapCL, Z >[]>, t37v(GUARD)
24 int add t39i(I) = t33i(I), 1
30 int ifcmp t41v(GUARD) = t39i(I), t3pi(I), <, LABEL9,

Probability: 0.9
-1 goto LABEL4
-1 bbend BB9

-16 LABEL10 Frequency: 8.999998
-1 bbend BB10

19 LABEL11 Frequency: 8.999998
-9 phi t34i(I) = 0, BB10, t40i(I), BB11
19 G yieldpoint backedge
23 guard combine t38v(GUARD) = t2pv(GUARD), t36v(GUARD)
23 byte astore l1pi(Z,d), l0pa([Z,d), t34i(I), <mem loc: array

<BootstrapCL, Z >[]>, t38v(GUARD)
24 int add t40i(I) = t34i(I), 1
30 int ifcmp t42v(GUARD) = t40i(I), t3pi(I), <, LABEL11,

Probability: 0.9
-1 goto LABEL4
-1 bbend BB11

Figure 5. Loop duplication resulting in a DOALL
amenable loop at basic block 11

are examined to see if they are amenable to DOALL parallelisa-
tion. We look to see what phi nodes are present in the loop. Phi
nodes for the loop iterator are expected. For loop-carried heap
dependencies, we examine the array indexes to ensure the dis-
tances from the loop iterator are all the same. If all loop-carried
heap dependences have the same dependence distance then the
loop is amenable to DOALL parallelisation [15]. In Figure 5 the
auxiliary extended array part of the SSA form isn’t shown, how-
ever, the dependence distance of the heap phi nodes is 0 or equal
to the loop iterator. Therefore the loop is amenable to DOALL
parallelisation.

Once an amenable loop is found the following operations are
performed to convert it into its parallel form:

1. creation of loop worker class - each parallel thread runs
a loop worker that is created from the regular Java thread
implementation. The loop worker has a number of fields
created to hold onto invariant values used within the loop
body.

2. copying of loop body to loop worker method - the loop
body is copied in HIR form into the loop worker method.
Accesses to loop invariants are modified to retrieve fields
from the class.

3. compilation of the loop worker - as the loop worker is
in HIR form and unknown to the dynamic class loading
mechanism, it is compiled after creation. This work in-
cluded making the optimising compiler re-entrant.

4. removal of original loop body - the head and exit blocks
have their instructions removed and the head branches to

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05)
0-7695-2405-2/05 $20.00 © 2005 IEEE

the exit (assuming they’re not the same block). As with
loop duplication original variables within the loop are re-
tained so that dependent instructions don’t need altering.

5. add code to copy invariants to a loop worker instance -
the invariant fields of the loop body need copying to a new
instance of the loop worker.

6. add call to spawn loop worker threads - the final part of
the new parallel loop body is to call a method responsible
for forking and joining loop workers. The arguments to
the thread spawning method are the loop worker, the initial
loop iterator value and the terminal loop iterator value.

Figures 6 illustrates the operation of the new parallel loop
body.

Figure 6. Creating the loop worker, assigning
invariant values and calling thread distribution
mechanism

4. Performance Analysis
We have benchmarked the potential optimisation using the

Spec JVM benchmark suite [14]. To test the parallelisation opti-
misation we used a dual CPU Intel Pentium 4 computer running
Linux 2.6.8, and with the Jikes RVM configured to use 2 under-
lying processors (VM Processors/pthreads). The parallelisation
optimisation parallelises the Jikes RVM, the class libraries and
the benchmarks. By monitoring where loops were parallelised
we determined that 250 were parallelised within the class li-
brary and the Jikes RVM upon creating its boot image, and 1
loop was parallelised while benchmarking 201 compress. We
ran the benchmark in three configurations to determine our re-
sults:

1. standard Jikes RVM configuration,
2. Jikes RVM, parallelising loops and with spawning threads

but not executing loop bodies in parallel,
3. Jikes RVM parallelising loops, spawning threads and exe-

cuting loop bodies in parallel.
We present our results in Table 2. The speed-up is a mea-

sure of how much performance is gained running the DOALL
loops in parallel on two processors. The speed-up is determined
by comparing configurations 2 and 3. The overhead of thread
creation is the time difference between running configuration
2 and configuration 1. The results for configuration 1 are pre-
sented as the normal benchmark time. Finally we show how
many parallel loop bodies are executed during the running of
each benchmark.

Overall an average speedup of 1.9% is shown by executing
loop bodies in parallel. Figure 7 shows the performance nor-
malised against the existing performance without any thread-
ing optimisation or thread creation overhead.The parallelization

Benchmark Parallelisation
speed-up1

Overhead Normal
benchmark
execution
time

Executed
parallel
loop
bodies

201 compress 1.6% 10.5s 7.1s 3500
202 jess 0.7% 3.8s 3.5s 1500
205 raytrace 3.7% 3.0s 4.3s 2400
209 db 0.9% 8.4s 11.5s 4500
213 javac 2.1% 0.2s 5.1s 1200
222 mpegaudio 2.7% 11.9s 7.2s 12500
227 mtrt 2.6% 1.7s 5.0s 1200
228 jack 1.1% 1.3s 5.6s 1800

Table 2. Performance and overhead of paralleli-
sation on the Spec JVM benchmarks

Figure 7. Parallel result normalised against cur-
rent Jikes RVM performance

overheads slow the benchmarks down considerably, with the
new performance being in the worst case 39% of the existing
performance (or a 2.48 times slow-down). The overhead corre-
lates to the number of parallel loop bodies executed and there-
fore the number of threads created. To avoid such large over-
heads it is possible to use a lightweight threading mechanism,
and this is a subject of our on going compiler and architectural
research. Similar research is being carried out for the open re-
search compiler, where thread spawning costs are reported as
being as low as 5 cycles [13].

To ensure that loops were indeed being parallelised and that
in an idealised situation we could achieve performance speed-
ups proportional to the number of processors, we implemented
a small kernel benchmark shown in Figure 8.

On this test loop a speed-up of 45.2ms was caused by en-
abling the parallel threads. The total execution time of the main
thread was 102.1ms. Ignoring threading costs, this is only a
79% speed-up on a dual processor machine. We currently be-
lieve that for the fine grain threads the thread scheduling mech-
anism of the Jikes RVM accounts for the performance loss.

We would aim to increase the number of parallel loop bodies
executed and to improve the size of the loop bodies executed
in parallel. A problem with the loop body size is partly caused
by the pre-parallelisation optimisation phase presented in Sec-
tion 2. It is only successful in removing null and bound checks
from nodes in the annotated LST where the check is related to
the loop iterator, thereby creating an unparallelisable loop with
guard checks present inside outer loops. The Jikes RVM already
eliminates many null and bounds check operations by propa-
gating non-nullness and size information about arrays created
within a method [5]. The potential of this is expanded greatly

1This is the performance speed-up excluding overheads introduced by cre-
ating threads and performing the optimisation.

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05)
0-7695-2405-2/05 $20.00 © 2005 IEEE

i n t s ize = 3000;
double [] mat r ix1 = new double [s i ze] ;
double [] mat r ix2 = new double [s i ze] ;
double [] r e s u l t = new double [s i ze] ;
for (i n t i = 1 ; i <= 500; i ++) {

for (i n t p = 0; p < s ize ; p ++) {
matr ix1 [p] = p ∗ p / i ;
mat r ix2 [p] = p ∗ (p + 1) / i ;
r e s u l t [p] = (i ∗ p + 1) / i ;

}
}

Figure 8. Simple loop to parallelise

by method inlining. In the situations where the array size and
non-nullness isn’t known our optimization exposes parallelism,
but this could be done better by duplicating entire loops rather
than working recursively.
5. Discussion

This paper has demonstrated that runtime parallelisation can
achieve a speedup but only by negating the cost of the analysis
and thread creation costs, of which the latter is by far the greater.
However, does runtime parallelisation, shown here in a JVM,
make sense? The following are the reasons that make runtime
parallelisation currently desirable:

1. simplicity in implementation - having optimisations per-
formed safely means programmers can concentrate on
writing correct code rather than high-performance code.

2. standard parallel back-end - higher-level languages,
such as those concentrating on Mathematics, are able to
make greater assumptions as to how data is being used.
These compilers can generate platform independent Java
code, and by making these loops amenable to parallelisa-
tion optimisations within the JVM they can achieve paral-
lel performance.

The downside is the cost in the compiler of performing this
optimisation, but it is expected work on adaptive compilation
will make this cost small.

A further advantage of the approach is that it should be
adaptable to speculative threading. A speculative thread is
one whose effects on memory can be thrown away (squashed).
This is achieved by hardware buffering or by a modification to
the cache. A speculative adaptation to our approach is to al-
low loops with break-out paths to be parallelised assuming the
break-out path is never executed. If the break-out path is ex-
ecuted then the thread, and threads sequentially later than this
one, can have their effects on memory squashed.

Such optimisations appear desirable but does this mean that
dynamic compilers should have all the optimisations available
in a static parallelising supercompiler? It seems that the inter-
mediate form of Java (or other binary codes as considered in our
work [10]) impose a great number of restrictions on what opti-
misations can be safely performed, and hence require expensive
compile time analysis and run-time checks. It therefore seems
likely that, for example, complex math codes should be written
in higher-level languages with supercompiler restructuring op-
timisations, and the platform independent virtual machine layer
only perform simple parallelisation optimisations where it has
specific knowledge of the underlying hardware.
6. Summary and Conclusions

We have presented a runtime compiler, DOALL, thread-
oriented, parallelisation optimisation and Java null and bound

check optimisation to facilitate this. The optimisation achieves
a speed-up over serially executed loop bodies on a dual proces-
sor computer of 1.9% on the SpecJVM benchmark suite, and
on a small kernel benchmark a speed-up of 79%. The cost of
threading on current computer architectures and in the standard
JVM threading mechanism is higher than is suitable for this op-
timisation. We consider this work to be a first step toward the
likely future dynamic compilers for future parallel computer ar-
chitectures.
References

[1] The Jamaica project. http://www.cs.manchester.ac.
uk/apt/projects/jamaica, May 2005.

[2] A. J. Bik, M. Girkar, P. M. Grey, and X. Tian. Efficient exploita-
tion of parallelism on Pentium III and Pentium 4 processor-based
systems. Intel Technology Journal, February 2001.

[3] A. J. C. Bik, J. E. Villacis, and D. B. Gannon. javar: A pro-
totype Java restructuring compiler. Concurrency: Practice and
Experience, 9(11):1181–1191, 1997.

[4] O. A. R. Board. OpenMP: Specifications. http://www.
openmp.org/specs/, 2003.

[5] R. Bodik, R. Gupta, and V. Sarkar. ABCD: eliminating array
bounds checks on demand. In SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages 321–
333, 2000.

[6] R. Choy and A. Edelman. Parallel MATLAB: doing it right.
Proceedings of the IEEE, 93(2):331–341, February 2005.

[7] High Performance Fortran Forum. High Performance Fortran
language specification, version 1.0. Scientific Programming,
2(1–2):1–170, June 1993.

[8] IBM. JikesTMResearch Virtual Machine (RVM). http://
jikesrvm.sourceforge.net/, 2005.

[9] K. Kennedy and J. R. Allen. Optimizing compilers for modern
architectures: a dependence-based approach. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2002.

[10] R. Matley. Native code execution within a JVM. Master’s thesis,
The University of Manchester, September 2004.

[11] S. S. Muchnick. Advanced compiler design and implementation.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1997.

[12] D. Naishlos. Autovectorization in GCC. In GCC & GNU
Toolchain Developers’ Summit, pages 105–117. IBM Research
Lab in Haifa, June 2004.

[13] C. Quinones, C. Madriles, J. Sanchez, P. Marcuello, A. Gonza-
lez, and D. Tullsen. Mitosis compiler: An infrastructure for spec-
ulative threading based on pre-computation slices. In SIGPLAN
Conference on Programming Language Design and Implemen-
tation, 2005.

[14] SPEC JVM98 benchmarks. http://www.spec.org/osg/
jvm98/, 1998.

[15] M. J. Wolfe. The definition of dependence distance. ACM Trans-
actions on Programming Languages and Systems, 16(4):1114–
1116, July 1994.

[16] M. J. Wolfe. High performance compilers for parallel comput-
ing. Addison-Wesley, Redwood City, CA, 1996.

[17] J. Zhao, I. Rogers, and C. Kirkham. A system for runtime
loop optimisation in the Jikes RVM. In Postgraduate Research
Conference in Electronics, Photonics, Communications and Net-
works, and Computing Science, Lancaster, UK, March 2005.

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05)
0-7695-2405-2/05 $20.00 © 2005 IEEE

