
Loop Parallelization: Revisiting Framework of Unimodular Transformations

Jordi Torres, Eduard Ayguade, Jesus Labarta and Mateo Valero
Computer Architecture Department, Universitat Politkcnica de Catalunya

Gran Capita s/n, M6dul D6,08034 - Barcelona, Spain
{ torres I eduard I jesus I mateo} @ac.upc.es

Abstract
This paper extends the framework of linear loop
transformations adding a new non-lineal step at the
transformation process. Tlze current framework of linear
loop transformation cannot identih a signijicant fraction of
parallelism. For this reason, we present a method to
complement it with some basic transformations in order to
extract the maximum loop parallelism in perfect nested
loops with tight recurrences in the dependence graph. The
parallelizing algorithm solves the important problem of
deciding the set of transformations to apply in order to
maximize the degree of parallelism, the number of parallel
loops, within a loop nest, and presents a way of generating
efficient transformed code that exploits coarse-grain
parallelism on a M M D system.

1: Introduction

Loop transformations have been recognized as one of
the most important components of the parallelizing and
vectorizing technology for current supercomputers. The
aim is to transform nested-loop structures from the source
program into semantically equivalent versions with more
opportunities to parallelize them and to generate code that
exploit efficiently the hardware resources of the
architecture [10,20, 51.

Most of the existing compilers apply a set of basic loop
transformations one at a time. At each step, it has to be
decided whether the application of a transformation is legal
and beneficial. Other approaches have been used, such as
deciding a priory the composition of basic transformations
or exploring the different compositions of them. These
solutions are in general time consuming in obtaining the
transformed code and analyzing their effects is also
difficult.

An alternative solution to the problem is the use of
linear ti-ansformations to specify a wide range oi basic loop
transformations (including loop interchange, loop reversal,
loop skewing [4] and loop scaling [9]). In fact, any linear

1066-6192/96 $5.00 0 1996 IEEE
Proceedings of PDP '96

transformation modelled with a non-singular
transformation matrix can be seen as a composition or
product of these four basic transformations. The problem
can be stated as finding a linear transformation that
maximizes an objective function, such as degree of
parallelism that can be obtained out of the loop 1191. The
extend of application is restricted to perfectly nested loops.

From the specification of the source loop and the
transformation matrix, a target loop has to be generated.
This step has been solved in [4,19] when unimodular
matrices are used. Additional problems appear when non-
unimodular matrices are considered. The key point in the
solutions proposed [9,7,22] is the use of the Fourier-
Motzkin elimination method and the Hermite Normal Form
decomposition.

Traditionally such a transformation applies to the
whole loop. Recently, it has been argued that it can be
profitable to apply different transformations to different
statements in a loop [2, 16, 6, 81.

In [2] the inclusion of the statement dimension as a new
component in the framework of loop transformations was
proposed. It can be seen as an alignment before the
transformation. In this paper we propose how to include a
new step between the alignment and the linear
transformation in order to exploit coarse-grain parallelism
on a MIMD system. This new step is based on the ideas
proposed by Banerjee with the Remainder Transformation
[5]. We obtain automatically the transformation from the
dependence graph that extracts the maximum loop
parallelism. This work can be extended by applying a
different unimodular transformation and alignment to each
statement in the loop body [SI

The rest of the paper is organized as follows. In section
2 we present the terminology and assumptions used with
this paper. In section 3 we show the framework of the
method. In section 4 we explain the motivation for this new
transformation by showing the limitations of the framework
of linear loop transformation. In section 5 we formalize the
method proposed. Finally, in section 6 we briefly discuss
the results obtained for the working example and present
the conclusions and future work.

420

2: Terminology and assumptions

- I 0
0 -1
1 0
0 1

Through out this paper we consider perfectly nested
loops (LI, ..., L,,} where the lower and upper bounds (Ik and
Uk, respectively) for any loop L, (1lkLn) are affine
functions of indices of its outer loops L1, ..., Lk-1, that is,

ik ' ak,o + a k , l ' i , + ." + ak,(k- 1) ' i k - I = 'k

i k 5 bk,o -k bk,i ' i , -k ... -k bk,(k- 1) ' ik- 1 = uk

The iteration space for this loop nest is defined as

IS = ((i],..., iJ ~ Z ~ , I ~ l i ~ l u ~ l l k I n }

and can be written following a matrix notation

where
CX.I Ip

0

.pjl 0 1* 9
9

L is constructed from the coefficients ak,i (l lk<n,
14iSk- 1) of the loop indices in the lower bound expressions,
U is constructed from the coefficients bkj (l l k l n , 15i5k-I)
of the loop indices in the upper bound expressions, ID is the
identity matrix, and 1 and U are constructed from the
independent coefficients ak,0 and bk,O (l<k<n) of the lower
and upper bounds respectively.

For example, for the loop nest in 1 .a, the IS of the loop
can be expressed in the following way - - - -

L 1 L A

Figure 1 .b shows the aspect of the IS for this loop. Each
point represents the execution of one iteration of the inner
loop body.

In the scope of this paper we consider dense iteration
spaces, i.e., spaces where all points correspond to iterations
of the loop.

The loop body is composed of multiple assignment
statements {SI, ..., S,} that reference array variables whose
subscripts are affine functions of loop indices i l , ..., i,,. Let
V be the set of statements in the loop body. The Statement
per Iteration Space SIS of a loop nest is defined as the
Cartesian product

SIS = IS x v
Each point in the SIS represents the execution of an

iteration of a statement of the loop body. Dependence
relations between apair of statements Si and Sj appear when
there is an execution ordering between them [31. We do not
distinguish between the different kinds of data dependences
because they all impose ordering constraints in the same

(4
Figure 1: (a) Code of the working example, (b) representation 01.

the original IS and (c) representation of the target IS after
transformation and (d) detail of row 0.

42 I

Let E be the set of dependence relations in the loop.
When uniform dependences are considered, the dependence
graph G(V, E) is used to summarize all the dependence
information. In this graph, vertices represent statements of
the loop body and edges represent dependence relations
between them. In this paper, all dependences are assumed to
be uniform. We denote the dependence relations between
any pair of statements Si and S; with a, .

A chain Cij is an ordered set of arcs Cij ={aik,&,,
..., d,,,,} between two statements Si and S; such that each
node in the chain is visited only once. Given a chain Ci, , we
define its weight wi, as

-

wij = C '1,
d,," E c,,

This weight wii represents the number of iterations
between any pair of instances of statements Si and Si

depend from each other through chain Ci;.
A recurrence R is a cycle or closed chain in the

dependence graph. A hamiltonian recurrence is a
recurrence going through all nodes in the dependence
graph.

Let B = { RI, R2, ..., R, } be the set of recurrences in a
given dependence graph G. This graph G is an acyclic
dependence graph when B=O and it is a cyclic dependence
graph when IBI 21. When at least one recurrence of B is
hamiltonian, the graph is called hamiltonian graph.

3: Framework

In this section we briefly review the framework of
linear loop transformation where our proposal is developed.
A loop transformation is a mapping between two itaration
spaces (named original and target IS). In this paper we
consider linear transformations modelled by unimodular
matrices (i.e., matrices whose determinant is kl). These
transformations can be used to model some basic
transformations such as permutations, skewing and reversal

Let I be a point of the original IS, J a point of the target
IS and T the transformation matrix. The relationship
between them is

J = T . 1

[4,191.

Let a be a distance vector in the original IS. Since T is
a linear transformation, T d is the transformed distance
vector in the target IS. A transformation T is legal if

T . d > 6
for all dependence relations a in the dependence graph

G(V, E). This means that each transformed dependence has
to be lexicographically positive in the target IS.

This basic loop transformation can be extended
including the statement dimension as a new component. I n
[2] it has been shown how different displacements for each
statement can be used to break dependences. Jn [161 this
technique has been applied to eliminate non-local
references. Figure 2.b summarizes the procedure when the
alignment step is included in the transformation process.

Figure 2: Transforming a IS using a different approaches: (a) [4,
191, (b) [2,161, (c) this proposal, and (d) [8].

But as we will show in this paper, this transformation
is not enough to identify a significant fraction of parallelism
in a loop. We propose a way to solve this problem by adding
a new non-lineal step at the transformation process based on
the Remainder Transformation introduced by Banejee [5] .
This step called loop sectionning is introduced between the
alignment and the linear transformation steps as shown in
Figure 2.c.

Finally, it can be profitable to apply different
unimodular transformations to different statements in the
loop body. This transformation is named nzulti-
transformation. In [SI this step is adressed and show how to
avoid generating guards in most of the cases. Figure 2.d
summarizes how multi-transformations can be combined
with the previous steps. Hence we concentrate on the loop
sectionning step in this paper.

4: Motivation for a new transformation

Linear loop transformations are a successful solution to
the loop transformation problem, but they are not enough as

(taken from [14]). Figure 1.b shows the original IS and
Figure 1.c shows the target IS when the following
transformation matrix is used

we illustrate by the simple example shown in Figupe 1.a

r 7

T = I] - I 1
to 11

This nested loop contains only one dependence vector
d=<2,2>. This dependence in the target space is

422

transformed into d'=T.d=<0,2> as shown in the target space
of Figure 1.c. This dependence is now carried by the
innermost loop and thus the outer loop can be parallelized.

The code that scans the target IS is shown in Figure 3.
If the outer loop is executed in parallel, the number of
parallel tasks obtained is 19. However, if we carefully
analyze each row in Figure l.c, we can distinguish two
independent subsets of iterations. Figure 1.d details the row
corresponding to iteration j ,=O. Dependences reveal two
independent subset of iterations. Thus we can conclude that
linear transformations are not enough if this parallelism has
to be exploited.

DO j,= -9,9
DO j,= max(O,-jl) ,min(9,9-jl)

ENDO
A[j,+j,,j,l= A[Il+j2-2,j2-21* 2

ENDO

Figure 3: Target code of the working example

In this paper we propose a way of extracting this
parallelism by adding a new non-linear step at the
framework of lineal transformations based on the
Remainder Transformations introduced by Banerjee [5] .
Basically it consists in creating a new auxiliary space from
the original IS where it is more easy to identify this
parallelism and where it is possible to extract the maximum
parallelism by a linear transformation. In the case of our
working example, this auxiliary space can be obtained
sectioning the innermost loop with strips of size 2 and then
piling the sections as shown in Figure 4.b.

Since the remainder transformation adds an extra loop,
it has an effect on the data dependence relations in the target
loop. It adds a component to the distance vector. In this
working example the new dependence vector becomes
d=12,0,1>. The code that scans this auxiliar iteration space
is shown in Figure 5.

Thus, if we use the transformation matrix

T = [i ~~~

to transform this auxiliar IS, we obtain the code shown
in Figure 6.21 where the 2 outermost loops can be
parallelized because after the transformation the
dependence becomes d=<O,O, I> and it is carried out by the
innermost loop as one can see in the Figure 6.b

With this simple example we have tried to show that
the linear loop transformation is not sufficient to extract full
parallelism out of loops. In the following section we present
our approach in order to exploit coarse-grain parallelism for
nested loops on MIMD systems.

i l -
0 1 2 3 4 5 6 7 8 9

Figure 4: (a) original IS and (b) auxiliary IS of the working
example.

DO k,= 0,9
DO k2= 0,l

DO k3= 0 , 4

ENDO
A[k,,k,+2.k3]= A[k,-2,k,+2.k3-2] * 2

ENDO
ENDO

Figure 5: Code of the auxiliar IS.

DO j,= - 8 , 9
DO j,= 0,l
DO j,= max(r-jl/21, 0) ,min(L (9-jl) /21, 4)
A[j1+2.j3,l2 ' +2.j3]= A[j1+2.j3-2, j2+2,j3-2

ENDO
ENDO

ENDO (a)

ki-
k3 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 k,

2 888%8%08%8
3 :88%8%88088-
4 8088888808

(b)

Figure 6: (a) Target code obtained and (b) target IS ot working
example.

423

5: Loop Sectioning

The work presented in this section focuses in loops that
present tight recurrences in its dependence graph. In
general, loops whose statements are involved in a
dependence cycle are considered to be serial. However,
techniques such as cycle shrinking [l 11 can be used to
extract parallelism that may be present in the loop. I n order
to present the methodology proposed in this paper, consider
the example of Figure 7.a slightly modified from [I 13 that
has been used by several authors [12,15] in order to show
their improvements with respect to the original cycle
shrinking method.

DO il= O,N1
DO i,= O,N,

Sl: A [i l , i 2] = B [i , - 3 , i 2 - 5]
S 2 : B [i l , i 2] = A [i 1 - 2 , i 2 - 4]

ENDO
ENDO

(4 (b)

Figure 7: (a) Nested Loops and (b) its dependence graph.

I n this example, variable A[i,,i2] is produced in
statement S ,(il,i2) and consumed in statement
S2(i1+2,i2+4) so there is a dependence between SI and S2

with distance <2,4>. Similarly, there is a dependence
between S2 and SI with distance <3,5>. Both dependences
are uniform. Figure 7.b shows a graphical representation of
the dependence graph. In this example, there is a
hamiltonian recurrence than involves all the statements of
the loop body.

5.1: Loop Alignment

The basic idea of the alignment component that is
added to each statement is to reduce the number of cross-
iteration dependences. Figure 8 is intended to visually
demonstrate our parallelizing algorithm. Consider that each
statement is represented with a hyperplane in the SIS (as
shown in Figure 8.a) and then we apply a different
transformation to each statement of the loop in Figure 7.a in
such a way that the resulting target IS is the one shown in
Figure 8.c. We apply a shift of <2,4> to the hyperplane
associated to statement S I and a null shift to the hyperplane
associated to S2. Different kinds of shades are used to
identify the different hyperplanes. Notice that dependence
<2,4> is now embedded in the sequential execution of each
iteration because the hyperplanes of the statements have
been shifted in order to make two dependent points be
executed in the same iteration. Now the IS for S f is

[0..NI:0..N2] while for S2 [2..N1+2,4..N2+4]. As a
consequence, most of the iterations in the target loop
execute both statements but others just execute one of them.
The new bounds of the target loop nest have to be the union
of the bounds for each statement: [0..N1+2, O..N2+4].

Let I be a point of the original hyperplane x
corresponding to the statement S, and J a point of the target
hyperplane x after the alignment. The coordinates of each
point J=G ,..., j, ,..., j,J can be obtained as

111

j , , = i,, + w,,
m where w,\ represent the weight of the hamiltonian

recurrence from the statement S, to the last statement S, of
the loop body in dimension m

_c i 2
0 N,

\\

Figure 8: (a) Original SIS for the example of Figure 7, (b) original
dependence graph, (c) auxiliar aligned SIS and (d) aligned
dependence graph, (e) SIS after sectioning, (f) the resulting

dependence graph, (g) SIS after transformation using matrix T and
(h) the resulting dependence graph in the transformed space.

424

5.2: Loop Sectioning
Next we present a new step in the transformation

process that is based on the Remainder Transformation
introduced by Banerjee [SI. The IS defined by the original
loop nest is divided into strips of some maximum size.
Graphically it can be seen as if we section the first
dimension i , of the iteration space in Figure 8.c in strips of
size 9 and then pile them. The size of the strip that we
propose is the weight of the hamiltonian recurrence in the
dimension corresponding to the sectioned loop.

Loop sectioning is always legal; however it affects the
data dependence relations in the loop. As we showed in the
previous section, loop sectioning adds a new loop in the
nest, and an element to the'distance vectors. When a loop Lk
is sectioned in two loops Lk and &+I, a dependence

relation with a component dk in the distance vector
(corresponding to Lk), produces one or two dependence

relations. If dk is a multiple of the strip size ss, then the
elements dk=O and dk+'=dk/ss [21]. If dk is not a
multiple of s s, then the distance vector is transformed into
two dependence relations, with the elements <dk,dk+'> of

the distance vectors set to <-dk mod ss, r d k / s s b and
<dk mod ss, Ldk/ssJ>.

In our example the strip size is equal to the
corresponding component in the distance vector. That
means that the component dk of the distance vector
corresponding to the loop sectioned become equal 0 and the
new component dkc' becomes 1 (dk=9, ss=9). This can be
reflected in the dependence graph. Figure 8.f represents the
dependence graph for the working example where the
dependence <5,9> is transformed to <S,O, l>.

Let I be a point of the original space and J a point of the
target space after loop sectioning. The coordinates of each
point J=Ql ,..., j, ,..., j,,+,) can be obtained as

i l l l m <k

i,mod ss m = k

m =k+l

m > k + l

j m = k1 I . 'In+ I

5.3: Linear Loop transformation
Now we have an iteration space with a cross-iteration

dependence with distance equal to <S,O, I >. This
dependence is carried by the outermost loop. If we could
transform this dependence into <O,O, 1 >, this dependence
would be carried by the innermost loop and the two
outermost loops would become parallel. This is what we
can achieve with a linear loop transformation using the
transformation matrix

T = [; ; ;]
applied to the auxiliary iteration space of Figure 8.e.
Graphically this transformation is represented in

Figure 8 4 . The arrows represent the two dependences in the
graph of Figure 8.h. Figure 8.g shows the target space after
apply the transformation. Observe that in this new space the
dependence from S2 to S 1 is transformed into <O,O, I > as
shown in the dependence graph of Figure 8.11. Now in this
target space, the iterations ofthe two outermost loops can be
executed fully in parallel because one dependence
(d12=<0,0,0>) is internal to a iteration, and the other
(d21=<0,0,1>) is carried by the innermost loop.

This transformation can be expressed as a matrix and
also as

112 =k
m =k+/

m #k ancl in #k+l

where we consider again that I represents a point of the

j,, = [. 111

I, - i k + , x wR

original space and J a point of the transformed space.

5.4: Full Transformation
The framework presented in this paper decides which

transformation to apply from the dependence graph.The
transformation that we propose is obtained from the
composition of the three previous transformations. Let I be
a point of the original hyperplane x corresponding to the
statement S, and J a point of the target hyperplane x after
the whole transformation. The coordinates of each point
J=(i I ,..., j, ,..., j,,+l) can be obtained as

being k the sectioned loop and ss the value of the
strip. Sectioning can be applied to any dimension of the
original IS; however, [l8] shows criteria to select the
appropriate dimension. The value of ss is set to the weight
of the recurrence in the component k corresponding to the

sectioned loop. We denote this strip component with wk .

i (. i k + wxs k) ' mod w' wk '
m =IC

m =IC+ I

425

being k the sectioned loop. But the component j, can be
expressed in a different way. From the equality

the previous expression can be rewritten as follows

m =k+l

In [1 SI we stated and proof several theorems that show
the property of achieving the maximum parallelism that we
have been referred along the previous section about the
transformation proposed. In particular, it is important to
remark that all the dependences used for the alignment
components and strip component will be embedded in the
sequential execution of the innermost loop, leading to fully
parallel outermost loops.

The bounds of the transformed space are obtained from
the union of the bounds of the original IS of each statement.
In [171 we show how the bounds for each statement can be
obtained. In general there are points of this transformed
space where not all the statements of the loop body are
executed. This can be controlled by guard conditionals.
Unfortunately this code can be very expensive in terms of
run-time overhead. In order to make this code less run-time
expensive we define the core part as the part of the
transformed space where all the statements of the loop body
are executed. This core part can be executed without guard
conditionals at the statement level, reducing the run-time
overhead introduced by them. The code obtained has three
parts, namely prolog, core and epilog parts. We have to
include guards conditionals in the prolog and epilog parts in
order to control the execution of each statement. The code
that is obtained for the example is shown in Figure 9.

We assumed that there was only one recurrence. If
more than one recurrence appears in the graph, it is
necessary to use synchronization mechanisms that
explicitly synchronize dependences not preserved when the
parallel code obtained is executed. Explicit synchronization
must be introduced for any edge not included in the
hamiltonian recurrence in the graph going from node S, to
node Sj. Many mechanisms can be used to perform this
synchronization. We will use counting semaphores as
synchronization objects. As coupling between tasks will be

very tight, we need a fast implementation of primitives on
semaphores. The statement Si source of the dependence will
signal the end of its execution to the statement Si sink of the
same dependence, in order to allow its execution. During
the code generation phase it is necessary to know the
relationship of the parallel iterations related by a
dependence d, in order to parametrize the semaphores. The
reader can refer to [IS] in order to find how to insert
syncronization primitives.

Figure 9: Transformed code obtained for the example of Figure 7.

6: Conclusions and Future Work

Program transformations are a powerful tool for
studying and exploiting parallelism, specially for nested
loop structures that offer the most fruitful source of
parallelism in serial programs. But in general, loops whose
statements are involved in a dependence cycle are
considered to be serial. However in this paper we present
how the framework of linear loop transformations can be
extended in different ways. The framework presented
solves the fundamental problem of deciding which
transformation to apply. We focused this paper on the
problem of extracting all the parallelism that may be present
in a loop. The technique presented in this paper is applicable
to codes whose full potential parallelism can not be

exploited using linear transformations.
We have shown from a classical example taken from

[I I] , which has been used by several authors [15,121, how
our proposed method can be applied. For this example the
authors referred present methods based on the technique
named “Cycle Shrinking”. Basically, they group the index
points into packets. These packets are executed sequentially
and all the index points within a packet are executed
concurrently. They obtain a code with an outermost
sequential loop that has about N/4 iterations. Our method
presents important improvements: (a) The sequential loop
has about N/9 iterations, as a consequence more iterations
are executed in parallel. (b) I n our method, the sequential
loop becomes the innermost loop, this causes the code to be
completely parallel. Another important effect is that the
method can eliminate the barrier synchronization that is
required using the Cycle Shrinking method.

In this particular case, the method proposed does not
balance the load assigned to the processors if as many
processors as parallel iterations are allocated. The number
of tasks generated is greater than the parallelisin evaluated
[I] and tasks take different time to complete their execution.
In [181 this scheme is extended to improve load balancing
among processors, reducing the number of parallel tasks
without increasing the execution time of the parallel loop.

Next we briefly comment some open questions left by
the work presented in this paper. The partitioning method
presented assumes the existence of a hamiltonian
recurrence in the graph. This is not the common case, so the
problem must be taken into consideration and heuristics to
find a good solution proposed. Loop distribution can also be
used when a hamiltonian recurrence is not present in the
graph.

Acknowledgments
This work has been partially supported by the Ministry

of Education of Spain under contracts TIC 880/92 and
TIC429/95, Esprit BRA APPARC under grant no. 6634 and
by the CEPBA (European Center for Parallelism of
Barcelona).

References
[I] AyguadC E., Labarta J., Torres J., Llaberia J.M. and Valero

M., Parallelism Evaluation and Partitioning of Nested Loops
for Shared Memory Multiprocessors, chapter 1 1 of Aclvances
in Langunges and Compilers for Parullel Processing, The
MIT Press, 199 1.

[2] AyguadC E. and Torres J., Partitioning the Statement per
Iteration Space Using Non-singular Matrices, in Proceedings
of the 1993 ACM International Confermce on

131 Banerjee U , , Dependence Annlysis for SLilJ~’rcoiii/JUtiizg,
Kluwer Academic Publishers, 1988.

1.41 Banerjee U., Unimodular Transformations of Double Loops,
chapter I O of Adiiances in Languages and Coinpileus ,for

SLl/Je~~oHZ/JLlthg, J U I Y 1993.

Parallel Processing, The MIT Press, 199 1.
Banerjee U,, Loop Parallelization. A book series on Loop
Transformations for Restructuring Compilers Khmer
Academic Publishers. Norwell, Massachussetts. 1994.
Darte A., Risset T., Robert Y. Loop Nest Scheduling and
Transformations. In J.J. Dongarra and B. Tourancheau,
editors, Environment and Tools for Parallel Scientific
Computing, volume 6 of Advnizces in Parallel Computing,
North Holland, 1993.
Fernrindez A., Llaberi’a J.M. and Valero-Garcia M., Loop
Transformation using non-unimodular matrices, to be
published in IEEE Trunsnctions on Pnrullel and Distributed
Systenis.
Knijnenburg P. M. W., AyguadC E. and Torres J . ,
Multitransformations: Code Generation and Validity.
Technical Report 95-1 2, Dept. of Computer Science, Leiden
University, 1995.
Li W. and Pin@ K., A Singular Loop Transformation
Framework Based on Non-Singular Matrices, in Proceedings
of’ the F$th Workshop on LaizgLiuges nnrl Criinpil~rs j b r
Parallel Conip~iters, New Heaven (CN), August 1992.

[lo] Polychronopoulos c. , Pnrdle l P rogrutniizing nnd Compilers,
Kluwer Academic Publishers, 1988.

[I I] Polychronopoulos C. P., Compiler Optimization for
Enhancing Parallelism and Their Impact on Architecture
Design, ZEEE Trmzsnctrions on Coinputers 37(X) (Aug.
1988) 99 1 - 1004.

[I21 Robert Y . and Song S. , Revisiting cycle shrinking, Parallel
Computing 18 (1992), North-Holland, 48 1-496.

[13] Schrijver A., Theory of Linear and Integer Progrumnzing,
John Wiley and Sons, 1986.

[I41 Shang W. and Fortes J., lndependendent Partitioning of
Algorithms with Uniform Dependencies,

[15] Shang W. , O’Keefe M. and Fortes J. A.. On Loop
Transformations for Generalized Cycle Shrinking, IEEE
Transaction on Parullel and Distributed Systems, Vol. 5, No.
2, February 1994, 193-204.

[I61 Torres J., AyguadC E., Labarta J. and Valero M., Align and
Distribute-based Linear Loop Transformations, kriguages
nncl Compilers fhr f u r d l e l Processing, 6th International
Workshop, Portland Oreson, Lectures Notes in Computer
Science 768, Springer-Verlag, I993

[I71 Torres J., AyguadC E., Labarta J. and Valero M., Revisiting
Framework of Linear Loop Transformations to Extract Full
Loop Parallelism, Department of Computer Architecture,
Polytechnic University of Catalunya, April 1995, CEPBA
Research Report RR-9S/O9
Torres J., Automatic Parallelization of Sequential Loops with
Recurrences , Ph.D. Thesis, Department of Computer
Architecture, Polytechnic University of Catalunya,
November 1993, CEPBA Research Report RR-94/01
Wolf M.E. and Lam M.S., A Loop Transformation Theory
and an Algorithm to Maximize Parallelism, lEEE
Transactions on Pui-allel nul Distributed Systems, vol. 2, no.
4, October 199 1.

[20] Wolfe M ., Optintizing SLi1,rrcoinpilars jbr Supercomputers,
The MIT Press, 1989.

E211 Wolfe M., More Iteration Space Tiling, Proceetlings of the
Superconiputiizg ’89. 1989.

[22] Xue J., Automating non-unimodular loop transformations for
massive parallelism, Parallel Computing 20 (1994), North-
Holland, 7 1 1-728.

427

