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Abstract

We consider the random walk loop soup on the discrete half-plane Z×N∗ and study
the percolation problem, i.e. the existence of an infinite cluster of loops. We show that
the critical value of the intensity is equal to 1

2
. The absence of percolation at intensity

1
2

was shown in a previous work. We also show that in the supercritical regime, one
can keep only the loops up to some large enough upper bound on the diameter and
still have percolation.
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1 Introduction

We will consider discrete (rooted) loops on Z2, that is to say finite paths to the
nearest neighbours on Z2 that return to the origin and visit at least two vertices. The
rooted random walk loop measure µZ2 gives to each rooted loop of lengths 2n the
mass (2n)−14−2n. It was introduced in [5]. In [3] are considered loops parametrised by
continuous time rather than discrete time. µZ2 has a continuous analogue, the measure
µC on the Brownian loops on C. Let Ptz,z′(·) be the standard Brownian bridge probability
measure from z to z′ of length t. µC is a measure on continuous time-parametrised loops
on C defined as

µC(·) :=

∫
C

∫
t>0

Ptz,z(·)
dt

2πt2
dz̄ ∧ dz

2i
,

where dz̄∧dz
2i is the standard volume form on C. The measure µC was introduced in [6].

Given α > 0 we will denote by LZ2

α respectively LCα the Poisson ensemble of intensity
αµZ2 respectively αµC, called random walk respectively Brownian loop soup. In [5] it
was shown that one can approximate LCα by a rescaled version of LZ2

α . If A is a subset
of Z2 we will denote by LAα the subset of LZ2

α made of loops contained in A. If U is an
open subset of C we will denote by LUα the subset of LCα made of loops contained in U .
For δ > 0 we will denote by LA,≥δα respectively LU,≥δα the subset of random walk loops
LAα respectively Brownian loops LUα made of loops of diameter greater or equal to δ.
Similarly we will use the notation LA,≤δα for the loops of diameter smaller or equal to δ.

We will consider clusters of loops. Two loops γ and γ′ in a Poisson ensemble of
discrete or continuous loops belong to the same cluster if there is a chain of loops
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Loop percolation on discrete half-plane

γ0, γ1, . . . , γn in this Poisson ensemble such that γ0 = γ, γn = γ′ and γi and γi−1 visit a
common point. For all α > 0, loops in LZ2

α as well as in LCα form a single cluster. Thus
we will consider loops on discrete half-plane H = Z×N∗ and on continuous half-plane
H = {z ∈ C|=(z) > 0}, mainly from the angle of existence of an unbounded cluster.

The percolation problem for Brownian loops was studied in [10]. It was shown that
there is a critical intensity αH∗ ∈ (0,+∞) such that for α ∈ (0, αH∗ ], LHα has only bounded
clusters, and for α > αH∗ the loops in LHαH∗ form one single cluster. The critical intensity

was identified to be equal to 1. But actually αH∗ = 1
2 . In [10] the outer boundaries of

outermost clusters in a sub-critical Brownian loop soup were identified to be a Conformal
Loop Ensemble CLEκ with the following relation between α and κ.

α =
(3κ− 8)(6− κ)

2κ
.

The critical value of κ corresponds to CLE4. Actually the right relation between α and κ
is

α =
1

2

(3κ− 8)(6− κ)

2κ
.

So the value of α that corresponds to κ = 4 is 1
2 and not 1. The missing factor 1

2 appears
in the Lawler’s work [7] (Proposition 2.1). The error in [10] comes from an error in
the article [6] by Lawler and Werner. There the authors consider a Brownian loop
soup in the half-plane and a continuous path cutting the half-plane, parametrised by
the half-plane capacity. For such a path the half-plane capacity at time t equals 2t. It
discovers progressively new Brownian loops and the authors map these loops conformally
to the origin. In the Theorem 1 they identify the processes of these conformally mapped
Brownian loops to be a Poisson point process with intensity proportional to the Brownian
bubble measure. In the identification of intensity there is a factor 2 missing. Actually in
the article [6], the Theorem 1 is inconsistent with the Proposition 11.

The problem of percolation by random walk loops was studied in [4], [2], [9] and [1]
in more general setting than dimension 2. We will focus on the percolation by loops in LH

α.
The probability of existence of an infinite cluster of loops follows a 0− 1 law and there
can be at most one infinite cluster ([9]). Moreover for α = 1

2 loops in LH
1
2

do not percolate

([9]). This result was obtained through a coupling with the massless Gaussian free field.
By considering just the loops that go back and forth between two neighbouring vertices
we get a lower bound on clusters of loops by clusters of an i.i.d. Bernoulli percolation.
In particular this implies that for α large enough loops in LH

α percolate. Hence as the
parameter α increases there is a phase transition and a critical value αH

∗ ∈ [ 1
2 ,+∞) of

the parameter. Using the results on the clusters of Brownian loops from [10] and the
approximation result from [5] we will show in section 2 the following:

Theorem 1.1. For all α > 1
2 there is an infinite cluster of loops in LH

α. In particular
αH
∗ = 1

2 . Moreover, given α > 1
2 , there is n ∈ N∗ large enough, such that LH,≤n

α percolates
too.

That is to say the critical intensity parameter for the two-dimensional Brownian loop
soups and random walk loop soups is the same.

We will consider 1-dependent edge percolations on H, (ω(e))e edge. By 1-dependent
percolation we mean that if two disjoint subsets of edges E1 and E2 are at graph
distance at least 1 then (ω(e))e∈E1 and (ω(e))e∈E2 are independent. According the results
on locally dependent percolation by Liggett, Schonmann and Stacey in [8], for all 1-
dependent edge percolations on H with p the probability of an edge to be open, there is
an universal p̃(p) ∈ [0, 1) such that the 1-dependent edge percolation contains an i.i.d.
Bernoulli percolation with probability p̃(p) of an edge to be open. Moreover the following
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Loop percolation on discrete half-plane

constraint holds:

lim
p→1−

p̃(p) = 1.

2 Critical intensity parameter

Let α, δ > 0. Given U an open subset of H, we will denote by LU,≥δα respectively
LU∩H,≥δα the subset of LHα respectively LH

α made of loops contained in U and with diameter
greater or equal to δ. We will use the notations LUα and LU∩Hα when there is a condition
on the range but not on the diameter.

Let Qext and Qint be the following rectangles:

Qext := (0, 6)× (0, 3), Qint := (1, 5)× (1, 2).

We consider the subset of Brownian loops LQext,≥δα , which is a.s. finite. We introduce the
events C1(LQext,≥δα ), C2(LQext,≥δα ) and C3(LQext,≥δα ) depending on the loops in LQext,≥δα .
The event C1(LQext,≥δα ) will be satisfied if there is a cluster K1 of loops in LQint,≥δα such

that in L(0,6)×(1,2),≥δ
α there is a loop that intersects K1 and {1} × (1, 2) and a loop that

intersects K1 and {5} × (1, 2). The two loops may be the same. C2(LQext,≥δα ) will be

satisfied if there is a cluster K2 in L(1,2)2,≥δ
α such that in L(1,2)×(0,3),≥δ

α there is a loop that
intersects K2 and (1, 2)× {1} and a loop that intersects K2 and (1, 2)× {2}. The event
C3(LQext,≥δα ) is similar to the event C2(LQext,≥δα ) where the square (1, 2)2 is replaced by
the square (4, 5) × (1, 2) and the rectangle (1, 2) × (0, 3) by the rectangle (4, 5) × (0, 3).
Next figure illustrates the event

⋂3
i=1 Ci(LQext,≥δα ).

Figure 1: Illustration of the event
⋂3
i=1 Ci(LQext,≥δα ). One should imagine that the

smooth loops are actually Brownian. Only a set of loops that is sufficient for the event is
represented. Full line loops stay inside Qint. Dashed loops cross the boundary of Qint.

We will call the event
⋂3
i=1 Ci(LQext,≥δα ) special crossing event with exterior rectangle

Qext and interior rectangle Qint. We will also consider translations, rotations and
rescaling of Qext and Qint and deal with special crossing events corresponding to the
new rectangles. We are interested in the event

⋂3
i=1 Ci(LQext,≥δα ) because then the loops

in LQext,≥δα achieve the three crossings drawn on the figure 2:

Next we show that if α > 1
2 and δ is small enough then the probability of the event⋂3

i=1 Ci(LQext,≥δα ) is close to 1.
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Loop percolation on discrete half-plane

Figure 2: The three crossings we are interested in.

Lemma 2.1. Let Q be a rectangle of form Q = (−a, a)× (0, b). Let α > 0. Let (Bt)t≥0 be
the standard Brownian motion on C started from 0 and let LQα be a Poisson ensemble
of loops independent from B. Then for all ε > 0 there is t ∈ (0, ε) such that B at time t
intersects a loop in LQα .

Proof. First we consider a loops soup in H, LHα , independent of B. Let

T := inf{t > 0|Bt is in the range of a loop in LHα}.

T is a.s. finite. Indeed a loop in LHα delimits a domain with non-empty interior. Since the
Brownian motion on C is recurrent, B will visit this domain and thus intersect the loop.
Let λ > 0. The Poisson ensemble of loops LHα is invariant in law under the Brownian
scaling

(γ(t))0≤t≤tγ 7−→ λ−
1
2 (γ(λt))0≤t≤λ−1tγ .

So does the Brownian motion B. Thus λT has the same law as T . It follows that T = 0

a.s.
The set of loops LHα \ LQα is at positive distance from 0 thus B cannot intersect it

immediately. It follows that B intersects immediately LQα .

Lemma 2.2. Let a, α > 0. There is a.s. a loop in L(−a,a)2

α that intersects the real line R.

Proof. Let L(n)
α be the subset of L(−a,a)2

α made of loops γ of duration tγ comprised

between 2−n−1 and 2−n. The family (L(n)
α )n≥0 is independent. By Brownian scaling, the

probability that a loop in L(n)
α intersects R is the same as a loop in L(−a2n/2,a2n/2)2

α of
duration comprised between 1

2 and 1 intersects R. This is at least as big as the similar

probability for L(0)
α . Since the latter probability is non-zero, the intersection events

occurs a.s. for infinitely many of L(n)
α .

Lemma 2.3. Let a, α > 0. There is a.s. a loop in L(−a,a)2

α that intersects the real line R
and a loop in L(−a,a)×(0,a)

α .

Proof. Consider the subset of L(−a,a)2

α made of loops intersecting R. It is non empty
according the lemma 2.2. Moreover it is independent of L(−a,a)×(0,a)

α . The law of a
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Loop percolation on discrete half-plane

Brownian loop that intersects R is locally, near the point of intersection, absolutely
continuous with respect to the law of a Brownian motion started from there. Applying
lemma 2.1, we get that it intersects a.s. a loop in L(−a,a)×(0,a)

α .

Lemma 2.4. Let α > 1
2 . Then

lim
δ→0+

P
( 3⋂
i=1

Ci(LQext,≥δα )
)

= 1.

Proof. It is enough to show that the probability of each of the Ci(LQext,≥δα ) converges
to 1 as δ tends to 0. Since the three cases are very similar, we will do the proof only
for C1(LQext,≥δα ). According to lemma 2.3 there is a loop γ in L(0,6)×(1,2)

α that intersects

{1} × (1, 2) and a loop γ′ in LQintα . Similarly there is a loop γ̃ in L(0,6)×(1,2)
α that intersects

{5} × (1, 2) and a loop γ̃′ in LQintα . Since α > 1
2 , γ′ and γ̃′ belong to the same cluster

in LQintα ([10]). Thus there is a chain of loops (γ0, . . . , γn) in LQintα , with γ0 = γ′ and
γn = γ̃′, joining γ′ and γ̃′. If δ is the minimum of diameters of (γ0, . . . , γn) and γ and
γ̃ then C1(LQext,≥δα ) is satisfied. Let δ̄ be maximal value of δ such that C1(LQext,≥δα ) is
satisfied. δ̄ is a well defined random variable with values in (0,+∞). Then

lim
δ→0+

P(C1(LQext,≥δα )) = lim
δ→0+

P(δ ≤ δ̄) = 1.

Next we recall the result on approximation of Brownian loops by random walk loops
from [5]. Let N ∈ N∗. We consider the discrete loops γ on Z×N∗. We define on these
loops a map ΦN to continuous loops on H. Given γ a discrete loop and (z0, . . . , zn−1, z0)

the sequence of the vertices it visits, the continuous loop ΦNγ satisfies:

• the duration of ΦNγ is n
2N2 ;

• for j ∈ {0, . . . , n− 1}, ΦNγ( j
2N2 ) =

zj
N ;

• ΦNγ( n
2N2 ) = ΦNγ(0) = z0

N ;

• between the times j
2N2 , j ∈ {0, . . . , n}, ΦNγ interpolates linearly.

The number of jumps n of a discrete loop γ will be denoted sγ . The life-time of a
continuous loop γ̃ will be denoted by tγ̃ . Let θ ∈ ( 2

3 , 2) and r ≥ 1. There is a coupling
between LH

α and LHα such that except on an event of probability at most cste · (α +

1)r2N2−3θ there is a one to one correspondence between the two sets

• {γ ∈ LH
α|sγ > 2Nθ, |γ(0)| < Nr},

• {γ̃ ∈ LHα |tγ̃ > Nθ−2, |γ̃(0)| < r},

such that given a discrete loop γ and the continuous loop γ̃ corresponding to it,∣∣∣ sγ
2N2

− tγ̃
∣∣∣ ≤ 5

8
N−2, sup

0≤u≤1

∣∣∣ΦNγ(u sγ
2N2

)
− γ̃(utγ̃)

∣∣∣ ≤ cste ·N−1 log(N).

Next we state without proof a lemma that follows immediately from this approximation.

Lemma 2.5. Let α > 0 and δ > 0. As N tends to +∞ the random set of interpolating
continuous loops {

ΦNγ|γ ∈ LNQext∩H,≥Nδα

}
converges in law to the set of Brownian loops LQext,≥δα .
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Loop percolation on discrete half-plane

We need to show that the above convergence for the uniform norm also implies a
convergence of the intersection relations, that is to say that

{(γ, γ′)|γ, γ′ ∈ LNQext∩H,≥Nδα , γ intersects γ′}

converges in law to

{(γ̃, γ̃′)|γ̃, γ̃′ ∈ LQext,≥δα , γ̃ intersects γ̃′}.

Let j ∈ N. Let γ be a continuous path on C (not necessarily a loop) of lifetime tγ . For
r > 0 let

Tr(γ) := inf{s > 0||γ(s)| ≥ r} ∈ (0,+∞].

If Tr(γ) < +∞ let

eiωr :=
γ(Tr(γ))

r
.

Let Ij be the real interval

Ij :=
( 7

12
2−j ,

9

12
2−j
)
.

For 0 < r1 < r2 let A(r1, r2) be the annulus

A(r1, r2) := {z ∈ C|r1 < |z| < r2}.

For r > 0 let HD(r) be the half-disc

HD(r) := B(0, r) ∩ {z ∈ C|<(z) > 0}.

We will say that the path γ satisfies the condition Cj if

• T 11
12 2−j (γ) < +∞,

• after time T 11
12 2−j (γ) < +∞, γ hits ei(ω2−j−1+π

2 )Ij at a time t̃j before hitting the

circle S(0, 2−j),

• on the time interval (T2−j−1(γ), t̃j) γ stays in the half-disc eiω2−j−1HD(2−j),

• from time t̃j the path γ stays in the annulus A( 7
122−j , 9

122−j) until surrounding the
disc B(0, 7

122−j) once clockwise and hitting ei(ω2−j−1+π)Ij .

Figure 3 illustrates a path satisfying the condition Cj . If this condition is satisfied
than γ disconnects the disc B(0, 7

122−j) from infinity. Moreover if one perturbs γ by
any continuous function f : [0, tγ ] → C such that ‖f‖∞ ≤ 1

122−j then the path (γ(s) +

f(s))0≤s≤tγ disconnects the disc B(0, 2−j−1) from infinity. The disconnection is made
inside the annulus A(2−j−1, 2−j).

Lemma 2.6. Let (Bt)0≤t≤T be a standard Brownian path on C starting from 0. Then
almost surely it satisfies the condition Cj for infinitely many values of j ∈ N.

Proof. Let B̃ be the Brownian path B continued for t ∈ (0,+∞). The events "B̃ satisfies
the condition Cj" are i.i.d. Indeed such an event is rotation invariant and depends only on

B̃ on the time interval (T2−j−1(B̃), T2−j (B̃)). Moreover the probability of such an event is
non-zero. Thus B̃ satisfies the condition Cj for infinitely many values of j ∈ N. Since

lim
j→+∞

T2−j (B̃) = 0,

so does B.
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Loop percolation on discrete half-plane

Figure 3: Representation of a path γ satisfying the condition Cj .

Lemma 2.7. Let z1, z2 ∈ C and t1, t2 > 0. Let (b
(1)
s )0≤s≤t1 and (b

(2)
s )0≤s≤t2 be two

independent standard Brownian bridges from z1 to z1 and z2 to z2 respectively. On the
event that b(1) intersects b(2) there is a.s. ε > 0 such that for all continuous functions
f1 : [0, t1]→ C and f2 : [0, t2]→ C of infinity norm ‖fi‖∞ ≤ ε, (b

(1)
s +f1(s))0≤s≤t1 intersects

(b
(2)
s + f2(s))0≤s≤t2 .

Proof. Let T (1)
2 be the first time b(1) hits the range of b(2). If the two path do not

intersect each other T (1)
2 = +∞. On the event T (1)

2 < +∞ the conditional law of

(b
(1)

T
(1)
2 +s

− b(1)

T
(1)
2

)
0≤s≤t1−T (1)

2 −ε
(ε > 0 a small constant) given the value T (1)

2 is absolutely

continuous with respect the law of a Brownian path starting from 0. From lemma 2.6
follows that the path (b

(1)

T
(1)
2 +s

− b(1)

T
(1)
2

)
0≤s≤t1−T (1)

2
satisfies the condition Cj for infinitely

many values of j ∈ N. Let

̃ := max
{
j ∈ N|(b(1)

T
(1)
2 +s

− b(1)

T
(1)
2

)
0≤s≤t1−T (1)

2
satisfies the condition Cj

and ∃s ∈ [0, t2], |b(2)
s − b

(2)

T
(1)
2

| ≥ 13

12
2−j
}
.

̃ is a r.v. defined on the event where b(1) and b(2) intersect. If f1 and f2 are such that
‖fi‖ ≤ 1

122−̃ then the path b(1) + f1 disconnects the disc B(b
(1)

T
(1)
2

, 2−̃−1) from infinity

inside the annulus b(1)

T
(1)
2

+ A(2−̃−1, 2−̃) and the path b(2) + f2 crosses from the circle

S(b
(1)

T
(1)
2

, 2−̃−1) to the circle S(b
(1)

T
(1)
2

, 2−̃), so the two must intersect.

Observe that two discrete loops γ and γ′ intersect each other if and only if the
continuous loops ΦNγ and ΦNγ

′ do. From lemmas 2.5 and 2.7 follows:
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Corollary 2.8. Let α > 0 and δ > 0. As N tends to +∞ the random set of interpolating
continuous loops {

ΦNγ|γ ∈ LNQext∩H,≥Nδα

}
jointly with the intersection relations

{(γ, γ′)|γ, γ′ ∈ LNQext∩H,≥Nδα , γ intersects γ′}

converges in law to the set of Brownian loops LQext,≥δα jointly with the intersection
relations

{(γ̃, γ̃′)|γ̃, γ̃′ ∈ LQext,≥δα , γ̃ intersects γ̃′}.

We consider the scaled up rectangle NQext and NQint. The next lemma deals with
the probability that the discrete loops LNQext∩Hα realise the special crossing event with
exterior rectangle NQext and interior rectangle NQint. See figures 1 and 2 and consider
that Qext is replaced by NQext, Qint by NQint and LQext,≥δα by LNQext∩Hα .

Lemma 2.9. Let α > 1
2 . As N tends to +∞, the probability that the loops LNQext∩Hα

realise a special crossing event with exterior rectangle NQext and interior rectangle
NQint converges to 1.

Proof. Let δ > 0. The probability that the loops LNQext∩Hα realise the special crossing
event with exterior rectangle NQext and interior rectangle NQint is at least as large
as the probability that the loops LNQext∩H,≥Nδα realise the special crossing event with
the same interior and exterior rectangle. From the corollary 2.8 follows that the latter
probability converges as N → +∞ to

P

(
3⋂
i=1

Ci(LQext,≥δα )

)
.

We conclude by applying the lemma 2.4.

To conclude that for α > 1
2 , LH

α has an infinite cluster we will use a block percolation
construction that will combine special crossing events.

Proof of the Theorem 1.1. From [9] we know already that αH
∗ ≤ 1

2 . We need to show
that for α > 1

2 , LH
α has an infinite cluster.

Let α > 1
2 and N ≥ 1. We consider a dependent edge percolation (ωN (e))e edge of H

on the discrete half plane H. If e is an edge of form {(j, k), (j + 1, k)}, k ≥ 1, then

ωN (e) = 1 (open edge) if L(NQint+3Nj+i3Nk)∩H
α achieves a special crossing event with

exterior rectangle NQext + 3Nj + i3Nk and interior rectangle NQint + 3Nj + i3Nk. If
e is an edge of form {(j, k), (j, k + 1)}, k ≥ 1, then ωN (e) = 1 if L(iNQint+3Nj+i3Nk)∩H

α

achieves a special crossing event with exterior rectangle iNQext + 3Nj + i3Nk and
interior rectangle iNQint + 3Nj + i3Nk, where the multiplication by i means rotation by
+π

2 . ωN is a 1-dependent edge percolation: if two disjoint subsets of edges E1 and E2 are
such that no edge is adjacent to both E1 and E2, then (ωN (e))e∈E1

and (ωN (e))e∈E2
are

independent. This is due to the fact that the subsets of loops involved in the definition
of special crossing events for edges in E1 and and edges in E2 are disjoint. To an open
path in ωN corresponds a cluster of LH

α whose loops form crossings of related interior
rectangles. Thus if ωN has an unbounded cluster, then so does LH

α. See next picture.
The probability P(ωN (e) = 1) is uniform and we will denote it pN . According to the

lemma 2.9

lim
N→+∞

pN = 1.
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Loop percolation on discrete half-plane

Figure 4: Crossings achieved by subsets of loops in LH
α, corresponding to five open

edges in ωN .

Thus for N large enough p̃(pN ) > 1
2 . 1

2 is the critical probability for the i.i.d. Bernoulli
edge percolation on H. So for N large enough ωN contains a supercritical i.i.d. Bernoulli
edge percolation and percolates itself. Thus LH

α percolates too. Actually, since our
construction only uses loops of diameter less or equal to 6N , we have also percolation
for LH,≤6N

α . �
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