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We provide a full quantization of the vacuum Gowdy model with local rotational symmetry. We consider
a redefinition of the constraints where the Hamiltonian Poisson-commutes with itself. We then apply the
canonical quantization program of loop quantum gravity within an improved dynamics scheme. We
identify the exact solutions of the constraints and the physical observables, and we construct the physical
Hilbert space. It is remarkable that quantum spacetimes are free of singularities. New quantum observables
naturally arising in the treatment partially codify the discretization of the geometry. The preliminary
analysis of the asymptotic future/past of the evolution indicates that the existing Abelianization technique
needs further refinement.

DOI: 10.1103/PhysRevD.96.106016

I. INTRODUCTION

Making realistic predictions on effects of quantum
gravity in the cosmological context—an element
needed in particular to solve the singularity problem in
cosmology—requires investigating models admitting
inhomogeneous spacetimes, preferably at the nonperturba-
tive level. Among such settings, Gowdy spacetimes [1]
in vacuum are particularly interesting since they are a
natural extension of Bianchi I cosmologies [2] and admit
nonperturbative inhomogeneities (usually interpreted as
polarized gravitational waves).
As they capture essential properties of full general

relativity (GR) and at the same time are relatively simple,
these models have brought over the years a lot of attention
of researchers delving upon various aspects of gravity
quantization. For instance, a quantum (geometrodynamics)
description was already considered in the 1970s [3,4].
Further they were explored in the specific context of
gravitational waves quantization [5] which description was
later shown to admit a unitary dynamics [6]. Besides, it was
possible to prove that this representation where the dynam-
ics is unitarily implementable is indeed unique [7] if in
addition it is compatible with the symmetries of the

equation of motion, i.e. the symmetries of the dynamics.
The canonical quantization of these models employing the
(complex) Ashtekar variables was carried out in Ref. [8].
These studies however, as treating the homogeneous back-
ground either classically or via geometrodynamics could
not “cure” the singularity problem.
The Gowdy model with linear polarization and T3 spatial

slices has been subsequently studied in terms of real
Ashtekar–Barbero variables [9,10] via the midisuperspaces
techniques [11]. There, however, the difficulties in applying
the conventional loop quantum gravity (LQG) techniques
[12] did not allow to complete the quantization program
and probe the dynamics. Fortunately, the problems ham-
pering prior approaches were successfully addressed in
Ref. [13,14] via the so-called hybrid quantization program.
This approach, also suitable for perturbative cosmological
scenarios [15,16], combines the standard Fock quantization
for the gravitational waves with a polymeric quantization of
the homogeneous degrees of freedom. It is furthermore
quite convenient for the study of quantum gravity in the
presence of matter [17], and provides an arena for unveiling
novel quantum phenomena on some sectors of the theory
[18]. All these models allow for a convenient partial gauge
choice which reduces the set of local constraints to a global
Hamiltonian and diffeomorphism constraints. The latter
are sufficiently simple to allow finding their solutions (at
least formally) and to construct the physical Hilbert space.
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This approach however, while successful, by the very
nature of the hybrid quantization cannot be easily related
with the standard LQG.
In this work we follow a more orthodox approach,

expanding upon the original midisuperspace program of
Ref. [19]. In order to test new techniques we study a slight
simplification of the full polarized, three-torus Gowdy
model, namely its locally rotational symmetric (LRS)
version, where one identifies the two directions orthogo-
nal to the inhomogeneous one. While in vacuo, since its
space of solutions is diffeomorphic to the space of
(Kasner) solutions of a homogeneous Bianchi I spacetime
(with compact spatial sections), it features just one free
global degree of freedom, in presence of matter (for
example a massless scalar field) it admits genuine inho-
mogeneous solutions, containing however a homogeneous
and even isotropic sector. This feature makes the model
viable for cosmology applications and particularly useful
in testing the results of the perturbative approaches against
nonperturbative effects as well as in the studies of the
relation of loop quantum cosmology (LQC) [20] with
LQG. For instance, Bianchi I spacetimes in loop quantum
cosmology [21,22], after imposing local rotational
symmetry, or the hybrid quantization of the polarized
Gowdy model in the three-torus [13,14] are clearly
interesting for this purpose. Gowdy LRS has also been
considered in the context of the (loop) consistent algebra
approach [23]. Our quantization program, unlike the
previous approaches, will not involve gauge-fixing.
Instead, we will be working with the constraint algebra,
featuring (as in full GR) local structure functions, and will
be forced to employ the Dirac program in a manner
featuring the same level of complication as in full LQG.
To deal with the known difficulties in its implementation
we will follow a strategy already adopted in studies of
spherically symmetric spacetimes [24,25] (see Ref. [23]
for a discussion of the full polarized Gowdy model). That
strategy is based on a specific redefinition of the con-
straints and consequently of their algebra structure, which
makes the Hamiltonian constraint Abelian. Furthermore,
in the construction of the quantum counterpart of this
constraint we implement, for the first time in a loop
quantized inhomogeneous model, an improved dynamics
scheme. The solutions to the Hamiltonian constraint can
be explicitly determined and can be equipped with a well
defined Hilbert space structure, which in turn, together
with the application of the standard LQC treatment of the
spatial diffeomorphisms, allows us to unambiguously
probe the dynamical sector of the model. It is remarkable
that the resulting spacetimes are free of singularities.
Furthermore, the area of the Killing orbits is quantized due
to the discreteness of the spectrum of a new observable
emerging in this quantization. This treatment and its
results open a new window for the quantization of
cosmological scenarios in LQC featuring a natural

connection with the full theory by means of more realistic
models admitting nonperturbative inhomogeneities.
The paper is organized as follows. In Sec. II we introduce

the classical polarized Gowdy model on the three-torus.
Then we consider the model with local rotational symmetry
in Sec. III, where we also provide the classical Dirac
observables of the model. In Sec. IV we define the Abelian
constraint. In Sec. V we describe the kinematical quantum
framework and the basic kinematical observables, whereas
the Hamiltonian constraint is discussed in Sec. VI. The
physical Hilbert space as well as the observables (together
with a discussion about the semiclassical sectors of
the theory) are provided in Sec. VII. We conclude with
Sec. VIII. Furthermore, in Appendix A we discuss an
alternative construction for the Abelianized Hamiltonian
constraint, and in Appendix B a partial spectral analysis of
some operators relevant for our treatment.

II. CLASSICAL POLARIZED GOWDY MODEL
IN ASHTEKAR-BARBERO VARIABLES

Let us start by summarizing the description of the
Gowdy model with spatial sections isomorphic to the
three-torus and linear polarization for the gravitational
wave content. We will provide this description in terms
of real Ashtekar-Barbero variables with the notation intro-
duced in Ref. [9]. The polarized Gowdy model in this case
consists of three local degrees of freedom ðA; EÞ,1ðKx; ExÞ
and ðKy; EyÞ, all of them with support on the circle of
angular coordinate θ ∈ ½0; 2πÞ. They are pairs of connec-
tions and densitized triads, respectively, such that the
spatial metric components are gθθ ¼ ðExEyÞ=E, gxx ¼
EyE=Ex and gyy ¼ ExE=Ey, and where the function E
corresponds to the area of the (here 2-dimensional) orbits
of the spatial Killing vectors.
The symplectic structure is given by

Ω ¼ 1

γκ

Z
dθð2dA ∧ dE þ dKx ∧ dEx þ dKy ∧ dEyÞ;

ð2:1Þ

with2

κ ≔
8πG
4π2

: ð2:2Þ

Besides, the Hamiltonian of the model is a linear combina-
tion of two first class constraints: the diffeomorphism one

C ¼ 1

γκ
½ð∂θKxÞEx þ ð∂θKyÞEy − 2ð∂θEÞA�; ð2:3Þ

1The connection A in our work is decreased by a factor of 2
with respect to the one introduced in [9].

2In order to restore the Immirzi parameter [26] in our studies
we drop the rescaling by γ introduced in [9].
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and the Hamiltonian constraint

H ¼ 1

κ

�
−

1

γ2
ffiffiffiffi
E

p fðKxExKyEyÞ þ 2ðKxEx þKyEyÞEAg

−
1

4
ffiffiffiffi
E

p fð∂θEÞ2 − ðE∂θðlnðEy=ExÞÞÞ2g þ ∂θ

�
E∂θEffiffiffiffi

E
p

��
;

ð2:4Þ

where E ¼ EExEy. This set of constraints has a nontrivial
algebra

fC½Nθ�; C½Mθ�g ¼ C½Nθ∂θMθ −Mθ∂θNθ�; ð2:5aÞ

fC½Nθ�; H½N�g ¼ H½Nθ∂θN�; ð2:5bÞ

fH½M�; H½N�g ¼ C

�
E2ðM∂θN − N∂θMÞ

E

�
: ð2:5cÞ

As we see, the constraint algebra involves structure func-
tions, as it happens in the full theory. This is one of the main
handicaps preventing us from attaining a complete quanti-
zation of the full polarized Gowdy model so far. One of the
strategies that can be adopted in this type of field theories is
to replace the original form of the Hamiltonian constraint
with its Abelian version (see [23] for the discussion of this
method and its limitations). This procedure was originally
suggested and successfully applied in spherically symmetric
spacetimes [24,25]. However, at the quantum level, the
anomalies that a loop quantization introduces are not yet well
understood in the context of the full polarized Gowdy model
[23], thus preventing the completion of the traditional loop
quantization program there. Fortunately, as we will show
further in the manuscript, the Abelianized version of the
Hamiltonian constraint can be easily represented at the
quantum level as an operator with a constraint algebra free
of anomalies provided that we introduce an additional
symmetry: local rotational symmetry.

III. CLASSICAL MODEL WITH LOCAL
ROTATIONAL SYMMETRY

Let us consider a restriction of the standard polarized
Gowdy model via imposing the requirement that the
rotations on the x − y plane are isometries. An easy way
to represent the restricted geometries is to identify the
degrees of freedom represented by the pairs ðKx; ExÞ and
ðKy; EyÞ. The original symplectic structure (2.1) reduces
then to

Ω ¼ 2

γκ

Z
dθðdA ∧ dE þ dKx ∧ dExÞ: ð3:1Þ

The phase space is now coordinatized by two pairs of
canonical variables ðKx; ExÞ and ðA; EÞ. The spatial metric
components become then

gθθ ¼ ðExÞ2E−1; gxx ¼ gyy ¼ E: ð3:2Þ

In the specified notation3 the Hamiltonian is again a
linear combination of the constraints HT ¼ R

dθðNH þ
NθCÞ, where

H ¼ −
1

κ

�
1

γ2
ffiffiffi
E

p ðK2
xExÞ þ 4

γ2
ffiffiffi
E

p EAKx

þ 1

4
ffiffiffi
E

p
Ex

ð∂θEÞ2 − ∂θ

�
E∂θEffiffiffi
E

p
Ex

��
; ð3:3aÞ

C ¼ 2

γκ
½ð∂θKxÞEx − ð∂θEÞA�: ð3:3bÞ

The constraint algebra remains unchanged with respect to
Eq. (2.5)

fC½Nθ�; C½Mθ�g ¼ C½Nθ∂θMθ −Mθ∂θNθ�; ð3:4aÞ

fC½Nθ�; H½N�g ¼ H½Nθ∂θN�; ð3:4bÞ

fH½M�; H½N�g ¼ C

�
EðM∂θN − N∂θMÞ

ðExÞ2
�
: ð3:4cÞ

In this restricted setting we are still dealing with a 1þ 1
field theory with a nontrivial constraint algebra as in the full
polarized Gowdy model, sharing with the latter the level of
complication and set of difficulties in implementing the
Dirac quantization procedure. On the other hand, the
structure of the degrees of freedom changes drastically
with respect to the original Gowdy model, as the local
rotational symmetry fixes an infinite number of physical
degrees of freedom. On shell, instead of two global and one
local degree of freedom the model we study features only
one global and no local ones—the degrees of freedom of
Bianchi I Kasner solutions. While in itself it does not admit
genuinely inhomogeneous spacetimes,4 it describes the
geometry in a diffeomorphism invariant manner resembling
the one of full LQG and not tied to the homogeneity of the
physical solutions. Because of that, the treatment can be
extended in a straightforward way to LRS Gowdy models
including matter content, in particular a massless scalar
field. The latter, while it is in general genuinely inhomo-
geneous, it admits homogeneous (Bianchi I) and isotropic
(Friedmann–Robertson–Walker solutions) spacetimes.
Hence, it is strongly relevant for the study of our Universe.

3The reader must be concerned about the fact that we keep here
the same notation for the Hamiltonian and the constraints than in
the full polarized Gowdy model. In order to avoid any possible
confusion, in what follows we will refer only to the scenario with
local rotational symmetry.

4Although the solutions represent Kasner spacetimes, these
spacetimes are foliated by Cauchy surfaces which are not
invariant with respect to finite symmetry transformations.
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Since we are dealing with a constrained system, in
order to provide the classical description, one needs to
perform one more step: the identification of Dirac observ-
ables. For as long as we consider just the vacuum solutions
(which is the case of this article), they just admit one
global degree of freedom, thus one needs to identify just a
single observable. Let us recall that the phase space is
determined by four local degrees of freedom. They are
subject to two first-class constraints. Together with two
additional gauge fixing conditions (or equivalently two
second-class conditions with respect to the constraints), one
can fix all phase space function but one global (homo-
geneous) degree of freedom, that is not fixed by the
diffeomorphism constraint (it is actually the central charge
of the constraint algebra). Indeed, it corresponds to the
Dirac observable

h1 ¼
Z

dθ

�
2

γ2
ffiffiffi
E

p
K2

x −
ffiffiffi
E

p ð∂θEÞ2
2ðExÞ2

�
: ð3:5Þ

By a quite lengthy but straightforward calculation one can
show that its Poisson bracket with the total Hamiltonian

fh1; HTðN;NθÞg ¼ −
Z

dθNκ
E∂θE
ðExÞ3 C

−
Z

dθNθκ

�∂θE
Ex H −

2Kx

ffiffiffi
E

p

γEx C

�
;

ð3:6Þ

thus it vanishes on shell.5 As a consequence, h1 encodes the
diffeomorphism-invariant constant of motion.
The classical description constructed above could

be used as the basis for the (loop) quantization. In its
present form, however, due to the nontrivial Poisson
bracket (3.4c), the resulting quantum Hamiltonian con-
straint would not be commuting with itself, which poses
certain challenges in the completion of the quantization
program. Therefore, following [24,25] we will perform
the modification of the classical description known as
Abelianization procedure.

IV. ABELIANIZATION OF THE SCALAR
CONSTRAINT IN THE REDUCED MODEL

In this section we will consider a redefinition of the
scalar constraint so that the analog of the Poisson bracket
(3.4c) (with the redefined constraint) vanishes strongly.
It is well known [27] that for diffeomorphism invariant

systems, transformations like

(1) H → ΩðQÞH, where Ω is a function of the con-
figuration variables only (here denoted as Q for
simplicity) and ΩðQÞ ≠ 0,

(2) Ca → Λb
aðQÞCb with detΛ ≠ 0,

(3) H → H þ PaΛb
aðQÞCb with P representing momen-

tum variables (conjugate to Q) and detΛ ≠ 0,
provide a new set of constraints with the same constraint
surface. Of course, these transformations are not canonical
transformations since the constraint algebra is changing
(i.e. the Poisson brackets between constraints change).
They can be understood as redefinitions of the lapse and
shift functions. In our case we will consider the last type of
transformations in order to achieve a new scalar constraint
such that it commutes with itself, while the rest of the
constraint algebra structure remains that of a proper Lie
algebra (with structure constants instead of structure
functions).
This method was developed (and successfully applied) in

the context of spherically symmetric black hole spacetimes
in [24,25]. Following the construction presented there we
consider the following transformation

H → H − 2Kx

ffiffiffi
E

p
ðγ∂θEÞ−1C; C → C; ð4:1Þ

which is the unique available transformation removing the
dependence on A from H and not involving rescaling H.
This transformation is unfortunately singular—not defined
on any phase space point on which ∂θE vanishes on
any point in space. Due to the compactness of the spatial
slices this is the case for all the considered geometries
(∂θEðθÞ ¼ 0 for at least two isolated values of θ). By
invoking certain completion constructions, one can still
work with it at the cost of cutting off from the phase space
all the geometries where ∂θEðθÞ ¼ 0 on an open interval.
We will discuss that treatment and its limitations in
Appendix A.
To avoid cutting-off a physically relevant portion of the

phase space, we propose another transformation supple-
menting Eq. (4.1) with a rescaling by ∂θEðExÞ−1, that is

H → ðExÞ−1½ð∂θEÞH − 2Kx

ffiffiffi
E

p
γ−1C�; C → C; ð4:2Þ

Such transformation has been considered in the context of
full polarized Gowdy model in Ref. [23]. While the term
ðExÞ−1 is regular outside of the strong classical singularity,
∂θE still makes the transformation singular, this time
enlarging the constraint surfaces. This is caused by the
fact that the new sets of constraints are satisfied automati-
cally on homogeneous configurations (they vanish identi-
cally) while the old set of constraints selects a proper
subsurface (within the surface of the homogeneous geom-
etries) of the phase space. However, the spatial continuity
of the classical fields (here playing the role of the phase
space variables) implies the equivalence between the two
sets of constraints on a subset of geometries (points in the

5We must notice that, as one can deduce from the analysis in
Sec. IV, the spatial derivative of the integrand in the right-hand
side of Eq. (3.5) is already a combination of constraints. There-
fore, only its homogeneous mode, given by h1, is nonvanishing
on shell.
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phase space) admitting an open region where ∂θE ≠ 0,6

thus the expansion is nontrivial on the surface correspond-
ing to the homogeneous geometries only. Therefore, at this
point, it is necessary to stress that we are modifying our
classical theory, which thus will not fully coincide with GR
in its globally homogeneous sector. In the classical theory
such geometries are highly nongeneric. Unfortunately the
discreteness of the variables introduced by the polymeric
quantization will make the set of states corresponding to
these geometries a nonzero measure one and a certain level
of care will be needed when studying the properties of the
physical states.
Under the new transformation the total Hamiltonian

HT ¼ R
dθð ~N ~Hþ ~NθCÞ takes the form

HT ¼ 1

κ

Z
dθ

�
~N∂θ

�
−

2

γ2
ffiffiffi
E

p
K2

x þ
ffiffiffi
E

p ð∂θEÞ2
2ðExÞ2

�

þ 2

γ
~Nθ½ð∂θKxÞEx − ð∂θEÞA�

�
: ð4:3Þ

The above redefinition of the constraint algebra does not
affect the properties of the Dirac observable h1 defined in
Eq. (3.5), which still remains a weak Dirac observable.
Since the new Hamiltonian constraint is a linear combi-
nation of the original Hamiltonian and diffeomorphism
constraints, one can check explicitly that h1 commutes
(under Poisson brackets) with the new set of constraints on
shell. Actually, one can see that the integrand in the right-
hand side of Eq. (3.5) is related with the new scalar
constraint—see the phase space function inside the square
brackets in Eq. (4.3).
At this point a few remarks on the range of the classical

evolution generated by the new Hamiltonian are necessary.
For that, let us compare the Hamiltonian flow generators or
the ∂t vectors in both approaches. The original lapse
function N is related to the new one ~N as follows

N ¼ ~N
∂θE
Ex : ð4:4Þ

Since to be well defined the infinitesimal time translation
vector does need to be finite, so does ~N. On the other hand
the topology of the reduced manifold enforces the existence
of at least two points on S where ∂θE ¼ 0. At each of these
points the new time translation generators will necessarily
vanish—will not generate the evolution in the original
formulation of the theory as the reduction of GR.

Furthermore, for the canonical formalism to work, the
constant time slices have to remain spatial. As a conse-
quence, the range of the classical evolution after
Abelianization is severely limited, as the constant time
slices must stay causally disconnected from any point at
which ∂θE vanishes. The time evolution determines the
geometry only within spacetime regions containing the
initial data slice and bounded by both the future and
past light cones of the points (on the initial data surface)
where ∂θE ¼ 0. In Fig. 1 we provide a schematic diagram
of the time evolution of the spacetime. As the attempt to
increase the range of the evolution one can consider
alternative Abelianization procedure, skipping for example
the step (4.2). We discuss such approach in Appendix A.
Unfortunately, due to the singular nature of the trans-
formation, also inherited in the quantum theory, we have
decided to keep away of this alternative in the principal
treatment of this manuscript.
In summary, in this section we obtained a complete

classical description with a strongly self-commuting
Hamiltonian constraint. This setting will be used in the
remaining part of the article to build a (loop) quantum
description of this LRS Gowdy model. The first step in this
building process is the so-called kinematical level quanti-
zation, where one ignores the constraints.

V. QUANTUM KINEMATICAL THEORY

We will proceed now with the quantization of the above
system within loop quantum gravity [12]. It has been

FIG. 1. Pictorial representation of the time evolution generated
by the new scalar constraint. Vertical arrows represent time-like
vectors. The horizontal (blue) circle is the initial Cauchy surface,
the angled (black) circle is the evolved Cauchy surface to some
time close to the initial one, and the dotted arcs (red dotted lines)
represent the null boundaries of the region which can be reached
by the Hamiltonian evolution generated by the new constraint.

6By continuity the old Hamiltonian constraint has to be
satisfied at the boundary of the set ∂θE ≠ 0, then by the
diffeomorphism constraint the interior of the complement of
this set has to correspond to the fully homogeneous spatial
regions and all the variables must remain constant (in particular
the same as on the boundary) at each connected subset of that
complement. Thus the old constraints have to be satisfied also in
the complement.
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already specified in Refs. [9,10], following the ideas of
Refs. [11,28,29].
Here the basic objects of the description are
(i) 1-dimensional closed oriented graphs embedded

on the reduced manifold B ≔ T3=S (Where S are
2-dimensional surfaces generated by isometries).
Each graph contains a collection of disjoint edges
ej terminating in vertices vj.

(ii) An algebra of holonomies along disjoint (oriented)
edges of these graphs and the intertwiners on their
vertices. In this model, we consider a subalgebra
of the LQG holonomy algebra corresponding to
holonomies of the connection A along straight
curves orthogonal to Killing fields (with algebra
structure induced from the full algebra). These
holonomies are written in terms of matrix elements

N kjðAÞ ¼ exp

�
i
kj
2

Z
ej

dθAðθÞ
�
: ð5:1Þ

We further consider a subalgebra of holonomies
along the curves generated by Killing fields (known
under the name of point holonomies as they are not
parallel transports on B). They are represented by
matrix elements

N μjðKxÞ ¼ exp

�
i
μj
2
KxðθjÞ

�
: ð5:2Þ

(iii) A basis of states jk⃗; μ⃗i which in the connection
representation is given by

hAjk⃗; μ⃗i ¼
Y
j

exp

�
i
kj
2

Z
ej

dθAðθÞ
�

× exp

�
i
μj
2
KxðθjÞ

�
: ð5:3Þ

where kj ∈ Z and μj ∈ R are valences of edges7 ej
and vertices vj, respectively. These valences
enumerate the representations of holonomy sub-
algebras.

In this manuscript, we will adhere to the so-called
improved dynamics scheme. It was originally proposed
in the context of isotropic LQC [30] in order to equip the
description with a proper infrared regulator removal limit
and thus give robustness to the physical predictions of these
symmetry reduced models. On the level of midisuperspace
models it has been already considered in spherically
symmetric gravity in Ref. [31], although there the studies
have been restricted to the heuristic level of the so-called

semiclassical effective dynamics [32] only and no attempt
to build a quantum description was made.
The key idea of the scheme is based on a set of

properties of reduced loop quantization for symmetric
spacetimes. These properties can be summarized in:
(i) the existence of distinguished geometrical (fiducial)
structures provided by the symmetries that allow a partial
diffeomorphism gauge fixing (which in turn provides a
physical meaning to the embedding data)8 through the
procedures defined in the context of LQC in [33] and
refined in [30], (ii) nonexistence of well-defined curva-
ture operators which thus have to be built via Thiemann’s
regularization process [34]. The technical implementation
of (ii) in symmetry reduced treatment involves approxi-
mating the classical curvature by holonomies of finite
closed loops along the edges generated by the Killing
vectors, whereas (i) fixes the embedding data as deter-
mined by the physical area of the chosen regularization
loop, which is contained within a single Killing (gener-
alized) orbit. Following [30] that area is heuristically
fixed as the 1st nonzero eigenvalue of the full LQG area
operator,9 known as the area gap and denoted by ðlPlλÞ2,
with l2

Pl ¼ ℏG the (square of the) Planck length. Any
reader interested in the details of the procedure is referred
to [30,33] (in the context of isotropic LQC) and [21] (in
the context of anisotropic homogeneous models in LQC).
A systematic motivation of these heuristic procedures
from full LQG is discussed in [21,35] and in the context
of simplifications to LQG in [36,37]
Here, the regularization loops, built at each vertex vj of

the graph, are squares. The length (with respect to certain
fiducial metric) ρj of each side is fixed such that the
physical area of the loop equals exactly ðlPlλÞ2. Following
LQG, these areas are determined by the action of the area
operator Â—with eigenvalues l2

Plajðk⃗Þ—built in turn out of
the flux operators (see Ref. [12] for details). The area of the
surface enclosed by the loop (at vertex j) with fiducial sides
ρj is given by l2

Plρ
2
jajðk⃗Þ.10 In this situation, the action of

the point holonomies of length ρj will produce a shift in a
state jμji by a “length” which depends on the phase space
variables. Therefore, it will be convenient to adopt a more

appropriate state labeling μj → νj ¼
ffiffiffiffiffiffiffiffiffiffiffi
ajðk⃗Þ

q
μj=λ.

7The signs of the (otherwise natural) valences encode the
orientation of a particular edge.

8In the standard diffeomorphism invariant formulation of LQG
the embedding data is averaged out and has no physical meaning.
In midisuperspace models the submanifold corresponding to the
symmetry generalized orbit can be, after suitable gauge fixing,
adapted to the symmetries (unlike in full LQG) equipped with a
fiducial “reference” metric, which in turn provides a relation
between physical and embedding data for the objects intrinsic to
that orbit.

9Outside of isotropic models this procedure is substantially
more involved. See the discussion in [21].

10Here we follow the convention where λ and aj are dimen-
sionless.
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After this relabeling, the kinematical Hilbert space is
constructed as the closure of the space spanned by Eq. (5.3)
with respect to the inner product hk⃗; ν⃗jk⃗0; ν⃗0i ¼ δk⃗k⃗0δν⃗ν⃗0 ,
further generalized by the rule that basis states belonging to
different graphs are mutually orthogonal.11

Once the kinematical Hilbert space is constructed we
promote a set of classical variables to operators in which
we follow (modulo minor refinements) the proposals in
[11,28]. These are
(1) The “triad component” operator, in the precise

definition following the ideas of LQC [33] as the
(appropriately rescaled) flux of the triad component
E across the Killing orbit surface, which can be done
due to the symmetries of the model. Its action takes a
very simple form

ÊðθÞjk⃗; ν⃗i ¼ 2γl2
Plπ

−1kjðθÞjk⃗; ν⃗i; ð5:4Þ

where jðθÞ is the index corresponding to the edge ej
going through θ. We extend the definition of ÊðθÞ to
the vertices of the graph by considering the con-
tributions of both edges connecting the vertex (with
weight 1=2), i.e. kjðθjÞ ¼ ðkj þ kj−1Þ=2. It is also
convenient to define an operator

Êjjk⃗; ν⃗i ¼ 2γl2
Plπ

−1kjjk⃗; ν⃗i; ð5:5Þ

corresponding to the flux over a surface intersected
by the edge ej, and

Êv
j jk⃗; ν⃗i ¼ γl2

Plπ
−1ðkj þ kj−1Þjk⃗; ν⃗i; ð5:6Þ

if the intersection is at a vertex.
At this moment it is necessary to recall that

associating the operator to a particular edge/vertex,
although it is standard in midisuperspace models
and spin foam approaches, it does not follow from
the standard quantization procedure as one cannot
construct a classical observable distinguishing it.
Instead, it constitutes an additional nontrivial com-
ponent of the implemented treatment.

(2) The operator corresponding to the area of the Killing
orbit surface, defined as

ÂðθÞjk⃗; ν⃗i ¼
ffiffiffiffiffiffiffiffiffiffiffi
E2ðθÞ

q
jk⃗; ν⃗i: ð5:7Þ

For θ lying in the interior of an edge ej its action
reads

ÂðθÞjk⃗; ν⃗i ¼ 2γl2
Plπ

−1jkjðθÞjjk⃗; ν⃗i; ð5:8Þ

whereas on the vertex vj it has (as in full LQG)
contributions from both edges

Âjjk⃗; ν⃗i ¼ l2
Plajðk⃗Þjk⃗; ν⃗i

¼ γl2
Plπ

−1ðjkjj þ jkj−1jÞjk⃗; ν⃗i: ð5:9Þ
(3) The operator V̂ðIÞ¼ R

I dθ
dffiffiffiffi
A

p ðθÞÊxðθÞ correspond-
ing to the “volume of a region” I ⊂ B, of which
action reads

V̂ðIÞjk⃗; ν⃗i ¼ 2γλl3
Plπ

−1
X
vj∈I

jνjjjk⃗; ν⃗i: ð5:10Þ

Again, it is convenient to introduce the volume
operator associated to a vertex vj by choosing the
interval I j so that vj is the only vertex it contains. Its
action reads

V̂jjk⃗; ν⃗i ¼ 2γλl3
Plπ

−1jνjjjk⃗; ν⃗i: ð5:11Þ
(4) The point holonomy operator N̂ j ≔ dexpðiρjKxðθjÞÞ

defined on a vertex vj has an action on the
corresponding subspace given by

N̂ ρj jνji ¼ jνj þ 1i; ð5:12Þ
being the identity on the remaining subspaces.

For mathematical convenience, adopting the construction
commonly used when dealing with the volume operator in
LQG [38] and in the context of midisuperspace models
postulated originally in Eq. (29) of [29] we can think of the
operator (5.10) as the integral of the distribution valued
“volume form operator density”

V̂ðθÞjk⃗; ν⃗i ¼ 2γλl3
Plπ

−1
X
νj∈g

δðθ − θjÞνjðθÞjk⃗; ν⃗i: ð5:13Þ

Note however that, unlike Eq. (5.10), this “volume density”
is not in itself a well-defined operator. In the remaining part
of the paper we will omit its θ-dependence unless otherwise
specified.
Due to the absence (thanks to the Abelianization pro-

cedure of Sec. IV) of the variable A in the Hamiltonian
constraint, it will be not necessary to construct the operator
corresponding to the holonomy along edges ej.
The Hilbert space and basic operators defined in this

section will serve as an arena for the second step in the
Dirac program, promoting the (relevant) classical constraint
to an operator and finding its kernel. Following the treat-
ment of full LQG this procedure will be applied to the
Hamiltonian constraint.

VI. THE SCALAR CONSTRAINT

As in all applications of the loop quantization to either
full GR or symmetry reduced models, the components of

11This is actually guaranteed if we allow vanishing labels for
the quantum numbers k⃗ and ν⃗.
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the Hamiltonian constraint cannot be directly promoted to
operators as most of them do not exist on the kinematical
level of quantization. It is necessary to first express or
approximate them via variables of which quantum counter-
parts we have at our disposal (which here means the
operators given in the Eqs. (5.4) and (5.10), and their
powers) or their Poisson brackets. This method is known in
the literature as the Thiemann’s regularization [12,34].
Subsequently, the quantum constraint operator will be
defined by directly promoting the components of the
regularized constraint to operators.
As in other loop quantized models, the procedure

mentioned above permits a series of ambiguities related
with either the details of the regularization (which is not
uniquely defined) or the factor ordering. These ambiguities
are fixed in the following way:

(i) To express the connection Kx in terms of holono-
mies we employ the simplest possible approxima-
tion: by the difference of a holonomy and its inverse.
Mathematically this procedure amounts to the sub-
stitution Kx → sin ðρjKxÞ=ρj.

(ii) The inverse volume is regularized via the application
of Thiemann’s scheme proposed by Bojowald [39]
and next adapted to the improved dynamics scheme
in Ref. [30].

(iii) The chosen factor ordering is a straightforward
generalization of the so-called MMO scheme
[40–42], which ensures decoupling distinct orienta-
tions of νj and the “classical singularity states”—
basis states jk⃗; ν⃗i for which any component of k⃗ or ν⃗
equals zero—from the dynamics.

(iv) Following the invariance of the Hamiltonian con-
straint operator with respect to the orientation-
reflection symmetry, the operator

ffiffiffi
E

p
is represented

as ½E2�1=4, thus becoming a power of an area
operator.

(v) The spatial derivative ∂θE has been promoted to an
operator after the following simple observation: The
operator EðθÞ is diagonal

d∂θEjk⃗; ν⃗i ¼ ∂θEjk⃗; ν⃗i; ð6:1Þ

with each nontrivial coefficient EðθÞ constant on
each edge of the graph and discontinuous jumps on
the graph vertices. Thus, calculating directly the
derivative of this coefficient on the embedded graph
would yield the following result

∂θE ¼ 2γl2
Plπ

−1
X
vj

Δkjδðθ − θjÞ; ð6:2Þ

where Δkj ≔ ðkj − kj−1Þ, θj is the position of the
vertex vj and we follow the numbering convention
where vj is the left-hand side boundary of the edge
ej. Since it is a distribution, taking it as a coefficient

of a diagonal operator would not give a well defined
result. It does however provide a correct definition of
a smeared operator [similarly to VðIÞ]

d∂θEðIÞjk⃗; ν⃗i ≔ 2γl2
Plπ

−1
�Z

I
dθ∂θE

�
jk⃗; ν⃗i

¼ 2γl2
Plπ

−1
�X
vi∈I

Δkj
�
jk⃗; ν⃗i: ð6:3Þ

This, in turn, by selecting I ¼ I j, such that it
contains only the vertex vj, allows us to define
the “vertex difference operator”

d½∂θE�jjk⃗; ν⃗i ¼ 2γl2
Plπ

−1Δkjjk⃗; ν⃗i: ð6:4Þ
A quite surprising (and counterintuitive for the
quantum counterpart of the spatial derivative oper-
ator) property of such definition is its independence
of the action on the coordinate length of the involved
edges of the graph.

(vi) Since the derivatives of operators defined on the
open intervals on B cannot be defined in a straight-
forward way, thus the “global” spatial derivative
present in the Abelian Hamiltonian constraint [see
Eq. (4.3)] has to be regularized. One of the ways (not
necessarily optimal) to achieve that is to apply the
mathematical shortcut discussed in the context of the
volume operator VðIÞ when the “distributional
operator” VðθÞ has been defined as in Eq. (5.13).
Such procedure will replace the derivative in ques-
tion with the difference of the “interior” operators
between two vertices of a given edge.

The application of the listed choices results in the operator
form of the Hamiltonian constraint

~̂HðNÞ ¼ lPl

X
j

NjP̂½a3=2j−1ĥj−1 − a3=2j ĥj�P̂; ð6:5Þ

where

P̂jk⃗; ν⃗i ¼
Y
j

½sgnðkjÞsgnðνjÞ�2jk⃗; ν⃗i; ð6:6aÞ

ĥj ¼
d�1
V

�1=2
j

�
2Ω̂2

j −
2γ2

π2

d�1
V

�
j
l2
Plðl2

PlΔkjÞ2
�d�1

V

�1=2
j

;

ð6:6bÞ
d�1
V

�1=2
j

jk⃗; ν⃗i ¼ bðνjÞ
ð2γλl3

Plπ
−1Þ1=2 jk⃗; ν⃗i;

bðνjÞ ≔ jjνj þ 1j1=2 − jνj − 1j1=2j; ð6:6cÞ

Ω̂j ¼
1

4iγλ
jV̂jj1=4½ dsgnðνjÞðN̂ 2

ρj − N̂ −2
ρj Þ

þ ðN̂ 2
ρj − N̂ −2

ρj Þ dsgnðνjÞ�jV̂jj1=4: ð6:6dÞ
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An analogous Hamiltonian constraint operator, taking very
similar form, has been already studied in spherically
symmetric spacetimes [25]. It commutes with itself and
is free of anomalies. Besides, due to the factor ordering
choice, the states with either kj ¼ 0 or νj ¼ 0, or both, are
trivially annihilated by the constraint. In consequence, they
will be irrelevant for the dynamics, and can be safely
removed from the space of solutions to the constraint. As a
consequence, the quantum theory is then able to cure those
coordinate and curvature singularities12 arising either at
E ¼ 0 and/or Ex ¼ 0.
The quantum Hamiltonian constraint constructed here

will be next used (after suitably dealing with the diffeo-
morphism group) to construct the physical Hilbert space,
further allowing us to study the dynamical sector of the
theory.

VII. PHYSICAL HILBERT SPACE,
DYNAMICAL SECTOR

At this point we have at our disposal the kinematical
Hilbert space, i.e., well-defined operator(s) acting on that
space and the operator form of the Hamiltonian constraint.
The remaining tasks in completing the quantization pro-
gram are: finding the physical Hilbert space as the (dual of
the) kernel of the constraint operators and constructing a
set of physically meaningful observables acting on this
space. Its first step: solving the constraints requires an
additional effort as at present we do not have (nor we intend
to build) a quantum diffeomorphism constraint operator.
While recently a construction of such quantum diffeo-
morphism generator has been proposed in the full theory
[44], the standard treatment of diffeomorphisms in loop
quantization just uses the finite diffeomorphisms. Here we
employ the same philosophy, applying the constraint-
solving program of full LQG. There, the constraints are
implemented in hierarchy: (i) first, the diffeomorphism-
invariant Hilbert space is constructed out of the kinematical
one by the so-called group averaging procedure [45],
(ii) next the actual physical Hilbert space is defined as a
space annihilated by the Hamiltonian constraint operator
acting on the diffeomorphism-invariant space.13 We repeat
this exact procedure in the context of our model.
First, let us identify the diffeomorphism-invariant sector

of the theory via group averaging.

A. Averaging over the spatial diffeomorphisms

Consider a general situation of a compact group
of transformations (classically generated by a set of

constraints) represented in the quantum theory by unitary
operators acting on certain Hilbert space. In such situation
one is usually interested in finding a sector of the quantum
theory under study, which is invariant with respect to these
transformations. It usually lies in the algebraic dual of a
dense subspace of the original Hilbert space and roughly
speaking consists of “averages” of states transformed over
the whole transformation group. Because of this principal
idea the procedure of building such states is known as the
group averaging technique [45,46]. In a precise sense the
averaging is achieved by constructing for the group K of
unitary transformations ÛðαÞ∶ H → H parametrized by
the index α (such that dα is the bi-invariant measure on K)
the antilinear rigging map η∶ H → H⋆ such that

H⋆ ∋ ηjψi ¼
�Z

K
dαÛðαÞjψi

�†
¼

Z
K
dαhψ jÛ−1ðαÞ:

ð7:1Þ

The states jϕÞ¼ ηjψi (whennontrivial) span a transformation-
invariant Hilbert space with induced inner product

ðηψ jηχÞ ¼
Z
K
dαhχjÛ−1ðαÞjψi: ð7:2Þ

Our goal in this section is to define such rigging map
averaging over the group of spatial diffeomorphisms of the
Cauchy slice of the LRS Gowdy spacetime. This group is
relatively large, however, as we will see below, for the
purpose of averaging it can be reduced to a small (in fact
finite dimensional) subgroup. To perform this reduction we
first note that, due to a natural requirement, that the
transformations preserve the symmetries of the selected
class of spacetimes, the group of diffeomorphisms reduces
to a subgroup of diffeomorphisms on the reduced manifold
B. We will denote this subgroup by DiffB.
Each diffeomorphism φ acts on a given graph jg; k⃗; ν⃗i

yielding a new state jgφ; k⃗φ; ν⃗φi such that it drags the
vertices of the graphs (together with all the points of B) in
such a way that the sets k⃗φ ¼ k⃗ and ν⃗φ ¼ ν⃗. Then it is the
position of any point in B that is dragged to the new
position ~θ, while preserving the order of the points, that is:
θ > θ0 ⇒ ~θ > ~θ0. Thus φ induces a unitary operator Ûφ

on the kinematical Hilbert space such that jgφ; k⃗φ; μ⃗φi ¼
Ûφjg; k⃗; μ⃗i. We will parametrize the group of the operators
with the index β, such that dβ provides the bi-invariant
measure on the group.
Next, we note that due to the orthogonality (with respect

to the kinematical inner product) of the disjoint graphs, for
the evaluation of the integrals in Eqs. (7.1) and (7.2) it is
sufficient to consider an action of the diffeomorphism
transformation group on each single closed graph sepa-
rately. Consider now a subgroup DiffBg of diffeomorphisms

12It is well established that the considered Gowdy model
possesses a curvature singularity when the area of the Killing
orbits vanishes [43], i.e., when E vanishes.

13A condition necessary for this step is that the Hamiltonian
operator is well defined on this space, which is exactly the case in
the full LQG.
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preserving the positions of all the edges and vertices of a
particular graph. The action of the unitary transformation
operator ÛðβÞ corresponding to each element of this
subgroup is the identity operator on Hkin. Furthermore,
we can group all the elements jg; k⃗; ν⃗i of the basis of Hkin
into classes of equivalence with respect to transformations
from DiffBg. These classes of equivalence will span a
Hilbert space Haux with an inner product induced in a
straightforward way from Hkin since the latter is invariant
with respect to parametrizations of graph edges by θ. The
only difference of the new space with respect to Hkin is
that now the information about the parametrization of the
graph edges (which in the embedded graph are curves on B)
is removed. As a consequence we can reformulate the
integrals in Eqs. (7.1) and (7.2) as integrals over the
quotient group DiffB=DiffBg of the transformations acting
on Haux,

ηjψi ¼
Z
DiffB=DiffBg

dβhψ jÛ−1ðβÞ; ð7:3aÞ

ðηψ jηχÞ ¼
Z
DiffB=DiffBg

dβhχjÛ−1ðβÞjψiaux: ð7:3bÞ

The considered quotient group is already finite-dimensional.
The transformations are just shifts of positions of the edges
of the graph preserving their order. To characterize the
group we note that, once the information about the para-
metrization of edges is removed (which happened in going
to the auxiliary Hilbert space) each embedded graph can be
characterized (up to a global phase rotation) by a sequence
of N fiducial lengths Δθj of the graph edges, thus be
represented as a point on the surface

P
jΔθj ¼ 2π in the

space ðRþÞN . Then (after further dividing by the Uð1Þ
subgroup of the above-mentioned rigid rotations) each
transformation from the considered quotient group is just
a shift on this surface.
To build a meaningful rigging map we select a discrete

measure dβ. Then the integrals (7.3) become uncountable
sums and can be calculated quite easily. Indeed, the inner
product in the diffeomorphism invariant Hilbert space
becomes now

ðηψ jηχÞdiff ¼
X

φ∈DiffB=DiffBg

hψ jÛφχi: ð7:4Þ

Since each transformation preserves the labels k⃗, ν⃗, order of
vertices and edges (and orientation of the latter) of the
auxiliary state, the basis of Hdiff can be constructed out of
states jk⃗; ν⃗i now understood as living on the abstract graph
(with only ordering of the vertices instead of the embed-
ding). The diffeomorphism invariant inner product will
mathematically take the same form (modulo vertex posi-
tions) as the kinematical one

hk⃗; ν⃗jk⃗0; ν⃗0i ¼
YN
j¼1

δkj;k0jδνj;ν0j : ð7:5Þ

Once Hdiff has been constructed, the next step is to
build analogs of the elementary operators (originally acting
in Hkin) which will be well defined on a dense domain in
Hdiff . For that we again employ the group averaging,
defining for a given Ô∶ D ⊂ Hkin → Hkin an operator
Ôdiff∶ D0 ⊂ Hdiff → Hdiff (where D;D0 are dense domains
in their respective Hilbert spaces) in the following way

Ôdiff ≔
Z
DiffB=DiffBg

dβÛðβÞ−1Ô ÛðβÞ: ð7:6Þ

An application of this procedure to Eqs. (5.12) and (6.4)
yields operators which are mathematically identical to their
kinematical predecessors, although now they act on the
labels of the abstract graphs. However, the families of
operators defined by Eqs. (5.4), (5.10) and (6.2) will not
provide useful definitions as they are parametrized by either
points or regions on B. Instead, one needs to take their
versions in Eqs. (5.5), (5.11) and (6.4), parametrized by the
vertex label j which plays the role of the ordering index of
the graph elements. Thus, we end up with the following set
of diffeomorphism invariant elementary operators

Êjjk⃗; ν⃗i ¼ 2γl2
Plπ

−1kjjk⃗; ν⃗i; ð7:7aÞ

Âjjk⃗; ν⃗i ¼ γl2
Plπ

−1ðjkjj þ jkj−1jÞjk⃗; ν⃗i; ð7:7bÞ

V̂jjk⃗; ν⃗i ¼ 2γλl3
Plπ

−1jνjjjk⃗; ν⃗i; ð7:7cÞ

d∂θEjjk⃗; ν⃗i ¼ 2γl2
Plπ

−1ðkj − kj−1Þjk⃗; ν⃗i ð7:7dÞ

and

N̂ ρj jk⃗; ðν1;…; νj;…; νNÞi ¼ jk⃗; ðν1;…; νj þ 1;…; νNÞi:
ð7:8Þ

Given these operators, one can immediately write a version
of the quantum Hamiltonian constraint defined on the
dense domain of Hdiff by averaging [via Eq. (7.6)] the
operators in Eqs. (6.5) and (6.6). This procedure will yield a
constraint in which all the elementary operators are
replaced with their diffeomorphism invariant counterparts
defined in Eqs. (7.7) and (7.8). This result is critical in
performing the next step in building the physical Hilbert
space—finding the kernel of this constraint (as the only one
remaining).

B. Solutions to the Hamiltonian constraint

Unlike the diffeomorphisms, in loop approaches the
Hamiltonian constraint is implemented directly as a
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generator, thus (as stated earlier) solving it corresponds to
finding the states annihilated by its quantum counterpart.
Technically, it amounts to solving the equation for the
(generalized) wave function ψ in the algebraic dual of a
suitable dense subset of Hdiff

∀jχi ∈ Hdiff∶ ðΨj ~̂Hjχi ¼ 0;

ðΨj ¼
X
k⃗

X
ν⃗

hk⃗; ν⃗jψðk⃗; ν⃗Þ: ð7:9Þ

This can be again achieved by the group averaging
technique. Here, however, unlike in the case of diffeo-
morphisms we have at our disposal the generator of the
transformations (in this case time reparametrizations).
Thus, the rigging map can be written as

ηHjΨi ¼
Z
RN

dNN⃗ðei ~̂HðN⃗ÞjΨidiffÞ
†
: ð7:10Þ

In order to construct this map explicitly we will perform the

spectral decomposition of ~̂H. First, we note that this
operator [see (6.5)] is a linear combination of mutually
commuting component operators ĥj [defined in (6.6b)],
which thus can be simultaneously diagonalized. It is
thus enough to perform the spectral decomposition of
each ĥj. To do so we introduce a set of auxiliary opera-
tors ĥm;n∶L2ðR̄Bohr;dμBohrÞ→L2ðR̄Bohr;dμBohrÞ (where
m; n ∈ Z) of the mathematical form analogous to (6.6b)

ĥm;n ¼
d�1
V

�1=2�
2Ω̂2 −

2γ2

π2

d�1
V

�
l2
Plðl2

Plðm − nÞÞ2
�d�1

V

�1=2
;

ð7:11aÞ

d�1
V

�1=2
jνi ¼ bðνÞ

ð2γλl3
Plπ

−1Þ1=2 jνi;

bðνÞ ≔ jjνþ 1j1=2 − jν − 1j1=2j; ð7:11bÞ

Ω̂ ¼ 1

4iγλ
jV̂j1=4½ dsgnðVÞðN̂ 2

ρ − N̂ −2
ρ Þ

þ ðN̂ 2
ρ − N̂ −2

ρ Þ dsgnðVÞ�jV̂j1=4; ð7:11cÞ

where N̂ ρjνi ¼ jνþ 1i. Since in the eigenvalue problem

ĥjjψ ji ¼ ωjjψ ji the dependence on k⃗ is algebraic only one
can split it onto a set of independent eigenvalue problems
on L2ðR̄Bohr; dμBohrÞ involving the auxiliary operators ĥm;n

and parametrized by values of k⃗. Precisely, we realize
this split via introducing the auxiliary Hilbert space
Hν ≔ L2ðR̄Bohr; dμBohrÞN (corresponding to the vertex
degrees of freedom) and a set of the projection/embedding
operators

P̂k⃗0∶ Hdiff → Hdiff ; P̂k⃗0 jk⃗; ν⃗i ¼
Y
j

δkj;k0j jk⃗; ν⃗i;

ð7:12aÞ

R̂∶ Hdiff → Hν; R̂jk⃗; ν⃗i ¼ jν⃗i; ð7:12bÞ

Q̂k⃗∶ Hν → Hdiff ; Q̂k⃗jν⃗i ¼ jk⃗; ν⃗i: ð7:12cÞ

The component operators ĥj can now be written as

ĥj ¼
X

k⃗0∈ðZ⋆ÞN
Q̂

k⃗0

��Yj−1
j0¼1

1

�
× ĥk0j;k0j−1 ×

� YN
j0¼jþ1

1

��
R̂P̂k⃗0 ;

ð7:13Þ

where Z⋆ ≔ Znf0g and the product in the parenthesis
must be understood as a Cartesian product. The eigen-
value problem reduces to the set of equations for the
eigenfunctions χω;kj;kj−1

½ĥkj;kj−1χω;kj;kj−1 �ðνÞ ¼ ωkj;kj−1χω;kj;kj−1ðνÞ: ð7:14Þ

The properties of the operators ĥm;n have been analyzed
in detail in Appendix B. They are essentially self-adjoint
(barring an extreme fine-tuning of the Barbero–Immirzi
parameter), the spectrum of each of them is nondegenerate
and its continuous part is Spcontðĥm;nÞ ¼ ½0; 2ðγλÞ−2� ≕ Iω.
Consider now a set of Dirac delta normalized solutions to

(7.14), denoted further by ~eω;m;nðνÞ. Then, the functions of
the form

eω;j;m;nðk⃗; ν⃗Þ ¼ δm;kjδn;kj−1fðv⃗ðjÞÞ~eω;m;nðνjÞ; ð7:15Þ

are the (normalized) eigenfunctions of ĥj, where fðv⃗ðjÞÞ is
any normalized function on the (N − 1)-dimensional space
of vectors such that v⃗ corresponds to any vector ν⃗ with the
jth coordinate removed. As a consequence, the spectrum of
ĥj also has a continuous part SpcontðĥjÞ ¼ Iω, although now
it has a continuous degeneracy [originating from the
freedom in the choice of function f in (7.15)]. We note
however that this degeneracy becomes spurious when we
consider the complete Hamiltonian constraint operator.
The mutual eigenfunctions of ĥj corresponding to the

vector of eigenvalues ω⃗ ≔ ðω1;…;ωNÞT ∈ ½0; 2ðγλÞ−2�N
(parametrized by k⃗) are the linear combinations of products
of the (Dirac delta normalized) solutions to (7.14)

eω⃗;k⃗ðk⃗0; ν⃗0Þ ¼
YN
j¼1

δkj;k0j ~eωj;kj;kj−1ðν0jÞ: ð7:16Þ

By construction they are also eigenfunctions of ~aj1, thus
they diagonalize all the component operators of Ĥ.
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Consider now the diffeomorphism invariant state jΨi
decomposed in the above basis

hk⃗0; ν⃗0jΨi ¼
Z
INω

dNω⃗
X

k⃗∈ðZ⋆Þn
~Ψðω⃗; k⃗Þhk⃗0; ν⃗0jeω⃗;k⃗Þ: ð7:17Þ

When acting on it, the rigging map (7.10) (well defined as
~̂H is essentially self-adjoint, which follows from essential
self-adjointness of the component operators ĥm;n) produces
the following physical state

ηHjΨi ¼
Z

dN ⃗t
Z
INω

dNω⃗
X

k⃗∈ðZ⋆Þn
exp

�
i
�XN

j¼1

tjða3=2j−1ωj−1;k⃗ − a3=2j ωj;k⃗Þ
��

~Ψðω⃗; k⃗Þðeω⃗;k⃗j

¼
Z
INω

dNω⃗
X

k⃗∈ðZ⋆Þn

YN
j¼1

δða3=2j−1ωj−1;k⃗ − a3=2j ωj;k⃗Þ ~Ψðω⃗; k⃗Þðeω⃗;k⃗j: ð7:18Þ

As a consequence the group averaging procedure selects
out the states of the products a3=2j ωj;k⃗ taking the same value
on all the vertices of the graph. It is convenient to represent
this constraint by introducing the k⃗-dependent variable hk⃗
such that

a3=2j ωj;k⃗ ≕ hk⃗; ð7:19Þ

which allows to determine the frequencies ωj;k⃗ as functions

of k⃗ in the following way

ωj;k⃗ ¼ hk⃗a
−3=2
j ≕ ωjðk⃗; hk⃗Þ: ð7:20Þ

Since ωj;k⃗ ∈ Iω the variable hk⃗ is non-negative and

bounded from above by the function of k⃗

hk⃗ ∈ ½0; h⋆ðk⃗Þ�; h⋆ðk⃗Þ ¼
2

ðγλÞ2 ðmin
j

ajÞ−3=2; ð7:21Þ

which in turn is bounded by a global constant h⋆ðk⃗Þ ≤
π3=2ffiffi
2

p
λ2γ7=2

(due to the decoupling of states with any component

of k⃗ vanishing).
Using the new variable, one can represent the physical

states in a slightly simpler form

hk⃗0; ν⃗0jΨi ¼
X

k⃗∈ðZ⋆Þn

Z
h⋆ðk⃗Þ

0

dhk⃗
~Ψðk⃗; hk⃗Þðeω⃗ðk⃗;hk⃗Þ;k⃗jk⃗

0; ν⃗0i⋆;

ð7:22Þ

and the physical inner product (induced from Hdiff by
group averaging) is (unitarily equivalent to)

hΦjΨi ¼
X

k⃗∈ðZ⋆Þn

Z
h⋆ðk⃗Þ

0

dhk⃗
~Φ⋆ðk⃗; hk⃗Þ ~Ψðk⃗; hk⃗Þ: ð7:23Þ

Having the physical Hilbert space at our disposal we can
move to the final step of the quantization: defining the
physically relevant observables and probing (at least some
of) the dynamical properties of the system.

C. Quantum observables

The Dirac observable capturing the unique global degree
of freedom of the system has been defined at the classical
level in Sec. III, Eq. (3.5). Its functional form (in terms of
the classical variables) is identical to a component of the
Hamiltonian constraint. Thus in order to build its quantum
counterpart one can use the very same methods applied in
Sec. V to quantize that constraint. The result is

ĥ1 ¼ lPl

X
j

P̂ a3=2j ĥjP̂: ð7:24Þ

As ω⃗ðk⃗; hk⃗Þ ∈ INω and ~aj are explicitly non-negative, this
observable is also explicitly non-negative on Hphy.
Its action on the basis elements ofHphy is very simple—

it just multiplies each element by an appropriate constant
lPlhk⃗, namely,

∀jχi ∈ Hphyðeω⃗ðk⃗;hk⃗Þ;k⃗jĥ1 − lPlhk⃗1jχi ¼ 0: ð7:25Þ

This observable is the quantum analog of the classical
phase space function defined in Eq. (3.5). As we men-
tioned, it does not have an obvious physical interpretation
as in the case of spherically symmetric spacetimes (where it
encoded the ADM mass). It can be still considered, per
analogy, as the “mass of gravitational shear”, although due
to the compactness of the Cauchy slices it looses the
connection with any definition of the actual physical mass.
On the other hand, a well defined geometrical meaning

can be associated with the operators Âj defined in (7.7b)
which represent the areas of the 2D Killing surfaces
intersecting the vertex vj. Due to the “ultralocality” of

the Hamiltonian constraint (with respect to its action on k⃗)
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they can be easily promoted to operators onHphy satisfying
the requirements of Dirac observable. Indeed, their action
on the basis of Hphy can be written as

∀jχi ∈ Hphyðeω⃗ðk⃗;hk⃗Þ;k⃗jÂj − l2
Pl ~aj1jχi ¼ 0: ð7:26Þ

By the same arguments one can define the “areas” of the
Killing surfaces intersecting the edge ej

∀jχi ∈ Hphyðeω⃗ðk⃗;hk⃗Þ;k⃗jk̂j − kj1jχi ¼ 0; ð7:27Þ

which then are the analogs of the observables defined in the
context of spherically symmetric spacetimes in [24,25].
Surprisingly, both sequences of areas are constants of
motion.

D. Evolution with ν⃗ as time function

While in this model all the physical information about
the state is encoded in the Dirac observables representing
constants of motion, to gain a reliable insight into the
physics predicted by it one also needs to consider the set of
observables that reflects the “changes in time” of all
possible physical quantities of the system, as it is for
instance the case of the metric components. For con-
strained systems it is usually realized by defining the
family (or families) of Dirac observables parametrized
by a convenient function of phase space variables (serving
as the internal clock)—an approach known as the “evolving
constants” or “parametrized observables” [47–50]. Besides,
inhomogeneous settings (as the one under consideration)
may require a local choice of time understood as the
’bubble-time’ already introduced by Kuchar in the 1970s
(see for instance Ref. [51]). Here, the similarity of the
structure of our model with the one describing vacuum
Bianchi I spacetimes in LQC allows us to essentially repeat
and extend, to our inhomogeneous model, a recent con-
struction devised in Ref. [22], which consisted of the
following steps:

(i) Selection of a suitable (local) phase space variable
as time function, corresponding to the so-called
evolution parameters, and denoted by Tj.

(ii) Defining for each value Tj of the evolution
parameters an “initial data space” HT ¼⊗j HTj

,

and a family of unitary14 transformations ÛTj

between Hphy and HT .
(iii) Selecting physically relevant kinematical observ-

ables fÔg and casting them as operators acting
on suitable domains in HT .

(iv) Finally, the evolution is defined via a family of
operators ÔT ≔ Û−1

T ÔÛT .

In the case of vacuum Bianchi I the particularly convenient
and physically useful choice of internal time was the
canonical momentum of the volume. In our model it
corresponds to selecting the quantities fbjg, canonically
conjugate to fνjg, as the internal time function. In this
particular model however the asymptotic properties of the
eigenfunctions eω⃗;k⃗ make it much less convenient. Since for
large νj the dominant component of each eigenfunction is a
combination of “plane waves” eiσðkj;hjðkjÞÞν the variables bj
freeze, with the value at which they freeze depending on k⃗.
Therefore, we will focus on the choice of fνjg as time
function. It is worth commenting that the prior analysis of
black holes [24,25] upon methods of which our studies are
based, have analyzed the evolution with the connection as
time function. Therefore, this work will be the first time that
the volume (constructed out of the triad) plays the role of
time in the context of Abelianized midisuperspace inho-
mogeneous models.
The choice of fνjg as time function shares the difficulties

of its counterpart in the homogeneous treatment of the
Bianchi I model. On the one hand, this choice of time
amounts to a time-dependent true Hamiltonian, where
standard deparametrization is not available. On the other
hand, since each eigenfunction eω⃗;k⃗ is real and furthermore
converges to a standing (or, more precisely, reflected) plane
wave, building the “initial data” Hilbert spaces directly out
of the constant slices fνjg of Ψ specified in Eq. (7.22)
would not lead to a meaningful evolution picture.15 For
these reasons we adopt the operational construction of the
evolution picture already introduced in Ref. [22]. There it is
shown that the evolution between different time slices in
this ν-representation can be defined by a suitable unitary
map. However, this evolution requires a splitting of the
Hilbert space in two sectors and a definition of suitable
observables on them. These observables are constructed out
of projections of observables in the full physical Hilbert
space on each sector and have a clear interpretation (give a
good approximation to the original corresponding observ-
ables) only in the (low curvature) semiclassical regime.16

Therefore, while the construction is robust and on the
technical level it is implemented rigorously, it needs to be
considered partial and operational due to the limited
physical insight it gives. Let us see this in more detail.

14In this context this means norm preserving—transformations
which in mathematics are referred to as isometries.

15This can be seen easily on a textbook example of a free
particle in 1þ 1 dimension with a mirror. There, treating the time
as a dynamical variable, taking the Klein-Gordon equation as a
constraint and defining the observables t̂x would yield the family
which for a state corresponding to a reflected semiclassical packet
in a standard picture would produce the variance equal to the time
separation between each semiclassical packet (right and left
moving respectively) and the expectation values being the
(constant) average between the “position” of each of them in t.

16Similarly, some of the parametrized observables defined
in spherical symmetry have an unambiguous meaning at
semiclassical regimes.
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We start with the following auxiliary states

Ψν⃗ðk⃗Þ ¼
X

k⃗∈ðZ⋆Þn

Z
h⋆ðk⃗Þ

0

dhk⃗
~Ψν⃗ðk⃗; hk⃗Þ; ð7:28Þ

where

~Ψν⃗ðk⃗; hk⃗Þ ¼ Pν⃗
~Ψðk⃗; hk⃗Þ ¼ eω⃗ðk⃗;hk⃗Þðν⃗Þ ~Ψðk⃗; hk⃗Þ: ð7:29Þ

Since the eigenfunctions eω⃗ðk⃗;hk⃗Þ
ðν⃗Þ generically are never

vanishing, the transformation Pν⃗ is well defined. The new
states belong to the Hilbert space Hν⃗

phy, with an inner
product as in Hphy but with the additional weight
jeω⃗ðk⃗;hk⃗Þðν⃗Þj

−2. Therefore, Pν⃗ must be understood as a

bijection from the physical Hilbert space to the auxiliary
space Hν⃗

phy. Different choices of ν⃗ yields Hilbert spaces

Hν⃗
phy with different inner products (actually they are

time dependent). One can construct bijections between
these Hilbert spaces through the operators Qν⃗2;ν⃗1 ¼
Pν⃗2P

−1
ν⃗1
∶ Hν⃗1

phy → Hν⃗2
phy. These bijections are “unitary” in

the sense that they are norm preserving. In this sense, we
can provide a notion of evolution. On the other hand, all the
spaces Hν⃗

phy are actually the same space Hphy as the scalar
products are equivalent. Therefore one would expect that
the identity transformation between spaces at different
times is also unitary. However, with our choice of inner
products this is not the case. As a consequence the
evolution is not unitary in a strict sense. Still, suitable
observables can be defined out of the kinematical ones and
the transformations Qν⃗2;ν⃗1 . This notion of evolution is well
defined since it keeps all the physical information.
Nevertheless, it is not necessary to renounce to a unitary
evolution, as we will see now. Let us introduce the
splitting of the “initial data” spaces onto an incoming
and outgoing part. Technically, it can be performed in a
straightforward way in the momentum representation. For
each 1-dimensional wave function defined on the original
kinematical subspace Hν one can write the transformation

½FΨ�ðbÞ ¼
X
ν∈4Zþ

ei
νb
2ΨðνÞ; ð7:30Þ

and the splitting

Hν ∋ jΨi → jΨi� ∈ Hν;

Ψ�ðνÞ ¼ F−1θð�bÞ½FΨ�ðbÞ; ð7:31Þ

where θ is the Heaviside step function.
The same procedure can be easily applied to the

eigenfunctions eω⃗ðk⃗;hk⃗Þðν⃗Þ, using a straightforward exten-

sion of the formula (7.31), since they must be treated as

distributions rather than normalizable states on a Hilbert
space. The corresponding eigenfunctions e�

ω⃗;k⃗
are well

defined and generically their value never reaches zero.
This allows us to associate with each physical state (7.22)
the following initial data state

Ψ�
ν⃗ ðk⃗Þ ¼

X
k⃗∈ðZ⋆Þn

Z
h⋆ðk⃗Þ

0

dhk⃗
~Ψðk⃗; hk⃗Þ

e�
ω⃗ðk⃗;hk⃗Þ

ðν⃗Þ
je�

ω⃗ðk⃗;hk⃗Þ
ðν⃗Þj ; ð7:32Þ

This association defines the desired unitary transformation
U�

ν⃗ ∶ Hphy → H�
phy, and warranties on H�

phy the following
inner product

hΦν⃗jΨν⃗i� ¼
X

k⃗∈ðZ⋆Þn

Z
h⋆ðk⃗Þ

0

dhk⃗
~Φ⋆ðk⃗; hk⃗Þ ~Ψðk⃗; hk⃗Þ: ð7:33Þ

The inner product, as expected, is time independent.
Therefore, the evolution can be understood as the unitary
transformation between the initial data spaces given by
U�

ν⃗1;ν⃗2
≔ U�

ν⃗2
ðU�

ν⃗1
Þ−1 whose action can be easily deduced

from (7.32). More explicitly,

U�
ν⃗
~Ψðk⃗; hk⃗Þ ¼ ~Ψðk⃗; hk⃗Þ

e�
ω⃗ðk⃗;hk⃗Þ

ðν⃗Þ
je�

ω⃗ðk⃗;hk⃗Þ
ðν⃗Þj . ð7:34Þ

Thus, given an observable Ô which can be represented as
an operator acting directly on a spectral profile ~Ψðk⃗; hk⃗Þ one
can construct a family of the evolving observables in a
straightforward way:

Ô�
ν⃗ ¼ ðU�

ν⃗ Þ−1ÔU�
ν⃗ : ð7:35Þ

These observables will be related by the transformation

Ô�
ν⃗2
¼ U�

ν⃗1;ν⃗2
Ô�

ν⃗1
U�

ν⃗2;ν⃗1
: ð7:36Þ

The choice of the evolution parameter is of course not
restricted to just the two cases discussed above. In principle
one can select for that purpose any function of the phase
space variables. In particular in the context of black holes
the variable Kx being mathematical analog of b (in the
quantization scheme applied there) has been considered in
[24,25]. On the other hand in the present formulation of the
model the variable Kx, while being a promising candidate
for an internal time from classical considerations, it is a
nontrivial function of both νj and bj. Thus the identification
of the equivalents of the initial data spaces (like H�

ν⃗ ) or the
unitary transformations analogous to U�

ν⃗1;ν⃗2
is much more

involved and a nontrivial extension of the functional
analysis techniques will be required to implement it.

DE BLAS, OLMEDO, and PAWŁOWSKI PHYSICAL REVIEW D 96, 106016 (2017)

106016-14



It is also interesting to point out that we do not need to
construct the time-dependent Hamiltonian in order to
define the evolution of the system for our choice of time
as the construction does not rely on deparametrization. The
states Ψþ

ν⃗ ðk⃗Þ and Ψ−
ν⃗ ðk⃗Þ, although they are not solutions to

the original constraint by themselves, they do allow us to
reproduce the solutions to the constraint (the physical state)
through the inverse of U�

ν⃗ .
17 Therefore, the splitting of the

original state in these two components codify the same
physical information and evolution as the original one. In
other words, the evolution codified in only one of these
components would be complete, however it would provide
directly the physically interesting data only for one of the
two stages of the universe evolution. This splitting can be
understood as a description of the whole evolution using
several local charts.18 Readers interested in the detailed
discussion of the role and limitations of these observables
are referred to Sec. V of [22]. The set of charts provided
here is not complete, as it in principle requires a completion
by an additional chart meaningful in the near-bounce
regime. Such completion can be (at least in principle)
performed for example by choosing fbjg as evolution
parameters (readers interested in how combining of the
charts can be performed are referred to for example [52]).
However, as such completion would not significantly affect
the conclusions of the article, we skip this step.
As a final remark, it is worth it to mention that, following

the original construction in spherically symmetric space-
times, we assume that we are able to distinguish the labels
of vertices/edges of the graph supporting the reduced spin
network. This assumption allows us to build observables
indexed by the index j (associated to a vertex/edge).
However, let us notice that here the graph is a chain
embedded in S1. Then, cyclic permutations of these indices
are actually a symmetry of the graph. In this respect, and
following the orthodox treatment of LQG, this symmetry
should be averaged over during the construction of the
observables. As a consequence, it is meaningless to define
observables indexed just by j as the averaging would
remove the absolute labeling j of vertices/edges. Only

relative labelings are meaningful. In this sense, one should
consider instead observables measuring the correlations
between quantities at different vertices. For example,
observables of the form ðÂj − Âj0 Þ2 with j ≠ j0, after a
suitable averaging with respect to the above-mentioned
symmetries, would yield nontrivial expectation values.
Another example is the Hamiltonian constraint itself, as
specified in Eq. (6.5), which, by its very definition, would
not be affected by this averaging.

E. Semiclassical sector

With the physical Hilbert space and the (construction
method for the) set of physically meaningful observables at
our disposal we can embark on the task of probing the
dynamical properties of our model. A particular point of
interest is the behavior of the semiclassical states. Probing it
in the asymptotic future/past (where the spacetime is
expected to reach its low curvature regime) is especially
important in order to verify whether the constructed
quantum model reproduces (the appropriate sector of)
general relativity at low curvatures. Due to the inherent
discreteness of the polymer quantization (here reflected in
the spectra of the operators Ê and V̂), and the nonpertur-
bative nature of the theory, the answer to this question is far
from trivial.
The part of the semiclassical sector being of interest to

our studies is distinguished by the necessary condition that
the state is sharply peaked in the Dirac observables
introduced in the previous subsection as well as in some
appropriately selected family of evolving observables for
some interval of the evolution parameter. Another quite
obvious necessary condition for these states is to approxi-
mate smooth manifolds. This amounts to the selection of
states supported on graphs with large number of vertices
and for which the differences of expectation values of the
relevant “local” observables (associated to a given vertex)
between the consecutive vertices are small. These states are
particularly relevant in the understanding of the relation of
the presented approach with nonsingular (bouncing) sce-
narios studied in LQC [20]. Such comparison however is
out of the scope of this manuscript and it will be left for
future research.
Relevant information can however be extracted in the

context of the large volume limit (expected to correspond to
the low energy limit) of the theory. Indeed, since (similarly
to isotropic LQC) the eigenfunctions of ĥj admit a well
defined large νj limit—an analog of standing waves—one
can use the scattering description of [53]. It is based on the
observation (true for a wide range of systems studied in the
LQC framework) that at large volumes the eigenstates of
either the Hamiltonian (or the evolution operator playing
the role of it) or the Hamiltonian constraint converge on the
one hand to certain combination of the analogous eigen-
states in the standard geometrodynamics framework and on
the other hand to simple analytic functions which encode

17Actually, each state Ψ�
ν⃗ ðk⃗Þ plays the role analogous to the

“fixed time initial data” in deparametrized treatments and in
asymptotic regions of low curvatures approximates very well
such initial data determining each WDW component of the
solution.

18This issue can again be understood better via a toy example
of a 1þ 1 dimensional Klein-Gordon free particle with a mirror.
If we treat it as a constrained system (with time as a dynamical
variable) and consider the position as an evolution parameter, we
realize that the complete evolution consists of two “epochs”:
particle moving towards the mirror, thus “backwards in (our)
time” and the one moving away—“forward in time”. The
properties of the physical state in these two separate epochs
would be captured by families of observables (following the
construction proposed in the main body of the paper) Ô−

x and Ôþ
x ,

respectively.
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the main physical properties of the system in the large
volume regime. Those combinations represent either a
standing or reflected waves (depending on the particular
system). For the case studied in this article the asymptotics
has been studied in detail in Appendix B. The dominant
terms are combinations of exponentials exp½�iσ⃗ðk⃗; hk⃗Þ · ν⃗�
(with equal amplitudes for þ and − sign), where σjðk⃗; hk⃗Þ
is a function of ωjðk⃗; hk⃗Þ specified via Eq. (B16). Thus, the
asymptotic future/past state of some spectral profile
~Ψ�ðk⃗; hk⃗Þ is characterized by

Ψðk⃗; ν⃗Þ ¼
X

k⃗∈ðZ⋆Þn

Z
h⋆ðk⃗Þ

0

dhk⃗
~Ψ�ðk⃗; hk⃗Þe�iσ⃗ðk⃗;hk⃗Þ·ν⃗: ð7:37Þ

The asymptotic spectral profiles ~Ψ�ðk⃗; hk⃗Þ are determined
by the original spectral profile of the complete state
~Ψðk⃗; hk⃗Þ, however the relation is a nontrivial ðk⃗; hÞ-
dependent phase rotation which usually has to be deter-
mined numerically (see for example [53–55]).
One qualitative observation one can make immediately

without analyzing the relation between the asymptotic
states and the exact one is the counting of free semiclassical
degrees of freedom emerging from the treatment. Since for
the asymptotic spectral profile one can freely choose
any function defined on an appropriate domain within
ðZ⋆Þn × R normalizable in the scalar product (7.23), for
instance, one can consider Gaussians sharply peaked about
any sequence of k⃗ and hk⃗. Furthermore by setting the
appropriate rotations to these Gaussians one can arbitrarily
shift the state in ν⃗. As a consequence the state becomes
truly ultralocal, as the peak can be set independently for
each node. Namely, the variable conjugate to k⃗ can take any
arbitrary value. Classically, the LRS Gowdy spacetime is
completely characterized by a global degree of freedom,
whereas its description in terms of the reduced Ashtekar–
Barbero variables features the local unphysical degrees of
freedom associated with the freedom of diffeomorphism
transformations. There however the diffeomorphism con-
straint ties the data in distinct points of the reduced
manifold by spatial derivatives. The quantization procedure
implemented here removes this feature.
In consequence the space of solutions (and consequently

of quantum trajectories) is much larger than that of GR.
Thus, in the present form of the model, GR does not emerge
solely as the large volume limit of the (loop) quantum
description. This excessive freedom can be traced back to
the conjunction of the procedure of Abelianization (making
the Hamiltonian constraint ultralocal) and the qualitative
differences in the treatment of Hamiltonian and diffeo-
morphism constraints. Since the original Hamiltonian
constraint relates the quantum data at distinct vertices of
the graph, in order to recover the correct count of the

degrees of freedom one may be forced to implement the
diffeomorphism constraint in the same footing as the
Hamiltonian one, that is by building the quantum counter-
part of the regularized infinitesimal diffeomorphism gen-
erator [44]. This would provide the additional operator
constraint, now mixing the data on distinct vertices of
the graph.

VIII. CONCLUSIONS

To summarize, we have carried out a full quantization
(within the LQG framework) of the polarized LRS Gowdy
model in vacuum with T3 topology. In the process no gauge
fixing was implemented—the treatment remains diffeo-
morphism invariant. Our strategy is based on a suitable
redefinition of the Hamiltonian constraint in such a way
that it commutes with itself on both at the classical (under
Poisson brackets) and at the quantum level. The resulting
ultralocality of the Hamiltonian constraint allows then to
find the solutions to it that are invariant under spacetime
diffeomorphisms and to construct the physical Hilbert
space. The observables of the model correspond to a global
degree of freedom as in the classical theory and a new
observable without classical Dirac observable analog codi-
fying the areas of the consecutive Killing orbits. A similar
observable has been already identified in spherically
symmetric loop gravity [24]. The treatment allows us to
probe the dynamics in an unambiguous way and the system
admits a large semiclassical sector. A remarkable property
of the dynamics is the singularity resolution with a
mechanism similar to the one observed in LQC [13,30].
The preliminary analysis of the asymptotic future/past
epoch of the states suggests the necessity of either
implementing the infinitesimal diffeomorphism constraint
or finding alternative mechanisms preventing ultralocality.
These results will on the one hand allow to verify the
existing LQC frameworks against the genuine quantum
nonperturbative dynamics of the inhomogeneous model
and on the other hand provide a crucial information for the
programs of probing the dynamical sector in full LQG,
indicating new possible avenues for improving/completing
the existing treatments.
Our results open new ways for the study of quantum

gravity phenomenology in cosmology. On the one hand,
they do not contradict the results of Ref. [23] for Gowdy
cosmologies or Ref. [56] in spherically symmetric gravity,
regarding the difficulties for the avoidance of anomalies in
the constraint algebra. On the other hand, it is worth
commenting that the results of Refs. [23,56] do not exhaust
all possible polymerizations of the Hamiltonian constraint
and more general choices can solve the problem of the
anomalies in the constraint algebra (see for instance
Ref. [57] for a counter example in nonvacuum spherically
symmetric models). As we mentioned above, if we couple
a scalar field to the full polarized Gowdy model, it is
well known that the classical spacetime admits isotropic
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solutions with nonperturbative tensor and scalar fields
propagating on them. A full quantization of this model
in loop quantum gravity would allow us to check the
validity of the hybrid quantization. For instance, if we
identify a semiclassical sector where there is a well defined
notion of background geometry plus fields propagating on
it, it would be interesting to probe the effective equations of
motion and compare with the classical theory as well as
with the hybrid quantization approach [13]. Besides, in the
limit where the latter does not back react considerably with
the background, it can have important consequences for the
study of tensor modes propagating in loop quantized
Friedmann–Robertson–Walker spacetimes. For instance,
it would be interesting to analyze the validity of the
effective equations of motion considered presently in order
to confront the predictions with observations. Not only if
new corrections must be incorporated, but also if an
effective (semiclassical) description is also valid in the
deep quantum regime. If this is not the case, the present
considerations about giving initial data at the bounce might
be revisited.
In addition, the quantum dynamics of the present LRS

Gowdy model will be compared soon with the loop
quantization of a LRS Bianchi I model. The results could
seed light in the present understanding of loop quantum
cosmology and the different dynamical schemes that have
been considered so far.

ACKNOWLEDGMENTS

We wish to thank R. Gambini, J. Lewandowski, G. A.
Mena Marugán, J. Pullin, H. Sahlmann and T. Thiemann
for comments. J. O. acknowledges the partial support
by Pedeciba, Project No. NSF-PHY-1305000, Project
No. PHY-1505411 and the Eberly research funds of
Penn State University (USA). T. P. thanks the Polish
Narodowe Centrum Nauki (NCN) grant 2012/05/E/ST2/
03308. D. M.-dB. is supported by the project CONICYT/
FONDECYT/POSTDOCTORADO/3140409 from Chile.
The authors thank the Grant No. MICINN FIS2014-54800-
C2-2-P from Spain.

APPENDIX A: ALTERNATIVE
ABELIANIZATION PROCEDURE

In the Abelianization procedure specified in Sec. IV,
when selecting the modified constraint algebra, we have
conveniently multiplied the Hamiltonian constraint by the
factor ∂θE. In this way the homogeneous sector of the
theory can be analyzed classically, but at the price of
extending (fortunately in a controlled way) the con-
straint surface with respect to the one in GR. This
choice also introduces severe restrictions on the classical
time evolution generated by the new Hamiltonian con-
straint, if one assumes that the new lapse function is well
behaved.

For the sake of completeness, we also consider here a
different scaling for the new Hamiltonian constraint.
Instead of imposing regularity of the new constrained
classical system in a neighborhood of the homogeneous
sector, we would like to study the case in which the old
Hamiltonian constraint enters in the definition of the new
one with a factor one. Thus, the lapse function remains
unchanged. Nonetheless, here, for simplicity, we will study
the case in which the old Hamiltonian enters multiplied by
a factor ðExÞ−1. It is easy to realize that this constraint
exhibits the same behavior than the former, since ðExÞ−1 is
a well behaved function (being in particular always finite
and nowhere vanishing outside of classical singularity).
Together with the remaining conditions for the transfor-
mation as specified in sec IV we end up replacing (4.2) with
(4.1) multiplied by ðExÞ−1. Unfortunately, this transforma-
tion is singular in the classical theory since the derivative
∂θE, on S1, must vanish at least in two points. Thus, the
studies following from it have to be treated carefully. We
consider this choice only as an attempt to extend the range
of the classical evolution with respect to the choice adopted
in the main text of this manuscript. While on the phase
space subset corresponding to slices where ∂θE is generi-
cally nonzero, differentiability of the metric tensor is
sufficient to ensure the preservation of the (appropriate
portion of the) constraint surfaces, the points of the phase
space (geometries) for which ∂θE ¼ 0 at some open set are
removed. This may in particular break the spatial diffeo-
morphism group which may have an effect on the pro-
cedure of defining the diffeomorphism-invariant sector of
the theory performed in Sec. VII A.
Bearing in mind the caveats listed above we can now

repeat the quantization procedure described in Sec. V to
VII. The kinematical quantization remains unchanged.
Also, the construction of the Hamiltonian constraint in
Sec. VI can be repeated directly. The resulting quantum
Hamiltonian constraint takes the form very similar to (6.5)

~̂HðNÞ ¼ π

2γlPl

X
j

Nj

kj − kj−1
P̂½a3=2j−1ĥj−1 − a3=2j ĥj�P̂; ðA1Þ

where all the involved operators have already been defined
in Sec. VI. This operator is not well defined on the subset S
of the domain of ~H defined via (6.5) that contains jk⃗; ν⃗i for
which any two consecutive components of k⃗ are equal.
Due to the discreteness of Hkin it is not obvious how this
singularity cannot be circumvented.
With the Hamiltonian constraint operator at our disposal,

we can now perform the averaging over the spin network
embedding transformations which represent the subgroup
of the finite spatial diffeomorphism group surviving after
removing from Hkin the subset S. This averaging pro-
cedure, described in Sec. VII A, simply removes the
embedding data while it does not introduce any restrictions

LOOP QUANTIZATION OF THE GOWDY MODEL WITH … PHYSICAL REVIEW D 96, 106016 (2017)

106016-17



on the quantum labels. In this way we define the analog
~Hdiff of the diffeomorphism invariant Hilbert space and the
invariant Hamiltonian constraint operator acting on it. One
has to remember though that the full diffeomorphism
invariance is broken in our treatment and the invariant
sector is not truly a diffeomorphism invariant sector of (a
midisuperspace version of) LQG.
Since the invariant operator differs from the one in our

original treatment only by factors Δkj ≔ kj − kj−1 one can
directly repeat the derivation if its spectral decomposition
and in consequence perform a group averaging over time
reparametrizations as described in Sec. VI. As a result, the
physical states are of the form

hk⃗0; ν⃗0jΨi ¼
X

k⃗∈ðZ⋆ÞnnS

Z
h⋆ðk⃗Þ

0

dhk⃗
~Ψðk⃗; hk⃗Þðeω⃗ðk⃗;hk⃗Þ;k⃗jk⃗

0; ν⃗0i⋆;

ðA2Þ

where S ≔ fk⃗ ∈ ðZ⋆Þn∶ ∃j ∈ f2;…; ng∶ kj ¼ kj−1g, and
the physical inner product (induced from ~Hdiff ) is

hΦjΨi ¼
X

k⃗∈ðZ⋆ÞnnS

Z
h⋆ðk⃗Þ

0

dhk⃗
~Φ⋆ðk⃗; hk⃗Þ ~Ψðk⃗; hk⃗Þ: ðA3Þ

The construction of observables specified in Sec. III can be
then repeated directly.
As final comment we note that the space of solutions is

smaller than the one resulting in Sec. III since the sectors S
have been excluded. Nevertheless, it is not difficult to
convince oneself about the existence of semiclassical
sectors providing effective geometries with ∂θE ¼ 0 up
to small (Planck order) corrections.

APPENDIX B: SPECTRAL PROPERTIES OF THE
HAMILTONIAN COMPONENT OPERATORS

In this Appendix we will describe some of the main
qualitative results of probing the spectrum of the difference
operators present in our analysis. In particular, we will
study in detail the family of operators ĥm;n defined in (7.11)
that are the basic components of the scalar constraint. This
operators have a well-defined action on the domain D of
finite combinations of orthonormal basis elements jνi in the
space L2ðR̄Bohr; dμBohrÞ. That action reads

ĥm;njνi ¼ gþðνÞjνþ 4i þ g−ðνÞjν − 4i þ g0ðνÞjνi; ðB1Þ

where

g�ðνÞ ¼ −
1

8ðγλÞ2 s�ðνÞs�ðν� 2ÞbðνÞbðν� 4Þ

× jνj1=4jν� 4j1=4jν� 2j1=2; ðB2aÞ

g0ðνÞ ¼
1

8ðγλÞ2 ðbðνÞ
2jνj1=2jνþ 2j1=2s2þðνÞ

þbðνÞ2jνj1=2jν − 2j1=2s2−ðνÞÞ

−
1

2λ2
b4ðνÞðm − nÞ2; ðB2bÞ

and s�ðνÞ ¼ sgnðνÞ þ sgnðν� 2Þ.
Fortunately for us, the eigenvalue problem ĥm;njωji ¼

ωjjωji relevant for the goal specified above can be (at least
in part) analyzed analytically, without having to rely on
numerical tools. We first notice that any solution to this
equation takes values on semilattices in the variable ν of
step four. Therefore, they can be labeled by νðϵ; lÞ ¼
ϵþ 4l, with ϵj ∈ ð0; 4� and l ∈ N0. Besides, these solutions
are unique up to a normalization condition. This means that
we only need to provide the initial data at the section ν ¼ ϵ.
As a consequence all the eigenspaces are of dimension one.
In particular, the spectrum of ĥm;n is nondegenerate.
To further determine the properties of the solutions to the

eigenvalue problem we follow the ideas of Ref. [53] already
employed in isotropic spacetimes in loop quantum cosmol-
ogy. In this case, we need to write the eigenvalue equation
in a matrix form as follows. Let us define eωðνÞ ¼ hνjωi
and introduce the vector

eωðνÞ ¼
�

eωðνÞ
eωðν − 4Þ

�
: ðB3Þ

Then, the eigenvalue equation can be written as

eωðνþ 4Þ ¼ AωðνÞeωðνÞ; ðB4Þ

where

AωðνÞ ¼
� ω−g0ðνÞ

g−ðνþ4Þ − gþðν−4Þ
g−ðνþ4Þ

1 0

�
: ðB5Þ

In the next step we transform the eigenvalue equation (B4)
as the equation involving the coefficients of the decom-
positions of eωðνÞ with respect to the functions eϰðνÞ,
which are selected to be of a simple analytic form and are
expected to well approximate the behavior of the eigen-
function for large ν. The particular form of these functions
is guessed from the form of the exact eigenfunctions for
large ν determined either numerical or analytical analysis.
In our case the natural choice is

e�ϰ ðνÞ ¼ expð�ϰνÞ; ϰ ∈ C: ðB6Þ

To perform the transformation let us define the matrix

BϰðνÞ ¼
�
eþϰ ðνþ 4Þ e−ϰ ðνþ 4Þ
eþϰ ðνÞ e−ϰ ðνÞ

�
: ðB7Þ
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Equation (B4) can then be written in the form eωðνÞ ¼
BϰðνÞ~eωðνÞ where the new “eigenfunction coefficients”
satisfy the equation

~eωðνþ 4Þ ¼ B−1
ϰ ðνÞAωðνÞBϰðν − 4Þ~eωðνÞ

¼ MωðνÞ~eωðνÞ: ðB8Þ

Now, for the eigenfunction to actually converge in the large
ν limit to a certain combination of e�ϰ , the matrices MωðνÞ
need to converge in that limit to the unity, namely

lim
ν→∞

MωðνÞ ¼ I: ðB9Þ

By inspection this condition is satisfied if and only if the
following relation betweenω and ϰ (the dispersion relation)
holds

1 − coshðϰÞ ¼ ðγλÞ2ω: ðB10Þ

The condition (B9) is not sufficient for the considered
convergence of the eigenfunctions to hold. For that,
Mωj

ðνjÞ must approach the unity sufficiently fast. How-
ever, by direct inspection we see that, provided the
dispersion relation (B10) holds, we actually have

MωðνÞ ¼ IþOðν−2Þ; ðB11Þ

which is sufficient to ensure the required explicit
convergence.
Once we have verified that the combinations of the

functions proposed in (B6) indeed provide a suitable large ν
limit of the eigenfunctions of ĥm;n, we can apply them to
determine the properties of these operators, in particular to
verify their self-adjointness through the analysis of the
deficiency subspaces and to probe their spectra.

1. Self-adjointness

Let us start with the analysis of the deficiency subspaces
of the operators ĥm;n. By direct inspection, one can see that
all of them are symmetric. Their deficiency subspaces K�

m;n

are the spaces of normalizable solutions ψ�
m;n to the

equation

ðψ�
m;njĥm;n ∓ i1jχi ¼ 0; ∀ jχi ∈ D: ðB12Þ

By the nondegeneracy of the eigenvalue problem these
spaces are at most 1-dimensional. To verify whether the
solutions ψ�

m;n are normalizable we inspect their large ν
limit. It is given by a combination of the functions (B6) for
ω ¼ �i

ψ�
m;nðνÞ ¼ ½c�þ;m;n þOðν−2Þ�eϰ�ν þ ½c�−;m;n þOðν−2Þ�e−ϰ�ν;

ðB13Þ

where ϰ� is the solution to (B10) for ω ¼ �i. It can
be decomposed into its real and imaginary parts
ϰ� ≕ ρ� þ iσ�. Then the equation (B10) reads

coshðρ�Þ cosðσ�Þ ¼ 1; ðB14aÞ

sinhðρ�Þ sinðσ�Þ ¼ �ðγλÞ2: ðB14bÞ

Since for our choice of the limit basis (B6) we have
e�−ϰðνÞ ¼ e∓ϰ ðνÞ the sign of ρ� can be fixed without loss of
generality. We choose it to be ρ� > 0.
By direct inspection of the system (B14) we notice that

the limit of any deficiency function will have two compo-
nents: one exponentially growing and one exponentially
decaying. Thus, for these functions to be normalizable, the
coefficients cþþ;m;n and c−−;m;n have to vanish. Since all the
coefficients c��;m;n are continuous nonconstant functions of
γ, the set of values of γ admitting cþþ;m;n ¼ c−−;m;n ¼ 0 for at
least one pair m, n is at most nongeneric. It is worth
commenting that since most of the approaches in LQG
providing concrete values of γ allow to find its value only
numerically, no definite statement regarding nonvanishing
of c��;m;n can be given at this point. However, the existence
of normalizable deficiency functions would require an
extreme fine tuning of this parameter. We can thus assume
with great reliability that the deficiency spaces are trivial.
Therefore, all the operators ĥm;n are essentially self-adjoint,
although the exact formal proof is not complete.

2. The spectra

Once we have established the (essential) self-adjointness
of the studied operators we can focus on their eigenspaces
corresponding to real eigenvalues and determine their
spectra.
When ω is restricted to real values only we notice that, if

ϰ ¼ ρþ iσ, then

coshðρÞ cosðσÞ ¼ 1 − ðγλÞ2ω; ðB15aÞ

sinhðρÞ sinðσÞ ¼ 0: ðB15bÞ

We observe two regimes with qualitatively distinct behav-
ior of the limit of the eigenfunctions
(1) For ω ∈ ½0; 2ðγλÞ−2� we have that ϰ ¼ iσ, i.e., it is

purely imaginary and the basis asymptotically con-
sists of plane waves on a lattice. Thus this interval is
a continuous part of the spectrum and the actual
dispersion relation takes the form

1 − cosðσÞ ¼ ðγλÞ2ω: ðB16Þ

Let us notice that it is the usual one for a particle
on a lattice. Besides, no solutions can be found for
ω > 2ðγλÞ−2 if ω ∈ Rþ.
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(2) For ω < 0 the parameter ϰ ¼ ρ is real and the
basis (B6) asymptotically consists of exponential
functions, thus this set may contain the discrete part
of the spectrum only. In this case, a more careful

analysis is necessary. We do not carry it out here
since we are interested in the semiclassical sector
already codified in the continuum part of the
spectrum.
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