Loop Scheduling with Timing and
Switching-Activity Minimization for VLIW DSP

ZILI SHAO and BIN XIAO

Hong Kong Polytechnic University

and

CHUN XUE, QINGFENG ZHUGE, and EDWIN H.-M. SHA
University of Texas at Dallas

In embedded systems, high-performance DSP needs to be performed not only with high-data
throughput but also with low-power consumption. This article develops an instruction-level loop-
scheduling technique to reduce both execution time and bus-switching activities for applications
with loops on VLIW architectures. We propose an algorithm, SAMLS (Switching-Activity Minimiza-
tion Loop Scheduling), to minimize both schedule length and switching activities for applications
with loops. In the algorithm, we obtain the best schedule from the ones that are generated from an
initial schedule by repeatedly rescheduling the nodes with schedule length and switching activities
minimization based on rotation scheduling and bipartite matching. The experimental results show
that our algorithm can reduce both schedule length and bus-switching activities. Compared with
the work of Lee et al. [2003], SAMLS shows an average 11.5% reduction in schedule length and an
average 19.4% reduction in bus-switching activities.

Categories and Subject Descriptors: B.6.3 [Logic Design]: Design Aids—Hardware description
languages; D.3.4 [Programming Languages]: Processors—Optimization

General Terms: Algorithms, Languages

Additional Key Words and Phrases: VLIW, compilers, loops, software pipelining, retiming, instruc-
tion bus optimization, low-power optimization, instruction scheduling

1. INTRODUCTION

In order to satisfy ever-growing requirements for high-performance DSP (Dig-
ital Signal Processing), VLIW (Very Long Instruction Word) architecture is

This work was partially supported by the TI University Program, National Science Foundation
(NSF) Grants EIA-0103709 and CCR-0309461, Texas ARP 009741-0028-2001, HK POLYU A-PF86,
and COMP 4-Z077, HK.

Authors’ addresses: Z. Shao, B. Xiao, Department of Computing, the Hong Kong Polytechnic Uni-
versity, Hung Hom, Kowloon, Hong Kong; email: {cszlshao,csbxiao}@comp.polyu.edu.hk; C. Xue,
Q. Zhuge, E. H.-M. Sha, Department of Computer Science, the University of Texas at Dallas,
Richardson, TX 75083; email: {cxx016000,qfzhuge,edsha}@utdallas.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.

© 2006 ACM 1084-4309/06/0100-0165 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006, Pages 165-185.

166 . Z. Shao et al.

widely adapted in high-end DSP processors. A VLIW processor has multiple
functional units (FUs) and can process several instructions simultaneously.
While this multiple-FU architecture can be exploited to increase instruction-
level parallelism and improve time performance, it causes more power con-
sumption. In embedded systems, high-performance DSP needs to be performed
not only with high data throughput but also with low power consumption.
Therefore, it becomes an important problem to reduce the power consump-
tion of a DSP application with the optimization of time performance on VLIW
processors. Since loops are usually the most critical sections and consume a
significant amount of power and time in a DSP application, in this article,
we address loop optimization problem and develop an instruction-level loop
scheduling technique to minimize both power consumption and execution time
of an application on VLIW processors.

In CMOS circuits, there are three major sources of power dissipation: switch-
ing, direct-path short circuit current and leakage current [Chandrakasan et al.
1992]. Among them, the dynamic power caused by switching is the dominant
part and can be represented as Stan and Burleson [1995]:

N
Penip & Z Cload;L X ng x fx Py (D

i=1

where: Cioqq; is the load capacitance at node i, V4q is the power supply voltage,
f is the frequency, Py 1s the activity factor at node i, and the power consumption
of a circuit is the summation of power consumption over all N nodes of this
circuit. From this equation, reducing switching activities (lowering the activity
factor p,) can effectively decrease the power consumption. Therefore, in
VLSI system designs, various techniques have been proposed to reduce power
consumption by reducing switching activities [Chandrakasan et al. 1992;
Panda and Dutt 1999; Stan and Burleson 1995]. Due to large-capacitance and
high-transition activities, buses including instruction bus, data bus, address
bus, etc. consume a significant fraction of total power dissipation in a processor
[Liu and Svensson 1994]. For example, buses in DEC Alpha 21064 processor
dissipate more than 15% of the total power consumption, and buses in Intel
80386 processor dissipate more than 30% of the total [Irwin 1999]. In this
article, we focus on reducing the power consumption of applications on VLIW
architectures by reducing transition activities on the instruction bus. A VLIW
processor usually has a big number of instruction bus wires so that it can fetch
several instructions simultaneously. Therefore, we can greatly reduce power
consumption by reducing switching activities on the instruction bus.

We study this problem from compiler level by instruction-level schedul-
ing. Using instruction-level scheduling to reduce bus-switching activities
can be considered as an extension of the low-power bus coding techniques
[Mamidipaka et al. 2003; Stan and Burleson 1995; Sundararajan and Parhi
2000] at compiler level. In a VLIW processor, an instruction word that is fetched
onto the instruction bus consists of several instructions. So we can “encode” each
long instruction word to reduce bus-switching activities by carefully arranging
the instructions of an application.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Timing and Minimization for VLIW DSP . 167

In recent years, people have addressed the issue to reduce power consump-
tion by software arrangement at instruction level [Lee et al. 1997; Su et al.
1994; Tiwari et al. 1996]. Most of work in instruction scheduling for low-power
focuses on DAG (Directed Acyclic Graph) scheduling. They study the minimiza-
tion of switching activities considering different problems such as at the address
lines [Su et al. 1994], register assignment problem [Chang and Pedram 1995],
operand swapping and dual memory [Lee et al. 1997], data bus between cache
and main memory [Tomiyama et al. 1998], and I-cache data bus [Ye et al. 2000].

For VLIW architectures, low-power-related instruction scheduling tech-
niques have been proposed in Kim et al. [2003], Lee et al. [2003], Parikh
et al. [2004], and Zhang et al. [2001]. In most of these works, the scheduling
techniques are based on traditional list scheduling in which applications are
modeled as DAG and only intra-iteration dependencies as considered. In this
article, we show we can significantly improve both the power consumption
and time performance for applications with loops on VLIW architectures by
carefully exploiting inter-iteration dependencies.

Several loop optimization techniques have been proposed to reduce power
variations of applications. Yun and Kim [2001] propose a power-aware modulo
scheduling algorithm to reduce both the step power and peak power for VLIW
processors. Yang et al. [2002] propose an instruction scheduling compilation
technique to minimize power variation in software pipelined loops. A schedule
with the minimum power variation may not be the schedule with the minimum
total energy consumption nor a schedule with the minimum length. This article
focuses on developing efficient loop scheduling techniques to reduce both sched-
ule length and switching activities so as to reduce the energy consumption of
an application.

Lee et al. [2003] propose an instruction scheduling technique to produce a
schedule with bus-switching activities minimization on VLIW architectures for
applications represented as DAGs. In their work, the problem is categorized
into horizontal scheduling problem, a vertical scheduling problem. A greedy
bipartite-matching scheme is proposed to optimally solve horizontal schedul-
ing problem, a vertical scheduling problem is proved to be NP-hard problem
and a heuristic algorithm is proposed to solve it. This article shows that we can
further significantly reduce both bus-switching activities and schedule length
for applications with loops on VLIW processors. Compared with the technique
in Lee et al. [2003] that optimizes the DAG part of a loop, our technique shows
an average 19.4% reduction in swithing activities and an average 11.5% re-
duction in schedule length. One of our basic ideas is to exploit inter-iteration
dependencies of a loop which is also known as software pipelining [Chao et al.
1997; Rau et al. 1992]. By exploiting inter-iteration dependencies, we provide
more opportunities to reschedule nodes to the best locations so the switch-
ing activities can be minimized. However, the traditional software pipelining
such as modulo scheduling [Rau et al. 1992], rotation scheduling [Chao et al.
1997], etc., is performance oriented and does not consider switching activi-
ties reduction. Therefore, we propose a loop scheduling approach that opti-
mizes both the schedule length and bus-switching activities based on rotation
scheduling.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

168 . Z. Shao et al.

We propose an algorithm, SAMLS (Switching-Activity Minimization Loop
Scheduling), to minimize both schedule length and switching activities for loops.
Our loop scheduling scheme reduces the energy of a program by reducing both
schedule length and bus-switching activities. The energy E consumed by a pro-
gram can be calculated by E = Px T, where Tis the execution time of the program
and P is the average power [Lee et al. 1997; Tiwari et al. 1996]. The execution
time of a program is reduced by reducing schedule length. As shown in Eq. (1),
the real capacitance loading is reduced by reducing switching activities. So the
average power consumption is reduced by minimizing switching activities in
the instruction bus.

In SAMLS, we select the best schedule among the ones that are generated
from a given initial schedule by repeatedly rescheduling the nodes with sched-
ule length and switching activities minimization based on rotation scheduling
and bipartite matching. Our algorithm exploits inter-iteration dependencies of
aloop and changes intra-iteration dependencies of nodes using rotation schedul-
ing. When a node is rotated, it can be rescheduled into more locations compared
with the case only considering the DAG part of a loop. Therefore, more oppor-
tunities are provided to optimize switching activities. SAMLS can be applied
to various VLIW architectures.

We experiment with our algorithm on a set of benchmarks. The experiments
are performed on a VLIW architecture similar to that in Lee et al. [2003]. In
the experiments, the real TI C6000 instructions Texas Instruments [2000] are
used. The experimental results show that our algorithm can reduce both bus-
switching activities and schedule length. Compared with the list scheduling,
SAMLS shows an average 11.5% reduction in schedule length and 45.7% re-
duction in bus-switching activities. Compared with the technique in Lee et al.
[2003] that combines horizontal scheduling and vertical scheduling with win-
dow size eight, SAMLS shows an average 11.5% reduction in schedule length
and an average 19.4% reduction in bus-switching activities.

The remainder of this article is organized as follows: In Section 2, we give
the basic models and concepts used in the rest of the article. The algorithm
is presented in Section 3. Experimental results and concluding remarks are
provided in Section 4 and Section 5, respectively.

2. BASIC MODELS AND CONCEPTS

In this section, we introduce basic models and concepts that will be used in the
later sections. We first introduce the target VLIW architecture and cost model.
Then, we explain how to use cyclic DFG to model loops. Next, we introduce the
static schedule and define the switching activities of a schedule. Finally, we
introduce the lower bounds of schedule length for cyclic DFGs and the basic
concepts of rotation scheduling.

2.1 The Target VLIW Architecture and Cost Model

The abstract VLIW machine is shown in Figure 1 that has the similar architec-
ture as that in Lee et al. [2003]. In this VLIW architecture, a long instruction
word consists of K instructions and each instruction is 32-bit long. In each clock

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Timing and Minimization for VLIW DSP . 169

Instruction Memory / Cache

12 K-l K N L
i ' i ' X : \
s N 32 bits MWDV g el
i Multi—port
: =\, Fu2 \
. — . @ \ ; A Integer v}
PCHan | | -ee P K*32bits | g |32bits (MUI,/DW) 64 bits Bus | &
PC ' eees E : +> g ' Register N z
: : : : . 8 ' . 64 bits| 2
X Instruction Bus | | FUK-1L \ Files g
1 A} : \ =
. | | . . g 32 bits (Mul/Div) 64 bits 32
add i mpy! -----1 add: Id &
I . ‘ ‘ I h N (Brl;]fl'lc}[f/ Program
32 bits 32 bits|_Memory)| ¢4 iy Counter _‘

Fig. 1. The target VLIW architecture and bus models.

cycle, a long instruction word is fetched to the instruction decoder through a
32xK-bit instruction bus and correspondingly executed by K FUs. The first
(K—1) FUs, FU; through FUg_;, are integer ALUs that can do integer addi-
tion, multiplication, division, and logic operation. The Kth FU, FU, can do
branch/flow control and load/store operations in addition to all the other op-
erations. A long instruction word can contain one load/store instruction (or
branch/flow control) and K — 1 integer arithmetic/logic instructions. Or it can
contain K integer arithmetic/logic instructions. The program that consists of
long instruction words is stored in the instruction memory or cache. Memory
addressing is byte-based. This architecture is used in our experiments. We do
experiments on a set of benchmarks with the real TI C6000 instructions and
obtain the results when K equals 3, 4 and 5, respectively.

We use the same cost model as used in Lee et al. [2003]. Hamming Distance
is used to estimate switching activities in the instruction bus. Given two binary
strings, hamming distance is the number of bit difference between them. Let
X=(x1,x2,...,xx)and Y =(yy, Yy, ... , Yy) be two consecutive instruction words
in which x; and y; denote the instructions at location i of X and Y, respectively.
Then, the bus-switching activities caused by fetching Y immediately after X on
the instruction bus is:

K
H(X,Y) = Z h(Binary_String(x;), Binary_String(y;)), (2)

i=1

where Binary_String(x;) is the function to map instruction x; to its bi-
nary code, and h is the hamming distance between Binary_String(x;) and
Binary_String(y;).

2.2 Loops and Cyclic Data-Flow-Graph (DFG)

We use cyclic DFG to model loops. A cyclic Data Flow Graph (DFG)
G = (V, E, d, t, Binary_String) is a node-weighted and edge-weighted directed
graph, where V is the set of nodes and each node denotes an instruction of a
loop, E C V x Vis the edge set that defines the data dependency relations for

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

170 . Z. Shao et al.

_dotp .cproc a, b
.reg suml, sum2, i

int dotp(shorta[], short b[]) reg val_1, val_2, prod_1, prod_2
mvk 50, il ; iS: 100/2l 0
1 1 Zero sum ; Set suml =
%nt sum, 1, zero sum2 ; Set sum2 =0 oop Body
int suml =0; loop:
int sum2 =0 ; dw * a++, val_l ! ; load a[0, 1} and add a by 1
) . . i ldw *b++, val_2 , ;load b[0, 1] and add b by 1
for(1=0;1<100/2;i+2) 'mpy val_1, val_2, prod_1: ;a[0] * b[0]
ympyh val_I, val_2, prod_2 1 sa[l]* b[1]
suml += a[i] * b[i]; radd prod_1, suml, suml, ;suml +=a[0] * b[0]
. i "add rod_2, sum2, sum2' ;sum2 +=a[1] * b[1
sum2 += afi+1] * bli+1]; add s (e sl TR
} 1[i1b loop 15 if >0, goto loop
return suml + sum?2; add suml, sum2, A4 get finial result
) ’ return A4
.endproc
(a) C Code for Dot Product. (b) Assemly Code for Dot Product.

Fig. 2. A dot-product C code and its corresponding assembly code from TI C6000 [Texas Instru-
ments 2001].

all nodes in V, d(e) represents the number of delays for any edge e € E, t(u)
represents the computation time for any node u € V, and Binary_String(u) is
a function to map any node u € V to its binary code. Nodes in V are instruc-
tions in a loop. The computation time of each node is the computation time
of the corresponding instruction. The edge without delay represents the intra-
iteration data dependency; the edge with delays represents the inter-iteration
data dependency and the number of delays represents the number of iterations
involved.

We use a real loop application, a dot-product program, to show how to use
cyclic DFG to model a loop. A program to compute the dot-product of two inte-
ger arrays is shown in Figure 2(a) and its corresponding assembly code from TI
C6000 [Texas Instruments 2001] is shown in Figure 2(b). Our focus is the loop
body. Basically, in the loop body in Figure 2(b), 64-bit data are first loaded into
registers by instruction LDW. Then the multiplications are done by instruc-
tion MPY and MPYH for low 32 bits and high 32 bits, respectively. Finally, the
summations are done by instruction ADD. To model the loop body in Figure 2,
the mapping between the node and instruction is shown in Figure 3(a) and the
corresponding cyclic DFG is shown in Figure 3(b).

2.3 A Static Schedule and Its Switching Activities

A static schedule of a cyclic DFG is a repeated pattern of an execution of the cor-
responding loop. In our work, a schedule implies both control step assignment
and allocation. A static schedule must obey the dependency relations of the DAG
portion of the DFG. The DAG is obtained by removing all edges with delays in
the DFG. Assume that we want to schedule the DFG in Figure 3(b) to the target
VLIW architecture with 3 FUs (K = 3) (discussed in Section 2.1). And let func-
tional unit FU; and FUs be integer ALUs, and FUg be the load/store/branch Unit.
The static schedule generated by the list scheduling is shown in Figure 3(c).

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Timing and Minimization for VLIW DSP . 171

Node Instruction

| 1
. o ompuration Tart
A |ldw*att,val 1 : CGS(E;’<H>‘*~ZJI """""
B |

G|add ZLii
[i]b loop
() (b)

| FU1 | FU2 | FU3 (Load/Store)]|
L lGGET) o __ __ A (oad a[0Z1);att)
2! 1 | B (oadb[0-1];b++)
3 [C@orpop | Da@iieitp |

4 | E (suml+=a[0]*b[0]) F (sum2+=a[1]*b[1])] H ([i] b loop)

(©)

Fig. 3. (a) The nodes and their corresponding instructions. (b) The cyclic DFG that represents the
loop body in Figure 2(b). (¢) The schedule generated by the list scheduling.

We use (i, j) to denote the location of a node in a schedule, where 1i is the row
and j is the column. For example, the location of node B is (2, 3) in the schedule
shown in Figure 3(c).

The switching activities of a static schedule for a DFG are defined as the
summation of the switching activities caused by all long instruction words of
a schedule in one iteration in the instruction bus. Since the static schedule is
repeatedly executed for a loop, when switching activities are calculated, the
binary code of the last long instruction word fetched onto the instruction bus
in the previous iteration is set as the initial value of the instruction bus in
the current iteration. The switching activities of a schedule can be calculated
from the second iteration by summing up all switching activities caused by
each long instruction word in the instruction bus. The bus-switching activities
caused for each iteration except the first one are equal to the switching activities
obtained from the second iteration. For the first iteration, a different initial state
may exist in the instruction bus when the first instruction word is scheduled.
However, since a loop is usually executed for many times, the influence of the
first iteration is very small to the average switching activities of a schedule.
Therefore, we use the switching activities of any iteration except the first one
to denote the switching activities of a schedule.

2.4 Lower Bounds of Schedule Length for Cyclic DFGs

The lower bound of schedule length for a cyclic DFG denotes the smallest pos-
sible value of the schedule length for which a schedule exists. The lower bound
for a DFG under resource constraints can be derived from either the structure

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

172 o Z. Shao et al.

of the DFG or the resource availability. The lower bound from the structure of
the DFG is called as iteration bound [Renfors and Neuvo 1981]. The iteration
bound of DFG G, denoted by IB(G), is defined to be the maximum-time-to-delay
ratio over all cycles of the DFG, that is,

Time(l)
IB(G) - A cy?llealxin G Delay(l) ’

where Time(l) is the sum of computation time in cycle 1, and Delay(l) is the sum
of delay counts in cycle 1. The iteration bound of a cyclic DFG can be obtained
in polynomial time by the longest path matrix algorithm Gerez et al. [1992].
We implement the longest path matrix algorithm and calculate the iteration
bound of each benchmark in the experiments.

The lower bound from resource availability for DFG G, denoted by RB(G), is
defined as the maximum ratio of number of operations to number of FUs over
all FU types, that is,

N(A)
B(G) = 7
R (G) A F%l’i;);e A F(A) ’
where N(A) is the number of operations using type-A FUs in the DFG, and
F(A) is the number of type-A FUs available. After IB and RB are obtained, then
the lower bound of DFG G, denoted by LB(G), can be obtained by taking the
maximum value of IB and RB, that is,

LB(G) = max {IB(G), RB(G)}.

2.5 Retiming and Rotation Scheduling

Considering inter-iteration dependencies, retiming and rotation are two opti-
mization techniques for the scheduling of cyclic DFGs. Retiming [Leiserson and
Saxe 1991] can be used to optimize the cycle period of a cyclic DFG by evenly
distributing the delays in it. It generates the optimal schedule for a cyclic DFG
when there is no resource constraints. Given a cyclic DFG G = (V, E, d, t), retim-
ing r of G is a function from V to integers. For a node u € V, the value of r(u) is
the number of delays drawn from each of incoming edges of node u and pushed
to all of the outgoing edges. Let G, = (V, E, d,, t) denote the retimed graph of G
with retiming r, then d,(e) = d(e) + r(uw) —+(v) for every edge e(w — v) € V in G,.

Rotation Scheduling [Chao et al. 1997] is a scheduling technique used to
optimize a loop schedule with resource constraints. It transforms a schedule to a
more compact one iteratively. In most cases, the minimal schedule length can be
obtained in polynomial time by rotation scheduling. In each rotation, the nodes
in the first row of the schedule are rotated down to the earliest possible available
locations. In this way, the schedule length can be reduced. From retiming point
of view, these nodes get retimed once by drawing one delay from each of incoming
edges of the node and adding one delay to each of its outgoing edges in the DFG.
The new locations of the nodes in the schedule must also obey the dependency
relations in the new retimed graph.

Using the schedule generated by the list scheduling in Figure 3(b) as an
initial schedule, we give an example in Figure 4 to show how to rotate the

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Timing and Minimization for VLIW DSP . 173

H>xommemeees ‘
@ MAEL |__FUI | FU2 |_FU3 (Load/Store) |
@ P“’K’S“C{E G (i=i—) i A (load a[0-1];a++)
G (=i—) : | B (load b[0-1]; b++)
Loop ¢ 2 |C Galo1blo) D @IFHI) A (load a[0-1]; a+)
3 | E (sum1+=a[0]*b[0]} F (sum2+:a[l]*b[1]) H ([i]bloop)

a

iE (suml+= a[O]*b[O])IF (sum2+= a[1]*b[1]}

®)
O ©
B D Lo Lo LB (oadblO-1: b+)
Epilogue {CGOFH0). (D @lfei) ¢
¥ & 1

mvk 50,i ;i=10072 mvk 49,1 ;1=1002-1
1

loop: |

[ldw *at+, val_l
i 1dw "b++ val_2

| I
X I ! ldw *a val_l ! Prologue X
''mpy val_l,val 2,prod_I ! | vadd -1, | [
! (Hh valf(}, vaLZ,prodj | Y loop T X
‘ prod_l, suml, sum]l | > W TRl wal Ay !
! agg led_z, sum2, sum2 ! .]rggv xatiJT \‘3211122pr0d I |
;2 11 | ! Impvh val_l, val_2, prod_2 | loon !
ew loop
[‘]_b_ JO_OP ____________ ! 1 vadd prod_1, suml, suml lNg v : |
! "add prod 2,sum2, sum2 P04y
' Vldw *att, val_l : X
; ' add —1,1,1 1 1
i ' [ilb Toop } !
R
| Cldw R el T l
| ¢ mpy val_l, xa]? prod_ 1' !
! ' mpyh val_l, val_2, prod_ 2 Epilogue 1
i i add prod_1, suml, sum] | !
! " add prod_2, sum2, sum2 | I
I L !
)

Fig. 4. (a) The retimed graph. (b) The schedule after the first Rotation. (¢) The corresponding
transformation for the loop body.

nodes in the first row (node G and A) to generate a more compact schedule.
The retimed graph is shown in Figure 4(a) and the schedule after the first
rotation is shown in Figure 4(b). The schedule length is reduced to 3 after
the first row is rotated. From the program point of view, rotation scheduling
regroups a loop body and attempts to reduce intra-dependencies among nodes.
For example, after the first rotation is performed, a new loop is obtained by the
transformation as shown in Figure 4(c), in which the corresponding instructions
for node G and A are rotated and put at the end of the new loop body above
the branch instruction H. And one iteration of the old loop is separated and put
outside the new loop body: the instructions for G and A are put in the prologue
and those for the other nodes are put in the epilogue. In the new loop body, G
and A perform the computation for the (i + 1)t iteration when the other nodes
do the computation of the ith. The transformed loop body after the rotation
scheduling can be obtained based on the retiming values of nodes [Chao 1993].
The code size is increased by introducing the prologue and epilogue after the

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

o Z. Shao et al.

Node| Binary Code ~ SL=4 SA=104 SL=4 SA=96 SL=3 SA=98 SL=3 SA=94
A [0x01903664 ey Truz Jrus| [Ful Jru2 Jrus| [Ful Jruz Jrus] [Ful [Fu2 [Fus]
__B | 0x029036E6 E 5 : :
Clwosw (TR [ETFE] [ETF R [P
D 0x020CBC82 - "GN OPI A G_NOP'A G NOP B | [NOP G ' B
B OBISS0TA S opNoP B | [NoPiNOPB | [C P D A DA
TF [0x 00008078 = NGB - €. b,
G [oooeiaz [C D NOR L C NOPD FLE (P HY | FIE . H
“H [osa00000r0 |EL T H L EC T H | |
NOP | 0x 00000000 ; ; ‘ -

(2) (b) (© (d) (e
Fig.5. (a)Thenodes and TI C6000 machine code. (b) The schedule generated by the list scheduling.

(c) The schedule generated by the algorithms in Lee et al. [2003]. (d) The schedule generated by
rotation scheduling. (e) The schedule generated by our technique.

rotation is performed. This problem can be solved by the code size reduction
technique proposed in Zhang et al. [2003].

We use the real machine code from TI C6000 instruction set for this dot-
product program and compare schedule length and bus-switching activities
of the schedules generated by various techniques. The nodes and their corre-
sponding binary code are shown in Figure 5(a), and the schedules are shown in
Figures 5(b)-5(e) in which “SA” denotes the switching activities of the schedule
and “SL” denotes the schedule length. Among them, the schedule generated by
our algorithm shown in Figure 5(e) has the minimal bus-switching activities
and the minimal schedule length.

3. SWITCHING-ACTIVITY MINIMIZATION LOOP SCHEDULING

The loop scheduling problem with minimum latency and minimum switching
activities is NP-complete with or without resource constraints Shao et al. [2004].
In this section, we propose an algorithm, SAMLS (Switching-Activity Minimiza-
tion Loop Scheduling), to reduce both schedule length and switching activities
for applications with loops. We first present the SAMLS algorithm in Section 3.1
and then discuss its two key functions in Section 3.2 and 3.3. Finally, we analyze
properties and complexity of the SAMLS algorithm in Section 3.4.

3.1 The SAMLS Algorithm

The SAMLS algorithm is designed to reduce both schedule length and switching
activities for a cyclic DFG based on a given initial schedule. The basic idea is
to obtain a better schedule by repeatedly rescheduling the nodes based on the

rotation scheduling with schedule length and switching activities minimization.
SAMLS is shown as follows:
Input: DFG G = (V, E, 4, t, Binary_String), the retiming function r of G, an initial
schedule S of G, the rotation times N.
Output: A new schedule S’ and a new retiming function v'.
Algorithm:
1. fori=1to N {
(a) Put all nodes in the first row in S into a set R. Retiming each node u € R by
r(uw) < v(u) + 1. Delete the first row from S and shift S up by one control step.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Timing and Minimization for VLIW DSP . 175

(b) Call function BipartiteMatching_NodesSchedule(G,r,S,R) to reschedule the nodes
in R.

(c) Call function RowByRow_BipartiteMatching(S) to Minimize the switching activ-
ities of S row by row.

(d) Store the obtained schedule and retiming function by S; < S and r; < .

}

2. Select S; from S;, S, ... , S such that S; has the minimum switching activities among
all minimum-latency schedules. Output results: $" < S; and 1’ < ;.

In Algorithm SAMLS, we first generate N schedules based on a given initial
schedule and then select the one with the minimum switching activities among
all minimum-latency schedules, where N is an input integer to determine the
rotation times. These N schedules are obtained by repeatedly rescheduling
the nodes in the first row to new locations based on the rotation scheduling
with schedule length and switching activities minimization. Two functions,
BipartiteMatching_NodesSchedule() and RowByRow_BipartiteMatching(), are
used to generate a new schedule. BipartiteMatching NodesSchedule() is used
to reschedule the nodes in the first row to new locations to minimize schedule
length and switching activities. Then RowByRow_BipartiteMatching() is used
to further minimize the switching activities of a schedule by performing a row-
by-row scheduling. The implementation of these two key functions are shown
in Section 3.2 and Section 3.3 below.

3.2 BipartiteMatching_NodesSchedule()

In rotation scheduling [Chao et al. 1997] in order to minimize schedule length,
the nodes in the first row of the schedule are rotated down and put into the
earliest locations based on the dependency relations in G, (the retimed graph
obtained from G with retiming function r). In our case, we also need to con-
sider switching activities minimization. We solve this problem by construct-
ing a weighted bipartite graph between the nodes and the empty locations
and rescheduling the nodes based on the obtained minimum cost matching.
BipartiteMatching_NodesSchedule() is shown as follows:

Input: DFG G = (V, E, d, t, Binary_String), the retiming r of G, a schedule S, and a node
set R.

Output: The revised schedule S.

Algorithm:

(1) Len < the schedule length of S.

(2) while (R is not empty) do {

(a) Group all empty locations of S into blocks and let B be the set of all blocks. If B
is empty, then let Len < Len + 1; Continue.

(b) Construct a weighted bipartite graph Ggzym between node set R and block set B.
Ggm = (Vem, Eem, W) in which: Vg = RU B; for each u € R and b; € B, if u can
be put into Block bj, then e(u, b;) is added into Egy with weight W(e(u, by)) =
Switch_Block(u, by).

(c) If Egm is empty, then let Len < L + 1; Continue.

(d) Get the minimum cost maximum match M by calling function Min_Cost_
Bipartite_Matching(Gg).

(e) Find edge e(u, b;) in M that has the minimal weight among all edges in M.

(f) Assign u into the earliest possible location in Block b; and remove u from set R.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

176 . Z. Shao et al.

Two blocks: Block 1 and Block 2
FUI1

Blocé(zlj;l\lz\ Block2={
(3,1) (1,2),

(5.2) }

One Iteration

@) ®)

Fig. 6. (a) A given schedule. (b) Two blocks that contain consecutive empty locations in a column.

In BipartiteMatching NodesSchedule(), we construct a weighed bipartite
graph between the nodes and the blocks. A block is a set that contains the
consecutive empty locations in a column of a schedule. For example, for the
schedule in Figure 6, there are 2 blocks: Block; = {(2,1),(3,1),(4,1)} and
Block, = {(1, 2), (5, 2)}. Location (1, 2) and (5, 2) are consecutive when we con-
sider that the schedule is repeatedly executed as shown in Figure 6(b). We do not
construct a bipartite graph directly between the nodes and the empty locations,
since the matching obtained from such bipartite graph may not be a good one
in terms of minimizing switching activities. For example, in Figure 6, assume
two nodes X and Y are matched to two consecutive locations, (2, 1) and (3, 1), in
a best matching that is obtained from a weighted bipartite graph constructed
directly between the nodes and the empty locations. Since the switching activ-
ities caused by X and Y (they are next to each other) are not considered, the
actual switching activities may be more than the number we expect and the
matching may not be the best. Instead, we construct the bipartite graph be-
tween the nodes and the blocks. In such a way, we can obtain a matching shown
below in which at most one node can be put into a block.

The weighted bipartite graph between the nodes and the blocks, Ggm =
(Vum, Esm, W), is constructed as follows: Vgpm = RU B where Ris the rotated node
set and B is the set of all blocks. For each node u € R and each block b; € B, if u
can be put into at least one location in block b;, an edge e(u, b;) is added into Egp
and W(e(u, by)) = Switch_Block(u, b;). Function Switch_Block(u, b;) computes
the switching activities when u is put into b;. Assume that v and u” are the
corresponding nodes in the locations immediately above and below the earliest
location that u can be put in b; in the same column, then Switch_Block(u, b;)
is computed by:

Switch_Block(u, b;) = H(u, v') + H(u, u”) — H(NOP, W) — H(NOP,u”) (3)

Switch_Block(u, b;) is the switching activities caused by replacing NOP with
u.

After Ggyp is constructed, Min_Cost_Bipartite_Matching is called to obtain
a minimum weight maximum bipartite matching M of Ggm. Since we set the
switching activities as the weight of edges in Ggpy, the schedule based on M

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Timing and Minimization for VLIW DSP . 177

SL=3 SA=96
‘ ‘

E + F | H ,‘
_____ 0x 03188074 0x 0000AO7S: O 20000010 T m

T, (TR B o

. 1 |(Block7: (Block2 0, tao3ses NOP' G | B
n_e C ! D ! T : .
lteration | | g g2947080 0x 0208, 2Lk €:D:A
" F | H EiF ' H

13 OxO318807AT 0x 0000A07810x 20000010 |

(@)

Fig. 7. (a) The schedule with the first row removed. (b) The weighted bipartite graph. (c) The
obtained schedule.

will cause the minimum switching activities. We find the edge e(u, b;) that has
the minimum weight in the matching and schedule u to the earliest location
in b;. We only schedule one node from the obtained matching each time. Since
more blocks may be generated after u is scheduled, other nodes may find better
locations in the next matching. In this way, we also put the nodes into the
empty locations as many as possible without increasing the schedule length.
Therefore, both the schedule length and switching activities can be reduced by
this strategy.

Using the schedule generated by the list scheduling in Figure 3(c) as an
initial schedule, we give an example in Figure 7 to show how to reschedule the
nodes in the first row by SAMLS. The schedule with the first row removed is
shown in Figure 7(a), and the constructed weighted bipartite graph is shown in
Figure 7(b). The weights of edges in Figure 7 are obtained using Eq. (3) shown
above. For example, the weight of the edge between G and Block_1 is calculated
by: H(G, E) + H(G, C) — HINOP, E) — HINOP, C) =14 4+ 12 — 10 — 8 = 8. The
obtained matching is M = {(G, Block_2), (A, Block_3)}. Based on SAMLS, node
A is scheduled to location (2, 3) since e(A, Block_3) has the minimal weight in
the matching. Similarly, node G is scheduled to location (1, 2) in the second
iteration. The final schedule is shown in Figure 7(c).

3.3 RowByRow _BipartiteMatching()

After rescheduling the nodes by function BipartiteMatching_ NodesSchedule(),
we horizontally schedule nodes in each row to further reduce switching activ-
ities by function RowByRow_BipartiteMatching(). The algorithm is similar to
the horizontal scheduling in [Lee et al. 2003]. However, two differences need to
be considered. First, every row in the schedule can be regarded as the initial
row in terms of minimizing switching activities, since we deal with cyclic DFG
and the static schedule can be regarded as a repeatedly executed cycle. Second,
when processing the last row, we need to not only consider the second to the
last row but also the first row in the next iteration, since both of them are fixed

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

178 . Z. Shao et al.

at that time. RowByRow_BipartiteMatching() is shown as follows:

Input: A schedule S.
Output: The revised schedule S with switching activities minimization.
Algorithm:

1.
2.

Len <« the schedule length of S and Col <« the number of columns of S.
Let BS[Col] be a binary string array and BS[Col]={BS[1],BS[2],...,BS[Coll}.
And let Init_ BS[Col] be another binary string array and Init.BS[Col]l=
{Init_BS[1],Init_BS[2], ... ,Init_ BS[Col]}.
for i=1to Len {
(a) Si <~ S.
(b) Set BS[k]=Init_BS[k]=Binary_String(S;(1,k))fork =1,2,..., Col, where S;(1, k)
denotes the node at location (1,k) in schedule S;.
(c) forj=2to Len {
¢ R <« All nodes in Row j in S;.
¢ Construct a weighted bipartite graph Ggy between node set R and location set
{1,2,...,Col}. Ggm = (Vam, Ezm, W) in which: Vs = RU{1,2,..., Col}; for
each u € Rand k € {1,2,...,Col}, e(u, k) is added into Egy and W(e(u, k)) is
set as follows:
h(Binary_String(u),BS[k]) j<Len,

h(Binary_String(u),BS[k]) + h(Binary_string(u),Init_ BS[k]) Otherwise

* M « Min_Cost_Bipartite_Matching(Ggm).
¢ Put u into location (j, k) in S for each edge e(u, k) € M.
¢ Set BS[k]=Binary_String(S;(j, k)) fork=1,2,..., Col.
}
(d) Rotate down the first row of S by putting it into the last row.
1
Select S; from S5, Sy, ... , Sien Where S; has the minimum switching activities. Output
S;.

We(u, k) =

In RowByRow_BipartiteMatching(), we generate Len schedules by repeat-

edly rotating down the first row to the last, where Len is the schedule length.
For each schedule, we fix the first row to record the binary string of the node
at (1, k) into BS[k] and Init_BS[k] for eachk =1, 2, ..., Col. Then we construct
a weighted bipartite graph between the nodes and the locations in the current
row, and reschedule the nodes row by row based on the obtained minimum
cost matching. When constructing the weighted bipartite graph for row j, we
has two cases:

(1) When row j is not the last row, we set the weight of edge e(u, k) (node

u matches to location (j, k)) as the hamming distance between the binary
string of u and BS[k], where BS[k] records the binary string of the node
located immediately above (j, k);

(2) When row j is the last row, we set the weight of edge e(u, k) as the summation

of two hamming distances: one is from u and the node immediately above
(j,k) that is the binary string recorded in BS[k], and the other is from u
and the node immediately below (j, k) that is the binary string recorded in
Init_BS[k].

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Timing and Minimization for VLIW DSP . 179

i [r[rs] - [NOPIG iB |

One
Iteration| b e i,

““““ — 1 [T
! C D! A E'F.H

(a) (b) (c) ©

Fig. 8. (a) The schedule obtained from BipartiteMatching NodesSchedule() (Figure 7(c)). (b) Fix
the first row. (¢) Fix the second row. (d) Fix the third row.

In such a way, we consider the influence from both the second to the last row and
the first row of the next iteration when rescheduling nodes in the last row. The
schedule with minimal switching activities is selected from these Len schedules.

An example is given in Figure 8 to show that we need to consider three
cases in order to horizontally minimize switching activities of the schedule
given in Figure 8(a). As shown in Figures 8(b)-8(d), in each case, one row is
fixed and set as the initial row, and the other rows are rescheduled based it;
when processing the last row, the influence from the previous row and the
first row in the next iteration are considered together. After running RowBy-
Row _BipartiteMatching(), we obtain the finial schedule shown in Figure 5(e) in
Section 2.5.

3.4 Discussion and Analysis

As we show in the algorithm, SAMLS can be applied to various VLIW archi-
tectures if architecture-related constraints are considered in constructing the
weighted bipartite graphs. In the algorithm, we select the best schedule from
the generated N schedules. N should be selected to satisfy that max, is less
than the given loop count where max, = max,yr(u) in a rotated graph [Chao
1993]. In the experiments, we found that the rotation times to generate the
best schedules for various benchmarks are around 1 x Sch_Len, where Sch_Len
is the schedule length of the corresponding initial schedule. Loops are usually
executed many times in computation-intensive DSP applications, so N can be
selected as (5 ~ 10) x Sch_Len to guarantee that a good result can be obtained
while the requirement for max, can still be satisfied.

Fredman and Tarjan [1987] show that it takes O(n?logn + nm) to find
a min-cost maximum bipartite matching for a bipartite graph G, where n
is the number of nodes in G and m is the number of edges in G. Let C
be the number of instructions in a long instruction word (that is also the
number of columns in the given initial schedule). In Bipartite Matching_
NodesSchedule(), the number of nodes in a row is at most C and the num-
ber of blocks is at most C * |V|. To construct each edge in the bipartite graph,
we need O(|E|) time to go through the graph to check dependencies and decide
whether we can put a node into an empty location. The constructed bipartite

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

180 . Z. Shao et al.

Table I. The Numbers of Nodes and Edges for Each Benchmark

4-Stage | 8-Stage | uf2-8Stage DEQ uf2-DEQ
The Number of Nodes 26 42 84 11 22
The Number of Edges 35 59 118 20 40
Elliptic | Voltera | uf2-Voltera | Biquad | RLS-Laguerre
The Number of Nodes 34 27 54 16 19
The Number of Edges 58 34 68 23 43

graph has at most (C + C * |V|) nodes and at most C2 % |V| edges. So it takes
O(|E|+|V|?slog |V|) to finish the rotation in BipartiteMatching_NodesSchedule().
In RowByRow_BipartiteMatching(), it takes O((2C)?log2C + 2C x (2C)?) to
reschedule one row. So it takes O(]V|?) to finish the rescheduling row by row
in RowByRow_BipartiteMatching() considering C is a constant. Therefore, the
complexity of SAMLS is O(N x (|E| +|V|%log|V]|)), where N is the rotation times,
|E| is the number of edges, and |V| is the number of nodes.

4. EXPERIMENTS

In this section, we experiment with the SAMLS algorithm on a set of
benchmarks including 4-stage Lattice Filter (4-Stage), 8-stage Lattice Filter
(8-Stage), UF2-8-stage Lattice Filter (uf2-8Stage), Differential Equation Solver
(DEQ), UF2-Differential Equation Solver (uf2-DEQ), Fifth Order Elliptic Filter
(Elliptic), Voltera Filter (Voltera), UF2-Voltera Filter (uf2-Voltera), 2-cascaded
Biquad Filter (Biquad) and RLS-laguerre Lattice Filter (RLS-Laguerre). In the
benchmarks, UF2-8-stage Lattice Filter, UF2-Differential Equation Filter and
UF2-Voltera Filter are obtained by unfolding 8-stage Lattice Filter, Differential
Equation Solver (DEQ) and Voltera Filter (Voltera), respectively, with unfold-
ing factor 2. The numbers of nodes and edges for each benchmark are shown in
Table I. In the experiments, we select N as 10 * Sch_Len where Sch_Len is the
schedule length of the given initial schedule. That means each node is rotated
about 10 times on average. The experimental results show that the rotation
times to generate the best schedules are around 1 * Sch_Len, which is the time
when all nodes have been rotated one time.

In our experiments, the instructions are obtained from TI TMS320C 6000
Instruction Set. The VLIW architecture in Section 2.1 is used as the test plat-
form. We first obtain the linear assembly code based on TI C6000 for vari-
ous benchmarks. Then we model them as the cyclic DFGs. We compare the
schedules for each benchmark by various techniques: the list scheduling, the
algorithm in Lee et al. [2003], rotation scheduling and our SAMLS algorithm.
In the list scheduling, the priority of a node is set as the longest path from
this node to a leaf node [Micheli 1994]. In the experiments, we use LP_SOLVE
[Berkelaar 1992] to obtain a min-cost maximum bipartite matching based on
ILP form (integer linear program) of weighted bipartite graph. The experi-
ments are performed on a Dell PC with a P4 2.1 G processor and 512 MB
memory running Red Hat Linux 9.0. Every experiment is finished within one
minute.

The experimental results for the list scheduling, rotation scheduling, and
our SAMLS algorithm, are shown in Tables II-IV when the number of FUs

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Timing and Minimization for VLIW DSP . 181

Table II. The Comparison of Bus-Switching Activities and Schedule Length for List
Scheduling, Rotation Scheduling and SAMLS

The Number of FUs = 3
List Rotation SAMLS

Bench. LB| SA | SL | SA | SL | SA | SA(%) | SL | SL (%)
4-Stage 9 66 9 66 9 40 | 39.4% 9 0.0%
8-Stage 14 | 106 | 17 | 118 | 14 84 | 20.8% 14 17.6%
uf2-8Stage 28 | 242 | 28 | 242 | 28 | 172 | 28.9% 28 0.0%
DEQ 4 30 5 34 4 24 | 20.0% 4 | 20.0%
uf2-DEQ 8 66 9 66 8 42 | 36.4% 8 11.1%
Elliptic 13 | 140 | 15 | 140 | 15 | 102 | 27.1% 15 0.0%
Voltera 12 70 | 12 66 12 40 | 429% | 12 0.0%
uf2-Voltera 24 | 106 | 24 | 110 | 24 68 | 35.8% | 24 0.0%
Biquad 6 54 7 44 6 26 | 51.9 % 6 14.3%
RLS-Laguerre 7 54 7 60 7 36 | 33.3% 7 0.0%

Average Reduction (%) over List Scheduling 33.6 % - 6.3%

Table III. The Comparison of Bus-Switching Activities and Schedule Length for
List Scheduling, Rotation Scheduling and SAMLS

The Number of FUs = 4
List Rotation SAMLS

Bench. LB | SA | SL| SA [SL | SA | SA(%) | SL | SL (%)
4-Stage 7 68 9 72 7 34 | 50.0% 7| 22.2%
8-Stage 11 | 108 | 17 | 118 | 11 56 | 48.1% 11 | 35.3%
uf2-8Stage 21 | 230 | 21 | 230 | 21 | 186 | 19.1% | 21 0.0%
DEQ 4 30 5 32 4 12 | 60.0% 4 | 20.0%
uf2-DEQ 8 72 9 72 8 30 | 58.3% 8 | 11.1%
Elliptic 13 136 14 136 13 66 51.5% 13 7.1%
Voltera 12 70 | 12 68 | 12 32 | 54.3% 12 0.0%
uf2-Voltera 24 106 | 24 104 | 24 56 | 47.2% 24 0.0%
Biquad 4 52 6 50 4 32 | 385% 4 | 33.3%
RLS-Laguerre 7 64 7 64 7 42 | 344 % 7 0.0%

Average Reduction (%) over List 46.1 % - 12.9%

Table IV. The Comparison of Bus-Switching Activities and Schedule Length for List
Scheduling, Rotation Scheduling and SAMLS

The Number of FUs = 5
List Rotation SAMLS

Bench. ILB| SA | SL| SA [SL | SA | SA(%) | SL | SL (%)
4-Stage 6 74 9 80 6 22 | 70.3% 6 | 33.3%
8-Stage 9 | 106 | 17 | 112 9 50 | 52.8% 9 | 47.1%
uf2-8Stage 17 | 218 | 17 | 218 | 17 | 152 | 30.3% 17 0.0%
DEQ 4 30 5 36 4 8 | 73.3% 4 | 20.0%
uf2-DEQ 8 60 9 64 8 18 | 70.0% 8 11.1%
Elliptic 13 | 186 | 14 | 136 | 13 50 | 63.2% 13 7.1%
Voltera 12 72 | 12 72 | 12 24 | 66.7% 12 0.0%
uf2-Voltera 24 | 112 | 24 | 112 | 24 56 | 50.0% | 24 0.0%
Biquad 4 54 6 50 4 18 | 66.7% 4 | 33.3%
RLS-Laguerre 7 46 7 56 7 32 | 304 % 7 0.0%

Average Reduction (%) over List Scheduling 57.4 % - 15.2%

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

182 . Z. Shao et al.

Table V. The Comparison of Bus-Switching Activities and Schedule Length
between SAMLS and the Algorithms in Lee et al. [2003]

The Number of FUs = 3
HV_Schedule
Lee et al. [2003] SAMLS
Bench. LB | SA SL SA | SA(%) | SL | SL(%)
4-Stage 9 56 9 40 | 28.6% 9 0.0%
8-Stage 14 90 17 84 6.7% 14 17.6%
uf2-8Stage 28 | 174 28 172 1.1% | 28 0.0%
DEQ 4 24 5 24 0.0% 4 | 20.0%
uf2-DEQ 8 50 9 42 | 16.0% 8 11.1%
Elliptic 13 | 108 15 102 5.6% 15 0.0%
Voltera 12 54 12 40 | 256.9% | 12 0.0%
uf2-Voltera 24 80 24 68 | 150% | 24 0.0%
Biquad 6 28 7 26 71 % 6 14.3%
RLS-Laguerre 7 46 7 36 | 21.7% 7 0.0%
Average Reduction (%) 12.8 % - 6.3%

Table VI. The Comparison of Bus-Switching Activities and Schedule Length
between SAMLS and the Algorithms in [Lee et al. 2003]

The Number of FUs = 4
HV_Schedule
Lee et al. [2003] SAMLS
Bench. LB | SA SL SA | SA(%) | SL | SL(%)
4-Stage 7 46 9 34 | 26.1% 7| 22.2%
8-Stage 11 64 17 56 | 12.5% 11 | 35.3%
uf2-8Stage 21 | 190 21 186 2.1% | 21 0.0%
DEQ 4 26 5 12 | 53.8% 4 | 20.0%
uf2-DEQ 8 58 9 30 | 48.3% 8 11.1%
Elliptic 13 74 14 66 | 10.8% 13 7.1%
Voltera 12 42 12 32 | 23.8% 12 0.0%
uf2-Voltera 24 76 24 56 | 26.3% | 24 0.0%
Biquad 4 36 6 32 | 11.1% 4 | 33.3%
RLS-Laguerre 7 44 7 42 4.5 % 7 0.0%
Average Reduction (%) 219 % - 12.9%

is 3, 4 and 5, respectively. Column “LB” presents the lower bound of schedule
length obtained using the approach in Section 2.4. Column “SA” presents the
switching activity of the static schedule and Column “SL” presents the schedule
length obtained from three different scheduling algorithms: the list schedul-
ing (Field “List”), the traditional rotation scheduling (Field “Rotation”), and
our SAMLS algorithm (Field “SAMLS”). Column “SL(%)” and “SA(%)” under
“SAMLS” present the percentage of reduction in schedule length and switching
activities respectively compared to the list scheduling algorithm. The average
reduction is shown in the last row of the table. Totally, SAMLS shows an average
11.5% reduction in schedule length and 45.7% reduction in bus-switching ac-
tivities compared with the list scheduling. SAMLS achieves the lower bounds
of schedule length in all experiments except one for Elliptic Filter when the
number of FUs equals 3, in which the schedule length obtained by SAMLS (15)
is very close to the lower bound (13).

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Timing and Minimization for VLIW DSP . 183

Table VII. The Comparison of Bus-Switching Activities and Schedule Length
between SAMLS and the Algorithms in [Lee et al. 2003]

The Number of FUs = 5
HV _Schedule
Lee et al. [2003] SAMLS
Bench. LB | SA SL SA | SA(%) | SL | SL(%)
4-Stage 6 36 9 22 | 38.9% 6 | 33.3%
8-Stage 9 52 17 50 3.8% 9 | 47.1%
uf2-8Stage 17 | 174 17 152 | 12.6% 17 0.0%
DEQ 4 12 5 8 | 33.3% 4 | 20.0%
uf2-DEQ 8 30 9 18 | 40.0% 8 11.1%
Elliptic 13 70 14 50 | 28.6% 13 7.1%
Voltera 12 34 12 24 | 29.4% 12 0.0%
uf2-Voltera 24 58 24 56 34% | 24 0.0%
Biquad 4 32 6 18 | 43.8% 4 | 33.3%
RLS-Laguerre 7 32 7 32 0.0 % 7 0.0%
Average Reduction (%) 23.4 % - 15.2%

To compare the performance between SAMLS and the algorithms in Lee et al.
[2003], we implement their horizontal scheduling and vertical scheduling and
do experiments with window size 8. The experimental results for the various
benchmarks are shown in Tables V-VII when the number of FUs is 3, 4 and 5,
respectively. In the table, “HV_Schedule” presents the algorithms in Lee et al.
[2003]. Totally, SAMLS shows an average 11.5% reduction in schedule length
and 19.4% reduction in bus-switching activity compared with the algorithms
in Lee et al. [2003].

Through the experimental results from Table IT and Table VII, we found
that the traditional rotation scheduling can effectively reduce schedule length
but not bus-switching activities. The algorithms in Lee et al. [2003] can reduce
bus-switching activities without timing performance optimization for applica-
tions with loops. Our SAMLS can significantly reduce both schedule length and
switching activities.

5. CONCLUSION

This article studied the scheduling problem that minimizes both schedule
length and switching activities for applications with loops on VLIW ar-
chitectures. An algorithm, SAMLS (Switching-Activity Minimization Loop
Scheduling), was proposed. The algorithm attempted to minimize both switch-
ing activities and schedule length by rescheduling nodes repeatedly based on
rotation scheduling and bipartite matching. The experimental results showed
that our algorithm produces a schedule with a great reduction in switching
activities and schedule length for high-performance DSP applications.

REFERENCES

BERKELAAR, M. 1992. Unix Manual of lp_solve. Eindhoven University.

CHANDRAKASAN, A., SHENG, S., AND BRODERSEN, R. 1992. Low-power CMOS digital design. IEEE J.
Solid-State Circ. 27, 4 (Apr.), 473-484.

CHANG, J. AND PEDRAM, M. 1995. Register allocation and binding for low power. In Proceedings of
the 32nd ACM /IEEE Design Automation Conference (June). ACM, New York, pp. 29-35.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

184 . Z. Shao et al.

CHao, L.-F. 1993. Scheduling and behavioral transformations for parallel systems. Ph.D. disser-
tation. Dept. of Computer Science, Princeton University, Princeton, NdJ.

CHao, L.-F., LaPaucH, A. S., anD SHA, E. H-M. 1997. Rotation scheduling: A loop pipelining
algorithm. IEEE Trans. Comput.-Aid. Des. 16, 3 (Mar.), 229-239.

FrepmaN, M. L. anD TarJan, R. E. 1987. Fibonacci heaps and their uses in improved network
optimization algorithms. J ACM 34, 3, 596-615.

Gerez, S. H., pE Groor, S. H., anD HErrMANN, O. 1992. A polynomial-time algorithm for the
computation of the iteration-period bound in recursive data-flow graphs. IEEE Trans. Circ. Syst.
I: Fund. Theory Appl. 39, 1 (Jan.), 49-52.

Irwin, M. d. 1999. Tutorial: Power reduction techniques in SoC bus interconnects. In Proceedings
of the 1999 IEEE International ASIC/SOC Conference. IEEE Computer Society, Los Alamitos,
CA.

Km, H. S., Vuavkrisanan, N., Kanpemir, M., anp Irwin, M. J. 2003. Adapting instruction
level parallelism for optimizing leakage in vliw architectures. In Proceedings of LCTES 2003.
pp. 275-283.

LEE, C., LEEg, J.-K., Hwang, T., anp Tsar, S.-C. 2003. Compiler optimization on VLIW instruc-
tion scheduling for low power. ACM Trans. Des. Automat. Electron. Syst. 8, 2 (Apr.), 252—
268.

Leg, M. T.-C., Fugita, M., Tiwari, V., AND MaLik, S. 1997. Power analysis and minimization tech-
niques for embedded dsp software. IEEE Trans. VLSI Syst. 5, 1 (Mar.), 123-135.

LEeiserson, C. E. AND Saxg, J. B. 1991. Retiming synchronous circuitry. Algorithmica 6, 5-35.

Liu, D. aND SvenssoN, C. 1994. Power consumption estimation in CMOS VLSI chips. IEEE J.
Solid State Circ. 29, 6, 663—670.

Mamipipaka, M., HIRSCHBERG, D., aND Dutt, N. 2003. Adaptive low power encoding techniques
using self-organizing lists. IEEE Trans. VLSI Syst. 11, 5 (Oct.), 827-834.

MicHELL, G. D. 1994. Synthesis and Optimization of Digital Circuits. McGraw-Hill, New York.

Panpa, P. aND Dutty N, 1999. Low power memory mapping through reducing address bus activity.
IEEE Trans. VLSI Syst. 7, 3 (Sept.), 309-320.

Pariks, A., Kiv, S., KANDEMIR, M., VIJAYKRISHNAN, N., AND IrRwiN, M. J. 2004. Instruction scheduling
for low power. J. VLSI Signal Proc. 37, 129-149.

Rau, B. R., ScHLANSKER, M. S., aND TirumaLAar, P. P. 1992. Code generation schema for modulo
scheduled loops. In Proceedings of the 25th Annual International Symposium on Microarchitec-
ture (Dec.). pp. 158-169.

RENFORS, M. AND NEUVO, Y. 1981. The maximum sampling rate of digital filters under hardware
speed constraints. IEEE Trans. Circuits Syst. CAS-28, 3 (Mar.), 196-202.

SHAO, Z., ZHUGE, Q., Liu, M., SHa, E. H.-M., anD X140, B. 2004. Loop scheduling for real-time dsps
with minimum switching activities on multiple-functional-unit architectures. In Proceedings of
the 2004 International Conference on Embedded And Ubiquitous Computing (Aug.). Lecture
Notes in Computer Science, Springer-Verlag, New York, pp. 53-63.

Stan, M. R. anD Burreson, W. P. 1995. Bus-invert coding for low-power I/O. IEEE Trans. VLSI
Syst. 3, 1 (Mar.), 49-58.

Su, C.-L., Tsui, C.-Y., anp DEspaiN, A. M. 1994. Saving power in the control path of embedded
processors. IEEE Design & Test Comput. 11,4 (Winter), 24-30.

SunDARARAJAN, V. aND Parar, K. K. 2000. Reducing bus transition activity by limited weight
coding with codeword slimming. In Proceedings of the 2000 Great Lakes Symposium on VLSI
(Mar.), pp. 13-16.

TExas INSTRUMENTS, INc. 2000. TMS320C6000 CPU and Instruction Set Reference Guide.

TexAs INSTRUMENTS, INc. 2001. TMS320C6000 Optimizing Compiler User’s Guide.

Tiwari, V., MaLIK, S., AND WOLFE, A. 1996. Instruction level power analysis and optimization of
software. J. VLSI Signal Proc. 13, 2 (Aug.), 1-18.

Tomrvama, H., IsHiHAra, T., INOUE, A., AND YasuUras, H. 1998. Instruction scheduling to re-
duce switching activity of off-chip buses for low-power systems with caches. IEICE Trans. Fund.
Electron. Comm. Comput. Sci. E81-A(12), (Dec.), 2621-2629.

Yang, H., Gao, G. R., anp LEUuNg, C. 2002. On achieving balanced power consumption in software
pipelined loops. In Proceedings of the International Conference on Compilers, Architectures and
Synthesis for Embedded Systems. pp. 210-217.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

Timing and Minimization for VLIW DSP . 185

YE, W., VijavkrisuNaN, N., KanDEMIR, M., AND IrRwiN, M. J. 2000. The design and use of simple-
power: a cycle-accurate energy estimation tool. In Proceedings of the 37th Design Automation
Conference (June), pp. 340-345.

Yun, H.-S. anp Kiv, J. 2001. Power-aware modulo scheduling for high-performance VLIW proces-
sors. In Proceedings of the 2001 International Symposium on Low Power Electronics and Design
(Aug.), pp. 40-45.

ZHANG, W., VIJAYKRISHNAN, N., KANDEMIR, M., IRwiN, M. J., DuARTE, D., aAND Tsal, Y. 2001. Ex-
ploiting VLIW schedule slacks for dynamic and leakage energy reduction. In Proceedings of the
34th Annual International Symposium on Microarchitecture (Dec.), pp. 102-113.

ZHUGE, Q., Xiao0, B., AND SHa, E. H.-M. 2003. Code size reduction technique and implementation
for software-pipelined dsp applications. ACM Trans. Embed. Comput. Syst. 2, 4 (Nov.), 1-24.

Received April 2004; revised November 2004; accepted March 2005

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 1, January 2006.

