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Abstract. In this paper we present the derivation details, logic, and
motivation for the three loop calculus introduced in Chertkov and Chernyak
(2006 Phys. Rev. E 73 065102(R)). Generating functions for each of the three
interrelated discrete statistical models are expressed in terms of a finite series.
The first term in the series corresponds to the Bethe–Peierls belief–propagation
(BP) contribution; the other terms are labelled by loops on the factor graph.
All loop contributions are simple rational functions of spin correlation functions
calculated within the BP approach. We discuss two alternative derivations of the
loop series. One approach implements a set of local auxiliary integrations over
continuous fields with the BP contribution corresponding to an integrand saddle-
point value. The integrals are replaced by sums in the complementary approach,
briefly explained in Chertkov and Chernyak (2006 Phys. Rev. E 73 065102(R)).
Local gauge symmetry transformations that clarify an important invariant feature
of the BP solution are revealed in both approaches. The individual terms change
under the gauge transformation while the partition function remains invariant.
The requirement for all individual terms to be nonzero only for closed loops in
the factor graph (as opposed to paths with loose ends) is equivalent to fixing
the first term in the series to be exactly equal to the BP contribution. Further
applications of the loop calculus to problems in statistical physics, computer and
information sciences are discussed.
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One practically useful yet generally heuristic approach used for calculations of observables
(correlation functions) in discrete statistical physics models, e.g. Ising model, is related
to the so-called Bethe–Peierls (BP) approximation [1]–[3]. The BP approach is exact for
graphs that do not contain loops, usually referred to as trees; otherwise the approach is
approximate. The ad hoc approach can also be restated in a variational form [4]–[6]. A
similar tree-based method in information science has been developed by Gallager [7, 8]
in the context of error-correction theory. Gallager introduced the so-called low-density-
parity-check (LDPC) codes, defined on locally tree-like Tanner graphs. The problem
of ideal decoding, i.e., restoring the most probable pre-image out of the exponentially
large pool of candidates, is identical to solving a statistical model on the graph [9]. An
approximate yet efficient Belief–Propagation decoding algorithm introduced by Gallager
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constitutes an iterative solution of the Bethe–Peierls equations derived as if the statistical
problem was defined on a tree that locally represents the Tanner graph. We utilize this
abbreviation coincidence to call Bethe–Peierls and Belief–Propagation equations by the
same acronym: BP. The recent resurgence of interest in LDPC codes [10, 11], as well as
the proliferation of the BP approach to other areas of information and computer science,
e.g. artificial intelligence [12] and combinatorial optimization [13]–[15], where interesting
statistical models on graphs with long loops appear, has made the BP approach to be
one of the most interesting and hot research topics in modern information and computer
sciences.

In spite of the lack of analytical control in the general case of graphs/models
with loops, the BP approximation and the corresponding algorithm provide remarkably
accurate results. Based on this empirical observation one would expect an existence of
a hidden mathematical structure that can rationalize an inessential, subleading role of
the corrections associated with the loops. Besides, an in-depth understanding of the
BP success would also provide a practical guidance for improving BP even further by
accounting for nonlocal loop-related correlations. However, with the exception of two
recent papers [16, 17], the discussion of this important point has been largely superficial
and anecdotal. The Ising model (pairwise interactions between the bits) on a graph with
loops has been considered by Montanari and Rizzo [16], where a set of exact equations
has been derived that relates the correlation functions to each other. This system of
equations is under-defined; however, if irreducible correlations are neglected the BP result
is restored. This feature has been used [16] to generate a perturbative expansion for
corrections to BP in terms of irreducible correlations. A complementary approach for
the Ising model on a lattice has been taken by Parisi and Slanina [17], who utilized an
integral representation developed by Efetov [18] in the early 1990s. The saddle-point for
the integral representation used in [17] turns out to be exactly the BP solution. Calculating
perturbative corrections to magnetization, the authors of [17] encountered divergences in
their representation for the partition function; however, the divergences cancelled out from
the leading-order correction to the magnetization revealing a sensible loop correction to
BP. These papers, [16] and [17], became important initial steps towards calculating and
understanding loop corrections to BP. However, both approaches are very far from being
complete and problem-free. Thus, [16] lacks an invariant representation in terms of the
partition function. Instead it requires operating with correlation functions. Besides, the
complexity of the equations related to the higher-order corrections rapidly grows with the
order. The complementary approach of [17] contains dangerous, since they lack analytical
control, divergences (zero modes), which constitutes a very problematic symptom for
any field theory. Both [16] and [17] focus on the Ising pairwise interaction model. The
extensions of the proposed methods to the most interesting from the information theory
viewpoint multi-bit interaction cases do not look straightforward. Finally, the approaches
of [16] and [17], if extended to higher-order corrections, will result in infinite series. Re-
summing the corrections in all orders, so that the result is presented in terms of a finite
series, does not look feasible within the proposed techniques.

In [19] we suggested an ultimate way to account for loop corrections to BP.
We represented the partition function for a general discrete statistical model defined
on a finite factor graph in terms of a series decomposition. The most remarkable
feature of the suggested exact decomposition, that does not appear within the previous
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approaches [16, 17], is the representation of the partition function as a finite (!!) series
with the first term being exactly represented by the BP solution. All higher-order terms
are labelled by generalized loops in the factor graph. A generalized loop is defined as
a possibly branching undirected path in the factor graph that has no loose ends. Each
term in the series is represented as a product of local contributions along the loop, each
contribution being expressed explicitly in terms of some correlation functions calculated
within the BP approximation.

The present manuscript generalizes and details the approach of [19]. In addition
to explaining all technical details of the loop series derivation of [19] we also provide an
alternative approach based on an integral representation for the partition function. For the
integral representation BP appears as a result of applying the saddle-point approximation.
We pay special attention to clarifying the relation between the saddle-point approximation
for the integral and the Bethe free energy approach of [6], as well as between the analysis
of the Gaussian corrections and the saddle-point. We also provide a technical rationale
for a formal gauge transformation in the integral representation for the model partition
function (transformation of variables and decomposition of the integrand in a series) that
results in the loop series expression.

The integral representation approach is formulated for a bipartite factor graph
model [6, 20, 22] which is a particular case of the general vertex model of [21] also
considered in the manuscript. For clarity of presentation we introduce a bipartite vertex
model, an orientable vertex model, that is less general than the general vertex model, yet
constitutes a generalization of the bipartite factor graph model3. The vertex models are
more general compared to the bipartite factor graph model and allow a simpler derivation
of the loop series using an auxiliary discrete transformation (discrete Fourier transforms)
in place of its integral counterpart. We actually start the technical part of the paper by
describing a simpler and more compact discrete variable representation before turning to
a lengthy, still ideologically important, integral (continuous variables) counterpart.

The auxiliary degrees of freedoms, one per graph edge, introduced within both
integral/continuous and sum/discrete approaches, possess a gauge symmetry that allows
an invariant definition of the BP equation. Gauge transformation corresponding to the
symmetry keeps the full expression for the partition function invariant while changing the
individual terms of the series. An individual term corresponds to a path on the graph
that may generally contain some number of loose ends. The BP equations can be viewed
as conditions for fixing a special gauge that requires all allowed paths (i.e. those which
contribute to the series) to be nothing but generalized loops that do not contain any loose
ends. For this special gauge the BP approximation is described by the first bare term in
the loop series.

The formulation of BP as a gauge fixing condition also allows a clear physical
interpretation of the entire approach. Indeed, the first bare term of the loop series can
be viewed as a ‘ground state’ that minimizes the Bethe free energy with loop corrections

3 Examples of inference problems of information and computer sciences expressed in graphical terms can be found
in [20]–[22]. Notice, however, that the simple modelling terminology we define and use in the manuscript is a bit
different from the one used in information science. Thus, our general vertex model is equivalent to what is called
the ‘normal’ factor graph model in [21] and ‘Forney’s factor graph’ model in [22]. Our orientable graph model is
equivalent to a normal factor graph which has been obtained by taking a standard bipartite factor graph of [20],
and turning all the variable nodes into the so-called equality factor nodes [21].
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being related to certain excited states described as along-the-loops spin flips with respect
to the ground state. Such interpretation of the loop series makes our approach similar
to the so-called high-temperature expansion, where individual contributions (diagrams)
also correspond to close loops on the factor graph. There is, however, a very important
key difference between the loop series and the high-temperature expansion. While the
high-temperature expansion starts with a trivial bare term (just unity in the expansion
of the partition function) the bare term in the loop series is highly nontrivial. It is
represented by the BP approximation that already accounts for some local correlations in
the model.

The manuscript is organized as follows. In section 1 we introduce our three basic
models: bipartite factor graph model, orientable (bipartite) vertex, and general vertex
models. Vertex models are convenient generalizations of the bipartite factor graph model.
In section 1 we also state our major result—exact expressions for the models’ partition
functions in terms of finite series, coined loop series, over closed paths defined in the
models’ graphs. The rest of the paper is devoted to derivations and discussions of these
results. A straightforward and simple derivation of the loop series for the vertex model
is described in section 2. BP equations emerge as a result of a requirement for the finite
series representation for the partition function of the model to have the loop series form
(with no terms, correspondent to a path with loose ends, present). In section 3 we derive
the loop series for the factor graph model via an integral representation. This derivation
is more involved; however, we present it here in full as it allows us to establish a relation
between the loop calculus and other approaches in theoretical physics, e.g. saddle-point
analysis. Section 3 contains a number of subsections. Integral representation for the
partition function of the factor node model is introduced in section 3.1. Section 3.2
describes the relation of the integral representation to the Bethe free energy variational
approach of [6]. The latter is also briefly sketched in appendix A. In section 3.3 we present
an approximate saddle-point analysis of the integral representation for the partition
function of the factor graph model. Here we show that the saddle-point is described
by the BP equations. The Gaussian approximation around the BP saddle-point is
discussed in section 3.4. Finally, the derivation of the exact loop series via the integral
representation is described in section 3.5. Section 4 is devoted to conclusions where we
also discuss possible generalizations as well as practical utility of the loop series/calculus
in information/computer science and statistical physics. Appendix B illustrates the loop
calculus on a simple example of a two bit, two check bipartite factor graph model with
single loop.

1. Loop series for the factor graph and vertex models

1.1. Bipartite factor graph model

Consider a generic discrete statistical model, with configurations characterized by a set of
binary variables, σi = ±1, i = 1, . . . , n, which is factorized so that the probability p{σi}
to find the system in the state {σi} and the partition function Z are

p{σi} = Z−1
∏

α

fα(σα), Z =
∑

{σi}

∏

α

fα(σα), (1)
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Figure 1. Example of a factor graph. Twelve possible marked paths (generalized
loops) for the example are shown in bold on the bottom.

where α labels nonnegative and finite factor functions fα with α = 1, . . . , m and σα

represents a subset of σi variables. Relations between factor functions (checks) and
elementary discrete variables (bits), expressed as i ∈ α and α � i, can be conveniently
represented in terms of the system-specific factor graph. If i ∈ α we say that the bit and
the check are neighbours. An example of a factor graph with m = 4 that corresponds
to p(σ1, σ2, σ3, σ4) = Z−1fa(σa)fb(σb)fc(σc)fd(σd), where σa ≡ (σ1, σ2), σb ≡ (σ1, σ2, σ3),
σc ≡ (σ1, σ3, σ4), σd ≡ (σ3, σ4) and α = a, b, c, d, is shown in figure 1. Any spin correlation
function can be calculated using the partition function, Z, defined by equation (1). For
example, the bit i magnetization is expressed as

〈σi〉 =
∂ ln Z

∂hi

∣∣∣∣
h→0

, (2)

where the following transformation of a factor node function associated with a check α
neighbouring bit i is assumed: fα(σα) → fα(σα) exp(hiσi).

1.2. Vertex models

In this section we discuss vertex models of two types, orientable/bipartite and general.
Similar to the factor graph model, the vertex models are formulated in terms of Ising
spin variables, σ = ±. However, while in the factor graph model spins reside in the bit
nodes, spins in the vertex models are assigned to the edges. The orientable vertex model
generalizes the factor graph model described in section 1.1, while the general vertex model
generalizes the orientable vertex model.
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1.2.1. Orientable vertex model. A graph is orientable if the whole family of its nodes,
X, can be partitioned in two subfamilies, such that nodes of one subfamily neighbours
only nodes from the opposite subfamily. Also if a connected graph is orientable, there
are exactly two different global orientations: a global orientation is chosen by picking
some node on a graph and identifying it as left (or right). Choosing an orientation on
an orientable graph partitions the set of nodes X = XL ∪ XR into the subsets of left and
right nodes, referred to as bit nodes and check nodes, respectively. Ising variables in the
vertex model reside in the graph edges, i.e., the configurations are defined by sets of Ising
variables σc = ±1 for c ∈ X1. For a graph with a chosen orientation it is also convenient
to represent these variables as σjα, with α ∈ XR and j ∈ XL representing the check (right)
and bit (left) end of an edge. The weight (probability) of a configuration is given by a
product of weights related to the nodes:

pov(σ) = Z−1
ov

∏

j∈XL

fj (σj)
∏

α∈XR

fα (σα) , Zov =
∑

{σ}

∏

j∈XL

fj (σj)
∏

α∈XR

fα (σα) . (3)

A particular example of the oriented vertex model defined for the graph shown
in figure 1 corresponds to p ∼ f1(σ1a, σ1b, σ1c)f2(σ2a, σ2b)f3(σ3b, σ3c, σ3d)f4(σ4c, σ4d)
fa(σa1, σa2)fb(σb1, σb2, σb3)fc(σc1, σc3, σc4)fd(σd3, σd4), where we do not differentiate
between the bits and checks, and the index order for a spin defined on the graph edge is
not important.

Obviously, the oriented vertex model (3) turns into the factor graph model (1) if the
functions fj adopt the following form:

fj(σj) =

{
1, σiα = σiβ ∀α, β � i

0, otherwise.
(4)

1.2.2. General vertex model. A general vertex model is determined by the weight function
that can be represented in the following form:

pgv(σ) = Z−1
gv

∏

a∈X0

fa(σa), Zgv =
∑

σ

∏

a∈X0

fa(σa), (5)

where a denotes a vertex in the model; elementary spin is defined at the edge connecting
two neighbouring vertices, σab for b ∈ a and a ∈ b; σa stands for the vector built from all
σab where b ∈ a; σ is a particular configuration of spins on all the edges. It is important
to realize that with this notation we need to assume that σab = σba.

A general vertex model turns into the orientable vertex model if the whole family of
bits {a} is divided in two subfamilies that correspond to checks and bits, a = i ⊕ α, and
additionally for any bit/check the neighbours belong to the opposite families.

Therefore, for the example shown in figure 1 the oriented vertex model and the general
vertex model simply coincide as the graph allows partitioning in two parts. A simple
example of a general vertex model which does not correspond to any oriented case (the
whole family of nodes is not divisible into two groups) is given by an interconnected triad
of vertices with pair interaction: p ∼ f1(σ12, σ13)f2(σ21, σ23)f3(σ31, σ32).
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1.3. Loop series

In this section we state the main result of the paper for the three models introduced above.

1.3.1. General vertex model. We start with the general vertex model. The partition
function of the general vertex model, described by equation (5), is exactly equal to

Zgv = Z0

(
1 +

∑

C

rgv(C)

)
, rgv(C) =

∏
a∈C µa∏

(ab)∈C(1 − m2
ab)

(6)

where the summation goes over all allowed C (marked) paths in the graph associated with
the model; (ab) marks the edge on the graph connecting nodes a and b. The marked path
is allowed to branch at any node/vertex; however, it cannot terminate at a node. We refer
to such a structure as a loop (it is actually some kind of a generalized loop since branching
is allowed; we use the shorter name for convenience). mab is the magnetization at the edge
that connects nodes a and b. µa is the irreducible correlation function at node a. The
order of the correlation function is equal to the number of marked nodes (nodes belonging
to the marked path C) neighbouring a. The bare partition function Z0, the magnetization
mab, and the correlation functions µa are calculated within the BP procedure, described
by equations (33) and (39)–(42).

1.3.2. Orientable vertex model. The general formula (6) applied to the case of the
nodes/vertices partitioned into bits and checks, reads

Zov = Z0

(
1 +

∑

C

rov(C)

)
, rov(C) =

(∏
i∈C µi

) (∏
β∈C µβ

)

∏
(iα)∈C(1 − m2

iα)
(7)

where the summation goes over all allowed (marked) paths C in the graph associated
with the model. A marked path (generalized loop) is allowed to branch at any bit/check;
however, it may not terminate at a bit or check. In this case there are two types of
irreducible correlation function associated with bits and checks, respectively, and one
type of magnetization (which is associated with the edge that connects any bit with
its neighbouring check that necessarily belongs to the loop) entering equation (7), all
calculated within BP and defined in equations (29)–(31). Equation (7) also follows directly
from the formulae of section 2.1.

1.3.3. Factor graph model. The decomposition of the partition function defined by
equation (1) into a finite series has a form:

Zfg = Z0

(
1 +

∑

C

rfg(C)

)
, rfg(C) =

∏

i,α∈C

µαµi, (8)

µi =
(1 − mi)

qi−1 + (−1)qi(1 + mi)
qi−1

2(1 − m2
i )

qi−1
, qi =

α�i∑

α∈C

1, (9)

µα =
∑

σα

bα(σα)

i∈α∏

i∈C

(σi − mi), mi =
∑

σi

bi(σi)σi (10)
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where the summation goes over all allowed (marked) paths C (generalized loops). They
consist of sets of bits and checks so that each of them has at least two distinct neighbours
on the path. For the aforementioned example there are twelve allowed marked paths
(loops) shown in figure 1 on the right. In equations (8) bi(σi), bα(σα) and Z0 are beliefs
(probabilities) defined on bits and checks and partition function, respectively, calculated
for the BP solution. The BP solution for the model is described in detail in section 3; see
also appendix A.

It is easy to verify that if equation (4) is assumed for the generalized vertex model,
equation (7) turns exactly into equation (8). Indeed, under the condition of (4) the
irreducible correlation functions at a check in the two formulae are exactly equivalent.
One derives

µi →
∫

dσipi(σi)(σi − mi)
qi =

1 − m2
i

2

[
(1 − mi)

qi−1 + (−1)qi(1 + mi)
qi−1
]
, (11)

i∈C∏

α∈i,C

(1 − m2
iα) → (1 − m2

i )
qi, (12)

where the definition of the dσ integration (summation) is given in section 2.1, pi(σi) =
(1 + σimi)/2 is the probability to find bit i in the state σi within the BP solution, and qi

is the connectivity degree of bit i at the marked subgraph C, defined by equation (9). All
together the equivalence is completely restored.

2. Loop series derivation for the vertex models

2.1. Vertex model on orientable graphs

To introduce a representation that leads to the loop expansion it is convenient to introduce
simple integral calculus and discrete Fourier transform for functions f(σ) of an Ising (spin)
variable. Note that ‘integrals’ here are nothing but sums over discrete sets, introduced
solely to simplify notations. A Fourier transform of f(σ) is a function F̂f(π), where the
corresponding momentum π = ±1 is also an Ising variable. The definitions and properties
of integrals and Fourier transform are as follows:

f(σ) = a + bσ;

∫
dσf(σ) =

∑

σ=±1

f(σ);

∫
dσ = 2;

∫
σ dσ = 0; (13)

F̂f(π) = 1
4

∫
dσ(1 + πσ)f(σ); F̂−1g(σ) =

∫
dπ(1 + πσ)g(π);

F̂(1) =
1

2
; F̂(σ) =

π

2
; F̂−1(1) = 2; F̂−1(π) = 2σ. (14)
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Denoting

Fα(σα) = fα(σα); Fj(πj) = F̂fj(πj); fj(σ) =

∫
dπjFj(πj)

∏

α�j

(1 + πjασαj),

(15)

where dπj =
∏

α�j dπjα, we can represent the partition function in the form

Zov =

∫ ∏

α

dσα dπα

(
∏

j

Fj(πj)

)(
∏

α

Fα(σα)

)(
∏

jα

(1 + πjασαj)

)
. (16)

Here and below in this subsection the index order in the definition of the discrete fields is
arbitrary, i.e., σiα = σαi. Our derivation of the loop expansion rests on an important, yet
very simple relation that can be easily verified directly:

cosh(η + χ)(1 + πσ)

(cosh η + σ sinh η)(cosh χ + π sinh χ)

= 1 + (tanh(η + χ) − σ) (tanh(η + χ) − π) cosh2(η + χ). (17)

Introducing two sets of parameters ηαj and χjα that reside in the graph edges we can
make use of equation (17) to re-group the terms. This results in the following expression
for the partition function:

Zov = Z̄gv

∫
dσ dπ

∏

j

Pj(πj)
∏

α

Pα(σα)
∏

jα

Vjα (σαj , πjα) , (18)

Z̄gv =

(
∏

jα

cosh (ηαj + χjα)

)−1

, (19)

Pj(πj) = Fj(πj)
∏

α�j

(cosh(χjα) + πjα sinh(χjα)) , (20)

Pα(σα) = Fα(σj)
∏

j∈α

(cosh(ηαj) + σαj sinh(ηαj)) , (21)

Vjα (σαj , πjα) = 1 + (tanh(ηαj + χjα) − σαj) (tanh(ηαj + χjα) − πjα) cosh2(ηαj + χjα). (22)

The desired decomposition is obtained by expanding the V -terms followed by a local
computation. The parameters η and χ are chosen using the criterion that skeletons
(subgraphs) with loose ends do not contribute to the decomposition. This can be achieved
if the parameters satisfy the following system of equations:

∫
dπj (tanh(ηαj + χjα) − πjα) Pj(πj) = 0, (23)

∫
dσα (tanh(ηαj + χjα) − σαj)Pα(σα) = 0. (24)
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The first equation in the system, equation (23), can actually be reduced by making use
of equations (13)–(15) and (20), to

∫
dσj (tanh(ηαj + χjα) − σjα) P̃j(σj) = 0, (25)

P̃j(σj) = fj(σj)
∏

α�j

(cosh(χjα) + σjα sinh(χjα)) . (26)

Combining equations (24), (25) we derive

exp [(ηαj + χjα)σjα]

cosh [ηαj + χjα]
=
∑

σj\σjα

b
(ov)
j =

∑

σα\σαj

b(ov)
α , (27)

b
(ov)
j =

P̃j(σj)∑
σj

P̃j(σj)
, b(ov)

α =
Pα(σα)∑
σα

Pα(σα)
, (28)

where it is assumed that σjα = σαj . Equation (27) constitutes the BP system of equations,
represented in terms of parameters η and χ. Equations (28) provide the BP expressions
for the probabilities (beliefs) to observe the spin vector associated with a bit/check in the
corresponding states.

A typical sum/integral, needed to calculate individual marked path/diagram C
contribution, is reduced to the following irreducible correlation functions that should be
computed within BP:

µα =

∫
dσ αb(ov)

α (σα)
∏

i∈α,C

(miα − σiα) , (29)

µi =

∫
dσi b

(gv)
i (σi)

∏

α�i;α∈C

(miα − σiα) , (30)

where miα is the BP magnetization at the edge iα:

miα =

∫
dσ ib

(ov)
i (σi)σiα =

∫
dσαb(ov)

α (σα)σiα. (31)

2.2. General vertex model

We are now in a position to consider the case of a general, not necessarily orientable,
graph. The loop expansion and the BP equations can be readily extended to this case.
To derive the desired loop decomposition we relax the condition σab = σba, i.e., we treat
σab and σba as independent Ising variables. In complete analogy with the orientable case
we represent the partition function in a form

Zgv =

∫
dσ
∏

a

fa(σa)
∏

bc

1 + σbcσcb

2
. (32)

Note that for this representations the vectors σa become independent variables. Also in
the product over bc we assume that each edge contributes only once. We further introduce
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a parameter vector η with the components ηab, all of them being independent variables.
Making use of equation (17) we arrive at the following representation for the partition
function that is ready for the loop decomposition:

Zgv = Z̄gv

∫
dσ
∏

a

Pa(σa)
∏

bc

Vbc (σbc, σcb) ; Z̄gv =

(
∏

bc

2 cosh (ηbc + ηcb)

)−1

;

Pa(σa) = fa(σa)
∏

b∈a

(cosh ηab + σab sinh ηab) ; (33)

Vbc (σbc, σcb) = 1 + (tanh(ηbc + ηcb) − σbc) (tanh(ηbc + ηcb) − σcb) cosh2(ηbc + ηcb). (34)

The BP equations for our general case have a form
∫

dσa (tanh(ηab + ηba) − σab)Pa(σa) = 0. (35)

To recast equation (35) in a standard BP form we denote by ηab the vector with the
components ηac with c ∈ a and c �= b, i.e., ηa = (ηab, ηab). We also define a function
γ(ηab) using the condition

∫ c �=b∏

c∈a

dσac fa(σa)

c �=b∏

c∈a

(cosh ηac + σac sinh ηac) = φ(cosh γ + σab sinh γ). (36)

The meaning of equation (36) is as follows. The lhs of the equation is a function of the
Ising variable σab and a function of ηab (since by definition it does not depend on ηab). The
rhs constitutes a generic representation of such a function provided φ and γ are allowed
to depend on ηab. Integrating (summing) over σab in equation (36) with and without the
σab factor allows us to determine the function γ(ηba) explicitly:

tanh γ(ηab) =

∫
dσa σabfa(σa)

∏c �=b
c∈a (cosh ηac + σac sinh ηac)∫

dσafa(σa)
∏c �=b

c∈a (cosh ηac + σac sinh ηac)
. (37)

Multiplying equation (36) with a factor (cosh ηab + σab sinh ηab) yields

∫ b�=b∏

c∈a

dσacPa(σa)φ (cosh(γ + ηab) + σab sinh(γ + ηab)) . (38)

Comparing equation (38) with equation (35), we arrive at sinh(γ − ηba) = 0. This allows
us to represent the BP equations in a more conventional form:

ηba = γ (ηab) . (39)

Calculated within BP, the probability of finding the whole family of edges connected to
node a in the state σa is

b(gv)
a (σa) =

Pa(σa)∫
dσa Pa(σa)

. (40)

In the general vertex model case a typical integral (sum), needed to take to calculate a
diagram contribution for a generalized loop C, is reduced to the corresponding irreducible
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correlation functions of the spin variables computed within BP:

µa =

∫
dσa b(gv)

a (σa)
∏

b∈a,C

(mab − σab) , (41)

where mab is the magnetization at the edge (ab) calculated within BP:

mab =

∫
dσa b(gv)

a (σa)σab. (42)

The final and most general expression equation (6) emerges in the result of direct calcula-
tion of the (generalized) loop contributions making use of equations (34), (39), (41), (42).

3. Loop series derivation for the factor graph model

3.1. Integral representation for the factor graph model

We aim to derive a convenient integral representation for the statistical model (1). As
a first step we introduce two statistically independent sets of discrete random variables:
the original {σi}, and the additional factor-variable counterpart {πα}, where each πα is a
vector consisting of qα scalar components, each a discrete random variable, and qα is the
degree of connectivity of the corresponding factor node. For the example represented by

figure (1) we have πa = (π
(1)
a , π

(2)
a ), πb = (π

(1)
b , π

(2)
b ), πc = (π

(1)
c , π

(3)
c , π

(4)
c ), πd = (π

(3)
c , π

(4)
c )

where π
(i)
a,b,c,d = ±1. Using such a representation the partition function of equation (1)

can be rewritten as

Z ∼
∑

{πα}

[
∏

α

fα(πα)

]
∏

i

[
∑

σi

∏

α�i

δ
(
σi, π

(i)
α

)
]

, (43)

where the product over i is taken over the bits connected to more then one factor nodes.

Under the condition that all discrete scalars π
(i)
α belong to the binary alphabet the

expression on the rhs of equation (43) can be rewritten as

∑

σi

∏

α�i

δ
(
σi, π

(i)
α

)
∼
∫

Ci

dχi exp

(
∑

α�i

χiαπ(i)
α

)[
∑

σi

exp

(
1

qi − 1
σi

∑

α�i

χiα

)]1−qi

, (44)

where qi > 1 is the degree of connectivity of bit i, and χi is a vector with the components
χiα, where α � i. Integration goes over a qi-dimensional cycle Ci =

∏
α�i Ciα that

constitutes a cartesian product of qi contours in the complex plane: Cjα connects the
points zjα and zjα + 2πi (qj − 1) in an arbitrary way, however such that the contour
does not go through the point of formal singularity of the integrand in equation (44).
It is straightforward to check that the result does not depend on the particular choice
of the reference points ziα. The multidimensional integration contour can be defined
in way (in the sense of passing the multidimensional pole manifold) that the integral
representation is exact, yet its deformation that reaches the saddle-point does not involve
the pole manifold. This is confirmed indirectly by identical exact loop expansions that
originate from the integral representation and its discrete counterpart. Note also that the
integral representation is obviously not unique and the specific choice of the representation
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is dictated by our desire to find one that guarantees emergence of the BP in the saddle-
point approximation applied to the integral. Below in section 3.3 we will verify, indeed,
that equation (44) obeys the desired saddle-point property.

Substituting equation (44) into equation (43) one derives

Z ∼
∫ [∏

i

∏

α

dχiα

]
∏

i

[
∑

σi

exp

(
1

qi − 1
σi

∑

α�i

χiα

)]1−qi

×
∏

α

[
∑

πα

(
fα(πα) exp

(
∑

i∈α

π(i)
α χiα

))]
(45)

=

∫ [∏

i

∏

α

dχiα

](
∏

i

exp [−Qi(χ)]

)(
∏

α

[
∑

πα

exp [−Qα(χ)]

])

=

∫ [∏

i

∏

α

dχiα

]
exp [−S0(χ)] . (46)

3.2. Relation to the Bethe variational approach

The expression of equation (45) is compact and already constitutes a good starting point
for further, e.g. saddle-point, analysis. Meantime, for the purpose of establishing a relation
to the Bethe free energy approach of [6] and for some further applications we introduce
the following auxiliary integrations,

1 ∼
∫ [∏

i

∏

σi

dϕi(σi) dϕ̄i(σi)

]
exp

[
∑

i

∑

σi

ϕ̄i(σi)

(
ϕi(σi) − σi

∑

α�i

χiα

)]
, (47)

1 ∼
∫ [∏

α

∏

πα

dψα(πα) dψ̄α(πα)

]

× exp

[
∑

α

∑

πα

ψ̄α(πα)

(
ψα(πα) + ln fα(πα) +

∑

i∈α

π(i)
α χiα

)]
, (48)

in the rhs of equation (45). After some obvious manipulations we arrive at

Z ∼
∫ [∏

i

∏

α

dχiα

][
∏

i

∏

σi

dϕi(σi) dϕ̄i(σi)

][
∏

α

∏

πα

dψα(πα)dψ̄α(πα)

]
exp [−S] , (49)

S =
∑

i

[
−
∑

σi

ϕ̄i(σi)

(
ϕi(σi) − σi

∑

α�i

χiα

)
+ (qi − 1) ln

(
∑

σi

exp

(
ϕi(σi)

qi − 1

))]

−
∑

α

[
∑

πα

ψ̄α(πα)

(
ψα(πα) + ln fα(πα) +

∑

i∈α

π(i)
α χiα

)

+ ln

(
∑

πα

exp (−ψα(πα))

)]
. (50)
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Evaluating the integral over ϕi(σi), ψα(πα) within the saddle-point approximation we
obtain

ϕ̄i(σi) =
exp

(
ϕ

(sp)
i (σi)/(qi − 1)

)

∑
σi

exp
(
ϕ

(sp)
i (σi)/(qi − 1)

) = (z
(sp)
i )−1 exp

(
ϕ

(sp)
i (σi)/(qi − 1)

)
, (51)

ψ̄α(πα) =
exp

(
−ψ

(sp)
α (πα)

)

∑
πα

exp
(
−ψ

(sp)
α (πα)

) = (z(sp)
α )−1 exp

(
−ψ(sp)

α (πα)
)
. (52)

Expressing ϕi(σi), ψα(πα) in terms of ϕ̄i(σi), ψ̄α(πα) according to equations (51), (52) and
substituting the result into the effective action (50), we find

S(sp) = −
∑

α

∑

πα

ψ̄α(πα) ln fα(πα)

+
∑

α

∑

πα

ψ̄α(πα) ln ψ̄α(πα) −
∑

i

∑

σi

(qi − 1)ϕ̄i(σi) ln ϕ̄i(σi)

+
∑

i

∑

α�i

χiα

∑

σi

σi



ϕ̄i(σi) −
∑

πα\σi

ψ̄α(πα)





−
∑

α

ln z(sp)
α +

∑

i

(qi − 1) ln z
(sp)
i . (53)

The saddle-point (in ψ and ϕ) solution (51), (52) is highly degenerate: there is a freedom
in imposing a constraint for any bit i and per any factor node α. Moreover, the integrand
in equations (49) and (50) is invariant under the transformations:

ψα(πα) → ψα(πα) + cα, ϕi(σi) → ϕi(σi) + ci. (54)

Fixing the values of
∑

σi
ϕi(σi) and

∑
πα

ψα(πα), introducing the shifts (54) into
equations (49), (50) and integrating with respect to ci, cα, one arrives at the normalization
constraints

∑

σi

ϕ̄i(σi) = 1,
∑

πα

ϕ̄i(πα) = 1, (55)

that are dynamically imposed, i.e., they are present in the integrand of equation (49) as
products of the corresponding sets of δ-functions. A convenient choice of

∑
σi

ϕi(σi) and
∑

πα
ψα(πα) constraints is the one that makes z

(sp)
i = z

(sp)
α = 1. As a result the last two

terms on the rhs of equation (53) disappear and the equivalence between the effective
action (53) and the Bethe free energy of [6] (see also appendix A) becomes clear.

3.3. Belief–propagation as a saddle-point

Looking for the saddle-point configurations of the auxiliary fields ϕ̄i(σi), ψ̄α(πα), ϕi(σi),
ψα(πα) and χiα that dominate the contribution to the integral in equation (49), and
thus setting the corresponding partial derivatives of S to zero, we obtain in addition to
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equations (51), (52) the following saddle-point equations:

ϕ
(sp)
i (σi) = σi

∑

α�i

χ
(sp)
iα , (56)

ψ(sp)
α (πα) + ln fα(πα) +

∑

i∈α

π(i)
α χ

(sp)
iα = 0, (57)

∑

σi

σiϕ̄
(sp)
i (σi) =

∑

πα

π(i)
α ψ̄(sp)

α (πα). (58)

This system of equations (51), (52) and (56)–(58) is identical to the BP system of equation
derived via variation of the Bethe free energy [6] (see also appendix A). The relation

between the corresponding fields is as follows: ϕ̄
(sp)
i (σi) ↔ bi(σi), ψ̄

(sp)
α (πα) ↔ bα(πα),

χ
(sp)
iα σi ↔ λiα(σi), χ

(sp)
iα ↔

∑β �=α
β�i ηiβ . Normalization constraints (A.2) are obviously

satisfied in equations (51) and (52). The consistency constraint (A.3) is equivalent to (58).

Equations (51), (52) and (56)–(58) result in

∑
πα\σi

fα(πα) exp
(∑

j∈α π
(j)
α χ

(sp)
jα

)

∑
πα

fα(πα) exp
(∑

j∈α π
(j)
α χ

(sp)
jα

) =
exp

(
σi

∑
β�i χ

(sp)
iβ /(qi − 1)

)

∑
σi

exp
(
σi

∑
β�i χ

(sp)
iβ /(qi − 1)

) (59)

that can also be derived directly from equation (45). The lhs or rhs of equation (59) gives
the saddle-point, BP expression for ϕ̄i(σi)—the probability to observe spin at bit i in the
state σi.

The set of equations (51), (52), and (56)–(45) coincides with the one derived as
an extremum condition for the Bethe free energy [6] (see also appendix A). Iterative
solution of these nonlinear equations reproduces the famous Belief–Propagation algorithm
for efficient yet suboptimal solution of the inference problem.

The saddle-point approximation for the partition function

Z0 ∼ exp
[
−S0

(
χ(sp)

)]
, (60)

is expressed in terms of the effective action S0 defined in (45) and (46). Note that there
may be more than one realizable (correspondent to real valued χ(sp)) solution of the
saddle-point (BP) system of equations.

For the purpose of further applications let us also introduce the magnetization and
irreducible correlation function (defined at two bits neighbouring the same check), both
defined within the saddle-point BP approximation:

mi =
∑

σi

σiϕ̄
(sp)
i (σi), (61)

for i, j ∈ α : µij =
∑

σα

(σi − mi)(σj − mj)ψ̄
(sp)
α (σα). (62)
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3.4. Gaussian correction to the saddle-point approximation

To calculate the correction to the zero-order saddle-point approximation we need to
expand the effective action S0 in χiα around χ(sp) to the second order. According to
the definition of the saddle-point the first-order term in the expansion is exactly zero.
If the second-order expansion is sufficient, i.e., the higher-order terms are much smaller
with respect to some parameter (the exact origin of the expansion parameter will be
verified and discussed later), we shift the multidimensional integration contour that enters
equation (46) in the space of complex χ-fields to go exactly through the saddle-point. The
next task is to calculate corrections that originate from the vicinity of the saddle-point.
At the saddle-point we choose the local orientation of the integration contour in the
steepest descent way. Note that the steepest descent at a saddle-point may go along an
imaginary or real direction. Finally, the integral in equation (46) is approximated by a
Gaussian integral. The result of the Gaussian integration in equation (46), which leads
to a correction in the saddle-point term, becomes

∼ exp [−S0 − S1] , S1 =
1

2
ln
∣∣∣det

[
Λ̂
]∣∣∣ , Λiα;jβ(χ(sp)) ≡ ∂2S0(χ)

∂χiα∂χjβ

∣∣∣∣
χ=χ(sp)

, (63)

where all the expressions are taken at χ(sp).
Calculating the matrix of the second-order derivatives directly from equation (45),

one arrives at

∀ i ∈ α : Λiα;iα(χ(sp)) =
2 − qi

qi − 1

[
1 − m2

i

]
, (64)

∀ α, β � i, α �= β : Λiα;iβ(χ(sp)) =
1 − m2

i

qi − 1
, (65)

∀ i, j ∈ α, i �= j : Λiα;jα(χ(sp)) = −µij , (66)

where all matrix elements between the pairs/links {i, α} and {j, β} sharing neither a
common bit nor a common factor/check node are zero. In equations (64)–(66), mi and
µij are the magnetizations and irreducible correlation functions, respectively, that are
calculated within the saddle-point (BP) approximation (see equations (61) and (62)).
Direct calculation of the Gaussian integrals based on the problem-specific information on
the BP saddle-point solutions and the quadratic form matrix (64), (66), the latter also
depending on the bare saddle-point solutions, provides a straightforward algebraic way
of computing the partition function, magnetization, and any other spin-related objects
within the Gaussian approximation.

A potential difficulty in the evaluation of Gaussian integrals originates from a
relatively complex structure of the matrix Λ̂. Specifically, the off-diagonal (66) term
proportional to the irreducible pair correlation function induces coupling between different
blocks related to the corresponding bits. In section 3.4.1 we analyse the Gaussian integrals
perturbatively by expanding the off-diagonal term in an infinite series.

We will show that the only surviving terms in this expansion, after the Gaussian
integrations are performed, correspond to loops in the factor graphs. We will demonstrate
that the actual expansion parameter is the product over the loop of the terms µij/(1−m2

i ),
evaluated at the saddle-point.
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1

2

a
b

Vertex

Propagator

Figure 2. Gaussian approximation about the BP saddle-point. Diagrams for the
propagator and the vertex are shown on the left. The right plot illustrates a
loop contribution. The example corresponds to a loop in the model shown in the
upper left corner of figure 1. A leg of a vertex (dashed line) should pair with a
leg of a propagator (solid line). No unpaired legs are allowed.

3.4.1. Loop expansion in the Gaussian case. We start by introducing a convenient notation
for the Gaussian integration:

〈A〉bd ≡

∫ (∏γ∈p
p,γ dζpγ

)
A exp[−(1/2)ζnβΛ

(bd)
nβ;pγζpγ]

∫ (∏γ∈p
p,γ dζpγ

)
exp[−(1/2)ζnβΛ

(bd)
nβ;pγζpγ]

, (67)

where Λ̂(bd) is the block (bit)-diagonal part Λ̂(off) of Λ̂ defined by equations (64) and (66)

with the off-block-diagonal part of Λ̂, described by equation (65) being ignored.

An important object Piα;jβ = 〈ζiαζjβ〉bd in the expansion with respect to Λ̂(off) will be
referred to as a propagator following the traditional physics jargon of the Feynmann
diagram expansion. It follows from equations (64) and (65) that the only nonzero
component of the propagator is represented by

α �= β, α, β � i : Piα;iβ =
1

1 − m2
i

. (68)

Note that the propagator has an interesting ‘fermionic-repulsive’ feature: for a fixed bit
i it is strictly zero for coinciding factor/check indices, i.e., Piα;iα = 0. In addition to the
‘propagator’, the off-block-diagonal term is represented by a ‘vertex’. The vertex term is
nonzero only for

i �= j, i, j ∈ α : Viα;iβ = µij . (69)

It is also convenient to introduce a graphical notation for both the propagator and the
vertex (see the left part of figure 2).

The correction to the partition function adopts the following form:

Zg =

〈
exp

[
−1

2
ζnβΛ

(off)
nβ;pγζpγ

]〉

bd

=
∞∑

n=0

1

2nn!

〈[
−ζlβΛ

(off)
lβ;pγζpγ

]n〉

bd

, (70)

where the full partition function of the model is approximated as Z ≈ Z0Zg. Each term in
the sum on the rhs of equation (70) can be represented by a diagram. For an nth order term
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the diagram contains n-vertices. The Gaussian integration that corresponds to each term
is performed in the following way. We first consider all possible Wick decompositions of
the product of 2n ζ-terms in n pairs. Each pair in the product results in the corresponding
propagator. The nth-order term on the rhs of equation (70) naturally decomposes into
a sum of n(n − 1) terms each equal to a product of n-propagators and n-vertices. The
key observation is that only very few of the terms survive due to the specific structure
of the propagators (73) and the vertices (74). Indeed, only those terms do not vanish
that consist of the propagators and vertices, coupled through their legs and forming a
loop in the model factor graph. The structure is illustrated in figure 2. It is common
for the Feynman diagrammatic techniques that the natural object is the logarithm ln(Zg)
of the partition function, since only connected diagrams, i.e., the ones that cannot be
decomposed into a product of other diagrams, contribute to the object. This results in

ln(Zg) =
∑

C

∏i,j∈α
α∈C µij∏

i∈C(1 − m2
i )

, (71)

where loops C are defined as closed directed self-avoiding paths in the model factor graph
that pass from a bit to a factor/check and then from a factor/check to a bit, etc, in such
a way that returns from a check that belongs to the path back to the preceding bit are
not allowed. An example of a loop is shown in figure 2.

3.5. Loop calculus via integral representation

The Gaussian fluctuations analysis is justified only if the higher-order (third-, fourth-,
etc) corrections to the Gaussian approximation are small compared to the major saddle-
point and Gaussian contributions, and the expansion is controlled by some parameter.
Jumping ahead we know that the loop expansion exposed by the Gaussian approximation
is the correct one, in the sense that the connected loops contributions (no branching)
provides the leading correction with respect to the branching parameter. However, to see
how this general loop expansion actually works we need to expand the effective action to
all orders around the saddle-point and classify an infinite number of perturbative terms,
which seems a nightmare.

Fortunately, there is a way out of this technical problem that allows us to account
for all-order corrections simultaneously. The method is based on introducing a set of

new variables ζiα ≡ χiα − χ
(sp)
iα followed by explicit decomposition of the integrand in

equation (45) as a product of two non-Gaussian (with respect to the fields ζiα) terms,
which are diagonal in the bit and factor/check representations, respectively:

Z ∼
∫ [∏

i

∏

α

dζiα

]
∏

i

Pi

(
ζ ; χ(sp)

)∏

α

Vα

(
ζ ; χ(sp)

)
, (72)

Pi ≡
∏

α�i

[∑
πα

fα(πα) exp
(∑

j∈α π
(j)
α χ

(sp)
jα

)
exp

(
π

(i)
α ζiα

)]

[
cosh

(∑
α�i(χ

(sp)
iα + ζiα)/(qi − 1)

)]qi−1 , (73)

Vα ≡
∑

πα
fα(πα) exp

(∑
j∈α π

(j)
α

[
χ

(sp)
iα + ζiα

])

∏
i∈α

[∑
πα

fα(πα) exp
(∑

j∈α π
(j)
α χ

(sp)
jα

)
exp

(
π

(i)
α ζiα

)] . (74)
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Here we introduced the same factor to the numerator of P and denominator of V ,
respectively, that is local both in bit and check representations. The rationale behind
such a decomposition choice is to ensure that in the case of the Gaussian approximate
perturbative analysis of the effective action all correlations within a block associated with
the same bit are included in the ‘propagator’ term P , while the inter-bit interaction appear
only in the ‘vertex’ counterpart V .

We further introduce a set of convenient notations that will allow us to substantially
simplify the calculations:

∀ α �= β : 〈A(πα)B(πβ)〉π = 〈A(πα)〉πα〈B(πβ)〉πβ
, (75)

〈
A(πα)

〉

πα

≡
∑

πα
A(πα)fα(πα) exp

(∑
i∈α π

(i)
α χ

(bp)
iα

)

∑
πα

fα(πα) exp
(∑

i∈α π
(i)
α χ

(sp)
iα

) . (76)

Using the notation, the ‘propagator’ and ‘vertex’ terms can be recast as follows:

Pi =

∏
α�i [cosh ζiα + mi sinh ζiα]

[
cosh

(∑
α�i(χ

(sp)
iα + ζiα)/(qi − 1)

)]qi−1 , (77)

Vα =

[
∑

πα

fα(πα) exp

(
∑

i∈α

π(i)
α χ

(sp)
iα

)]〈
∏

i∈α

(
1 +

(π
(i)
α − mi) tanh ζiα

1 + mi tanh ζiα

)〉

πα

. (78)

Of course, the number of terms in the series will grow exponentially with the size,
very much like in the original formulation of the problem. However, wise classification
of the terms followed by selecting (and calculating) a small number of relevant terms
allows us not only to extract the BP approximation, but more importantly the leading-
order corrections to BP. The leading-order corrections/terms will be associated with
shortest loops on the Tanner graph, and this transparent geometrical interpretation will
be coming through diagrammatic representation of the perturbative terms. Note that the
diagrammatic technique we develop here is of a special kind. The major peculiarity of
the technique is the non-Gaussian form of the P -term in equation (74). Our approach
is technically reminiscent of the celebrated Vaks–Larkin–Pikin approach [23], used to
calculate non-perturbative corrections to the ferromagnetic ground state in magnets. The
reference is not precise as it only means to emphasize a vague structural relation of our
method to the one introduced in the classical paper [23] where the ‘propagator’ P -term
was also non-Gaussian.

We are now in a position to discuss a typical structure of the integrals over ζ for
individual terms (diagrams). We notice that an individual integral over all possible ζ
variables always decomposes into a product of independent integrals, each over the block
of variables related to a bit. The simplest integral corresponds to a bit with all edges
connected to it being uncoloured:

I0;i≡
∫ ∏

α�i

dχiαPi

(
1 + mi

2

)qi

exp

[
−
∑

α�i

χ
(sp)
iα

]
+

(
1 − mi

2

)qi

exp

[
∑

α�i

χ
(sp)
iα

]

=
(1 − m2

i )
(qi−1)/2

2qi−1
=

cosh
(∑

α�i χ
(sp)
iα /(qi − 1)

)1−qi

2qi−1
, (79)
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where one uses the saddle-point relation

exp

(
∑

α�i

χ
(sp)
iα

)
=

(
1 + mi

1 − mi

)(qi−1)/2

. (80)

Combining equations (79), (80) and substituting the result in equation (72), we obtain
for the first term in the series for the partition function

Z0 ∼
∏

α

∑
πα

fα(πα) exp
(∑

i∈α π
(i)
α χ

(sp)
iα

)

∏
i cosh

(∑
α�i χ

(sp)
iα /(qi − 1)

)1−qi
, (81)

which exactly reproduces the aforementioned saddle-point result.
For the general p-order term one arrives at

Ip;i,{αl; l=1,...,p, αl∈i}≡
∫ ∏

α�i

dχiα Pi

p∏

l=1

tanh ζiαl

(1 + mi tanh ζiαl
)

=
exp

[
−
∑

α�i χ
(sp)
iα

]

2qi
(1 + mi)

qi−p + (−1)p
exp

[∑
α�i χ

(sp)
iα

]

2qi
(1 − mi)

qi−p

= I0;i
(1 − mi)

p−1 + (−1)p(1 + mi)
p−1

2(1 − m2
i )

p−1
. (82)

The resulting expression for the entire series derived directly from equations (72), (77), (78)
and equation (82) is given by equations (8)–(10).

4. Conclusions

We conclude by presenting a brief outline for our ongoing and future research activities
on the way of extending the loop calculus detailed in this paper.

Gauge invariance of the vertex models has been discussed above in the context of
two specific representations we utilized to derive the loop series formula. However, this
important notion allows more universal and mathematically accurate formulation. For this
purpose, it is convenient to introduce the notion of a graphic tensor and corresponding
graphic trace (convolution). The graphic trace concept generalizes the standard (in
statistical mechanics) transfer matrix approach to the models defined using arbitrary
graphs. This allows us to formulate the loop expansion, and the BP equations, as
well as the Bethe free energy, in a gauge-invariant form. The loop expansion becomes
nothing more than a representation of the partition function as a sum over all possible
configurations using a special BP gauge. The graphical trace and the unifying gauge-
invariant approach will be discussed in detail elsewhere [24]. The universal formulation
allows for a natural and straightforward extension of the loop calculus to more general
statistical models that operate with non-binary alphabets (e.g. Potts model on a graph).
This general problem will also be discussed in [24].

More generally, we anticipate that the loop calculus can be extended to any classical
models residing in graphs that are formulated in terms of continuous fields of Abelian
and non-Abelian origin, e.g. O(2) and O(3) models, respectively. Moreover, the approach
should also work for quantum models and fields, e.g. the quantum Heisenberg model on
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a graph. The latter may be of substantial interest for developing new approaches in
quantum information theory.

A loop series offers an exact representation for the partition function, and also
correlation functions, that can be used for improving approximate algorithms. This
should be understood as follows. Many problems in statistical physics, information
and computer sciences are intractable, in the sense that the number of steps required
to accomplish a computation (i.e., to calculate an observable) grows exponentially
with the system size. Then the issue of an approximation and related approximate
computational algorithm emerges. Development of a sequence of approximations with
gradually increasing complexity becomes an important task. On the one hand, the higher
is the term in the sequence, the better it approximates the full answer. On the other
hand, the complexity should be linear or polynomial for at least some number of low-
order terms. Given that the first term in the loop series is the BP term, which is known
to constitute already a very efficient approximation/algorithm, one can use the higher-
order loop corrections as a regular way of BP algorithm improvement.

The loop series also introduces an explicit BP measure on the graph: any loop
contribution can be expressed in terms of local objects, magnetizations and irreducible
correlation functions calculated within BP. Therefore, looking for individual loop
contributions that dominate the correction to the bare BP approximation constitutes
a particularly attractive and computationally feasible strategy [25]. As a side remark
we note that various options are available for calculating the bare BP contribution and
estimating the magnetizations and irreducible correlation functions within BP. First of
all, one may use the original iterative algorithm of Gallager [7]. The linear programming
approach of [26] is another very attractive possibility at large signal-to-noise ratios in the
cases when the iterative BP does not converge. Finally, one may develop an iterative
relaxation algorithm that is guaranteed to converge to a true minimum of the Bethe free
energy [27]. Such an algorithm is expected to perform better than the linear programming
algorithm at finite temperatures.

We anticipate the proposed scheme to work very well in many cases, especially for
graphs that are locally tree-like. The models with long loops emerge naturally in the
context of decoding of LDPC codes [7, 10, 11] and also in the K-SAT satisfiability problem
in computer science [13]–[15].

The loop series can also be very useful for theoretical analysis of problems with
disorder [28], e.g. of the random graph type [29, 30]. The goal here is to calculate the loop
corrections to various disorder-averaged correlation functions. A particularly interesting
question is how to differentiate contributions that originate from loops of different sizes.
Depending on the regime one may expect either dominance of some limited number of
shortest loops, or a distributed effect of many loops. Thus, for the Viana–Bray model [29],
which contains a large number of short loops, considered in the high-temperature regime,
the latter possibility was reported in the formal 1/N replica expansion [16]. The leading
correction to the BP expression for the averaged free energy is dominated by a combined
effect of many long loops. Further analysis of this and other models, especially the ones
corresponding to expurgated ensembles of random graphs modelling LDPC codes with
large girth [31], is required to clarify the statistical role of loops of different lengths.

Finally, we are optimistic about using the loop calculus developed in this paper for
further analysis and algorithmic exploration of the standard lattice models, i.e., regular
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structures with many short loops. A particularly interesting yet challenging direction
of research would be using the loop calculus, which naturally differentiates the loops of
different sizes and shapes, for analysis of the critical point behaviour in the lattice models.
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Appendix A: Bethe free energy

In this appendix we reproduce a derivation of the Belief–Propagation equation based
on the Bethe free energy variational principle, following closely the description of [6],
e.g. translating it to our notations. We describe the Bethe free energy approach for
the factor graph model and general vertex models in the two subsequent subsections,
respectively.

Appendix A.1. Bethe free energy for the factor graph model

In this approach trial probability distributions, called beliefs, are introduced both for
bits and checks bi and bα, respectively, where i = 1, . . . , N , α = 1, . . . , M . Each belief
depends on the corresponding spin realization. Thus, a belief at a bit actually consists
of two probabilities, bi(+) and bi(−), and we use a natural notation bi(σi). There are
2k beliefs defined at a check, k being the number of bits connected to the check, and we
introduce vector notation σα = (σi1 , . . . , σik) where i1, . . . , ik ∈ α and σi = ±1. Beliefs,
as corresponding probabilities, satisfy the following inequality constraints:

0 ≤ bi(σi), bα(σα) ≤ 1, (A.1)

the normalization constraints
∑

σi

bi(σi) =
∑

σα

bα(σα) = 1, (A.2)

as well as the consistency (between bits and checks) constraints
∑

σα\σi

bα(σα) = bi(σi), (A.3)

where σα\σi stands for all possible configurations of σj with j ∈ α, j �= i.
The Bethe free energy is defined as a difference of the Bethe self-energy and the Bethe

entropy,

FBethe = UBethe − HBethe, (A.4)

defined as

UBethe = −
∑

α

∑

σα

bα(σα) ln fα(σα), (A.5)

HBethe = −
∑

α

∑

σα

bα(σα) ln bα(σα) +
∑

i

(qi − 1)
∑

σi

bi(σi) ln bi(σi), (A.6)
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where σα = (σi1 , . . . , σik), i1, . . . , ik ∈ α and σi = ±1. The entropy term for a bit enters
equation (A.4) with the coefficient 1− qi to account for the right counting of the number
of configurations for a bit: if all entries for a bit (e.g. into the check term) are counted
the total counting should give +1 for the bit.

Note that the definition of fα according to equation (A.5) is not unique. A convenient
choice of the factor function describing an LDPC code would be

fα(σα) ≡ exp

(
∑

i∈α

hiσi/qi

)
δ

(
∏

i∈α

σi, 1

)
. (A.7)

Optimal configurations of beliefs are the ones that minimize the Bethe free
energy (A.4) subject to the constraints (A.1)–(A.3). Introducing the constraints as the
Lagrange multiplier term to the effective Lagrangian

L = FBethe +
∑

α

γα

(
∑

σα

bα(σα) − 1

)
+
∑

i

γi

(
∑

σi

bi(σi) − 1

)

+
∑

i

∑

α�i

∑

σi

λiα(σi)



bi(σi) −
∑

σα\σi

bα(σα)



 , (A.8)

and looking for the extremum with respect to all possible beliefs leads to

δL

δba(σa)
= 0 ⇒ bα(σα) = fα(σα) exp

[
−γα − 1 +

∑

i∈α

λiα(σi)

]
, (A.9)

δL

δbi(σi)
= 0 ⇒ bi(σi) = exp

[
1

qi − 1

(
γi +

∑

α�i

λiα(σi)

)
− 1

]
. (A.10)

Substituting λiα(σi) ≡ ln
∏

β�i;β �=α µiβ(σi) into equations (A.9) and (A.10) we arrive at

bα(σα) ∝ fα(σα)
∏

i∈α

β �=α∏

β�i

µiβ(σi), (A.11)

bi(σi) ∝
∏

α�i

µiα(σi), (A.12)

where ∝ is used to indicate that we should use the normalization conditions (A.2) to
guarantee that the beliefs sum up to one. Applying the consistency constraint (A.3) to
equation (A.11), making the summation over all spins but the given σi, and also making
use of equation (A.12) we derive the Belief–Propagation equations:

∏

α�i

µiα(σi) ∝ bi(σi) ∝
[

β �=α∏

β�i

µiβ(σi)

]
∑

σα\σi

fα(σα)

j �=i∏

j∈α

β �=α∏

β�j

µjβ(σj). (A.13)

The rhs of equation (A.13) rewritten for the LDPC case (A.7) becomes

bi(σi) ∝ exp[hiσi]

[
β �=α∏

β�i

µiβ(σi)

][
j �=i∏

j∈α

(µjα(+) + µjα(−)) + σi

j �=i∏

j∈α

(µjα(+) − µjα(−))

]
.

(A.14)

doi:10.1088/1742-5468/2006/06/P06009 24

http://dx.doi.org/10.1088/1742-5468/2006/06/P06009


J.S
tat.M

ech.
(2006)

P
06009

Loop series for discrete statistical models on graphs

Thus constructing bi(+)/bi(−) for the LDPC case in two different ways, corresponding to
the left and right relations in equation (A.13), equating the results and introducing the
ηiα field

exp[2ηiα] =
µiα(+)

µiα(−)
, (A.15)

one arrives at the BP equations for the ηiα fields of the LDPC code:

ηiα = hi +

β �=α∑

β�i

tanh−1

[
j �=i∏

j∈β

tanh ηjβ

]
. (A.16)

Appendix A.2. Bethe free energy for the general vertex model

The variational approximation for the model that generalizes the factor graph case
discussed in appendix A.1, reads as follows. One minimizes the following Bethe free
energy

Fgvm =
∑

a

∑

σa

ba(σa) ln

(
ba(σa)

fa(σa)

)
−

c∈a∑

a,c

∑

σac

bac(σac) ln bac(σac), (A.17)

with respect to ba(σa), bac(σac) fields under the conditions

∀ a, c; c ∈ a : 0 ≤ ba(σa), bac(σa,c) ≤ 1, (A.18)

∀ a, c; c ∈ a :
∑

σa

ba(σa) =
∑

σa,c

bac(σa,c) = 1, (A.19)

∀ a, c; c ∈ a : bac(σac) =
∑

σa\σac

ba(σa) =
∑

σc\σac

bc(σc), (A.20)

where as usual we assume σac = σca. The second term on the rhs of equation (A.17) is
the entropy term which takes care of the ‘double’ counting’ of the link contribution: any
link enters twice in the entropy part of the first term on the rhs of equation (A.17).

Extension of these formulae to the orientable vertex model case is straightforward. It
is achieved by partitioning the entire family of vertices {a} into two subfamilies {i} and
{α}. After that one just needs to replicate equations (A.17)–(A.19) in the bit and check
versions respectively, while equation (A.21) adopts the following form:

∀ i, α; i ∈ α :
∑

σi\σiα

bi(σi) =
∑

σα\σiα

bα(σα). (A.21)

Furthermore, considering the case of the orientable vertex model and substituting a
particular form of the fi(σi) correspondent to equation (4), we find that equation (A.17)
turns into equations (A.4)–(A.6) under a natural substitution:

bi(σi) =

{
bi(σi), σiα = σiβ ∀α, β � i

0, otherwise.
(A.22)
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Appendix B. Single loop example

This appendix serves an illustrative purpose. We show directly how the loop formula (8)
works for a simple example of the factor graph model (1) with a single loop (two bits and
two checks, see figure B.1). For this simple model the Belief–Propagation equations (A.11)
and (A.12) adopt the following form:

for α, β = a, b; β �= α : bα(σ1, σ2) =
fα(σ1, σ2)d

σ1/2
1β d

σ2/2
2β

∑
σ′
1,2

fα(σ′
1, σ

′
2)d

σ′
1/2

1β d
σ′
2/2

2β

, (B.1)

for i = 1, 2 : bi(σi) =
d

σi/2
ia d

σi/2
ib∑

σ′
i
d

σ′
i/2

ia d
σ′

i/2

ib

(B.2)

where the factor functions fa(σ1, σ2), fb(σ1, σ2), defined for σ1,2 = ±1 are considered to be
arbitrary. Equation (B.2) is reduced to the set of quadratic equations that can be solved
explicitly, yielding

d1a = (−fa(−,−)fb(−,−) − fa(−, +)fb(−, +) + fa(+,−)fb(+,−) + fa(+, +)fb(+, +)

× [4(fb(−,−)fa(−, +) + fb(+,−)fa(+, +))(fa(−,−)fb(−, +)

+ fa(+,−)fb(+, +))(fa(−,−)fb(−,−) − fa(−, +)fb(−, +)

+ fa(+,−)fb(+,−) − fa(+, +)fb(+, +))2]1/2)

× [2(fa(−,−)fb(+,−) + fa(−, +)fb(+, +))]−1, (B.3)

where the BP expressions for d1b, d2a and d2b can be derived by making proper
permutations of indices and arguments in equation (B.3). Using these solutions we arrive
at the following expressions for the partition function calculated within the BP approach:

Z0 =

∏
α

∑β �=α
σ1,2

fα(σ1, σ2)d
σ1/2
1β d

σ2/2
2β

∏
i

∑
σi

d
σi/2
ia d

σi/2
ib

= 1
2
(fa(−,−)fb(−,−) + fa(−, +)fb(−, +) + fa(+,−)fb(+,−)

+ fa(+, +)fb(+, +) + [4(fb(−,−)fa(−, +) + fb(+,−)fa(+, +))

× (fa(−,−)fb(−, +) + fa(+,−)fb(+, +)) + (fa(−,−)fb(−,−)

− fa(−, +)fb(−, +) + fa(+,−)fb(+,−) − fa(+, +)fb(+, +))2]1/2). (B.4)

Bit magnetizations as well as irreducible correlation functions at the checks are found upon
direct substitution of (B.3) and similar expressions for the other d-variables in terms of
the factor functions into

i = 1, 2 : mi =
∑

σi

σibi(σi), (B.5)

α = a, b : µα =
∑

σ1,σ2

(σ1 − m1)(σ2 − m2)bα(σ1, σ2). (B.6)

Substituting these results, together with equation (B.4), into the loop expression
equation (8) for the model partition function we obtain
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1

2

a b

Figure B.1. Factor graph for the single loop model consisting of two nodes and
two bits.

Z = Z0

(
1 +

µaµb

(1 − m2
1)(1 − m2

2)

)

= fa(−,−)fb(−,−) + fa(−, +)fb(−, +) + fa(+,−)fb(+,−)

+ fa(+, +)fb(+, +), (B.7)

which coincides with the exact expression for the model partition function that can be
evaluated directly.
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