
Loop Subdivision Surface based Progressive Interpolation

Fuhua (Frank) Chenga, Fengtao Fana, Shuhua Laib,
Conglin Huanga, Jiaxi Wanga, Junhai Yongc

aDepartment of Computer Science, University of Kentucky, Lexington, KY 40506, USA

bDepartment of Mathematics and Computer Science, Virginia State University, Petersburg, VA 23806, USA

cSchool of Software, Tsinghua University, Beijing 100084, P.R. China

Abstract. A new method for constructing interpolating Loop subdivision surfaces is presented.
The new method is an extension of the progressive interpolation technique for B-splines. Given a
triangular mesh M , the idea is to iteratively upgrade the vertices of M to generate a new control
mesh M̄ such that limit surface of M̄ would interpolate M . It can be shown that the iterative
process is convergent for Loop subdivision surfaces. Hence, the method is well-defined. The new
method has the advantages of both a local method and a global method, i.e., it can handle meshes of
any size and any topology while generating smooth interpolating subdivision surfaces that faithfully
resemble the shape of the given meshes. The meshes considered here can be open or closed.

1 Introduction

Subdivision surfaces are becoming popular in many areas such as animation, geometric modeling
and games because of their capability in representing any shape with only one surface. A subdivision
surface is generated by repeatedly refining a control mesh to get a limit surface. Hence, a subdi-
vision surface is determined by the way the control mesh is refined, i.e., the subdivision scheme.
A subdivision scheme is called an interpolating scheme if the limit surface interpolates the given
control mesh. Otherwise, it is called an approximating scheme. Popular subdivision schemes such as
Catmull-Clark scheme [2], Doo-Sabin scheme [1], and Loop scheme [8] are approximating schemes
while the Butterfly scheme [6], the improved Butterfly scheme [9] and the Kobbelt scheme [18] are
interpolating schemes.

An interpolating subdivision scheme generates new vertices by performing local affine combi-
nations on nearby vertices. This approach is simple and easy to implement. Because of its local
property, it can handle meshes with a large number of vertices. However, since no vertex is ever
moved once it is computed, any distortion in the early stage of the subdivision will persist. This
makes interpolating subdivision schemes very sensitive to irregularity in the given mesh. In addition,
it is difficult for this approach to interpolate normals or derivatives.

On the other hand, even though subdivision surfaces generated by approximating subdivision
schemes do not interpolate their control meshes, it is possible to use this approach to generate a
subdivision surface to interpolate the vertices of a given mesh. One method, called global opti-
mization, does the work by building a global linear system with some fairness constraints to avoid
undesired undulations [3, 4]. The solution to the global linear system is a control mesh whose limit
surface interpolates the vertices of the given mesh. Because of its global property, this method gen-
erates smooth interpolating subdivision surfaces that resemble the shape of the given meshes well.
But, for the same reason, it is difficult for this method to handle meshes with a large number of
vertices.

To avoid the computational cost of solving a large system of linear equations, several other
methods have been proposed. A two-phase subdivision method that works for meshes of any size
was presented by Zheng and Cai for Catmull-Clark scheme [5]. A method proposed by Lai and Cheng
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[15] for Catmull-Clark subdivision scheme avoids the need of solving a system of linear equations by
utilizing the concept of similarity in the construction process. Litke, Levin and Schöder avoid the
need of solving a system of linear equation by quasi-interpolating the given mesh [7]. However, a
method that has the advantages of both a local method and a global method is not available yet.

In this paper a new method for constructing a smooth Loop subdivision surface that interpo-
lates the vertices of a given triangular mesh is presented. The new method is an extension of the
progressive interpolation technique for B-splines [10, 12, 13]. The idea is to iteratively upgrade the
locations of the given mesh vertices until a control mesh whose limit surface interpolates the given
mesh is obtained. It can be proved that the iterative interpolation process is convergent for Loop
subdivision surfaces. Hence, the method is well-defined for Loop subdivision surfaces. The limit
of the iterative interpolation process has the form of a global method. But the control points of
the limit surface can be computed using a local approach. Therefore, the new technique enjoys the
advantages of both a local method and a global method, i.e., it can handle meshes of any size and
any topology while generating smooth interpolating subdivision surfaces that faithfully resemble the
shape of the given meshes. The meshes considered here can be open or closed.

The remaining part of the paper is arranged as follows. In Section 2, we present the concept of
progressive interpolation for Loop subdivision surfaces on closed meshes. In section 3, we prove the
convergence of this iterative interpolation process. Extension of this technique to open meshes is con-
sidered in Section 4. Implementation issues and test results are presented in Section 5. Concluding
remarks are given in Section 6.

2 Progressive Interpolation using Loop Subdivision Surfaces

for Closed Meshes

The concept of Loop subdivision surface based progressive interpolation for closed meshes can be
described as follows.

Given a closed 3D triangular mesh M = M0. To interpolate the vertices of M0 with a Loop
subdivision surface, one needs to find a closed control mesh M̄ whose Loop surface passes through
all the vertices of M0. Instead of finding the relationship between the vertices of M̄ and the vertices
of M0 directly, we use an iterative process to do the job.

First, we consider the Loop surface S0 of M0. For each vertex V0 of M0, we compute the distance
between this vertex and its limit point V0

∞ on S0,

D0 = V0 − V0
∞,

and add this distance to V0 to get a new vertex called V1 as follows:

V1 = V0 + D0.

The set of all the new vertices is called M1. We then consider the Loop surface S1 of M1 and repeat
the same process.

In general, if Vk is the new location of V0 after k iterations of the above process and Mk is the
set of all the new Vk’s, then we consider the Loop surface Sk of Mk. We first compute the distance
between V0 and the limit point Vk

∞ of Vk on Sk

Dk = V0 − Vk
∞. (1)

We then add this distance to Vk to get Vk+1 as follows:

Vk+1 = Vk + Dk. (2)

The set of new vertices is called Mk+1.
This process generates a sequence of control meshes Mk and a sequence of corresponding Loop

surfaces Sk. Sk converges to an interpolating surface of M0 if the distance between Sk and M0
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converges to zero. Therefore the key task here is to prove that Dk converges to zero when k tends
to infinity. This will be done in the next section.

Note that for each iteration in the above process, the main cost is the computation of the limit
point Vk

∞ of Vk on Sk. For a Loop surface, the limit point of a control vertex V with valence n can
be calculated as follows:

V∞ = βnV + (1 − βn)Q (3)

where

βn =
3

11 − 8 ×
(

3
8

+ (3
8

+ 1
4

cos 2π
n

)2
)

and

Q =
1

n

n
∑

i=1

Qi.

Qi are adjacent vertices of V. This computation involves nearby vertices only. Hence the progressive
interpolation process is a local method and, consequently, can handle meshes of any size.

Another point that should be pointed out is, even though this is an iterative process, one does
not have to repeat each step strictly. By finding out when the distance between M0 and Sk would
be smaller than the given tolerance, one can go directly from M0 to Mk, skipping the testing steps
in between.

3 Convergence of the Iterative Interpolation Process for Closed

Meshes

The proof needs a fact about the eigenvalues of the product of positive definite matrices. This fact
is presented in the following lemma.

Lemma 1 Eigenvalues of the product of positive definite matrices are positive.

The proof of Lemma 1 follows immediately from the fact that if P and Q are square matrices of
the same dimension, then PQ and QP have the same eigenvalues (see, e.g., [16], p.14).

To prove the convergence of the iterative interpolation process for Loop subdivision surfaces, note
that at the (k + 1)st step, the difference Dk+1 can be written as:

Dk+1 = V0 − Vk+1
∞

= V0 −
(

βnVk+1 + (1 − βn)Qk+1
)

where Qk+1 is the average of the n adjacent vertices of Vk+1

Qk+1 =
1

n

n
∑

i=1

Qk+1
i

By applying (2) to Vk+1 and each Qk+1
i ,

Qk+1
i = Qk

i + Dk
Qk

i

we get
Dk+1 = V0 −

(

βnVk + (1 − βn)Qk
)

−
(

βnDk + 1−βn

n

∑n

i=1 Dk
Qi

)

= Dk −
(

βnDk + 1−βn

n

∑n

i=1 Dk
Qi

)
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where Qk is the average of the n adjacent vertices of Vk. In matrix form, we have

[

Dk+1
1 ,Dk+1

2 , . . . ,Dk+1
m

]T
= (I − B)











Dk
1

Dk
2

...
Dk

m











= (I − B)k+1











D0
1

D0
2

...
D0

m











where m is the number of vertices in the given matrix, I is an identity matrix and B is a matrix of
the following form:















βn1
. . .

1−βn1

n1

. . .
...

. . .
1−βni

ni
. . . βni

. . .
... βnm















The matrix B has the following properties:

(1) bij ≥ 0, and
∑n

j=1 bij = 1 (hence, ‖B‖∞ = 1);

(2) There are ni + 1 positive elements in the i-th row, and the positive elements in each row are
equal except the element on the diagonal line.

(3) If bij = 0 , then bji = 0;

Properties (1) and (2) follow immediately from the formula of Dk+1 in eq. (3). Property (3) is
true because if a vertex Vi is an adjacent vertex to Vj then Vj is obviously an adjacent vertex to
Vi. Due to these properties, we can write the matrix B as

B = DS

where D is a diagonal matrix

D =













1−βn1

n1

0 . . . 0

0
1−βn2

n2

. . . 0
...

. . .

0
1−βnm

nm













and S is a symmetric matrix of the following form:

S =

















n1βn1

1−βn1

. . . 1 . . .

...
. . .

1 . . .
niβni

1−βni

. . .

...
nmβnm

1−βnm

















D is obviously positive definite. We will show that the matrix S is also positive definite, a key
point in the convergence proof.

Theorem 1 The matrix S is positive definite.

Proof: To prove S is positive definite, we have to show the quadric form

f(x1, x2, . . . , xm) = XT SX

is positive for any non-zero X = (x1, x2, . . . , xm)T .
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Note that if vertices Vi and Vj are the endpoints of an edge eij in the mesh, then sij = sji = 1
in the matrix S. Hence, it is easy to see that

f(x1, x2, . . . , xn) =
∑

eij
2xixj

+
∑m

i=1

niβni

1−βni

x2
i

where eij in the first term ranges through all edges of the given mesh. On the other hand, if we use
fijr to represent a face with vertices Vi, Vj and Vr in the mesh, then since an edge in a closed
triangular mesh is shared by exactly two faces, the following relationship holds:

∑

fijr
(xi + xj + xr)

2

=
∑

eij
4xixj +

∑m

i=1 nix
2
i

where fijr on the left hand side ranges through all faces of the given mesh. The last term in the
above equation follows from the fact that a vertex with valence n is shared by n faces of the mesh.
Hence, f(x1, x2, . . . , xn) can be espressed as

f(x1, x2, . . . , xn) =
∑

fijr

1
2

(xi + xj + xr)
2

+
∑m

i=1

(

niβni

1−βni

− ni

2

)

x2
i

From eq. (3), it is easy to see that nβn

1−βn
≥ 3

5
n for n ≥ 3. Hence, f(x1, x2, . . . , xm) is positive for

any none zero X and, consequently, S is positive definite.

Based on the above lemma and theorem, it is easy to conclude that the iterative interpolation
process for Loop subdivision is convergent.

Theorem 2 The iterative interpolation process for Loop subdivision surface is convergent.

Proof: The iterative process is convergent if and only if absolute value of the eigenvalues of the
matrix P = I − B are all less than 1, or all eigenvalues λi, 1 ≤ i ≤ m, of B are 0 < λi ≤ 1.

Since ‖B‖∞ = 1, we have λi ≤ 1. On the other hand, since B is the product of two positive
definite matrices D and S, following Lemma 1, all its eigenvalues must be positive. Hence, the
iterative process is convergent.

4 Extension to Open Meshes

Loop subdivision surface based progressive interpolation technique can be used for open meshes as
well. Actually the same advantages hold for open meshes too. Before we present Loop subdivision
surface based progressive interpolation technique for open meshes, we need to review subdivision
rules for the boundaries of an open mesh first.

Two kinds of boundary rules have been presented for Loop subdivision in the literature [19, 20,
21, 22]. In this paper, we follow the rules presented in [19, 20]. These rules, together with the Loop
subdivision schemes, generate a smooth surface that is C1 continuous at the boundaries [20, 19].

For these rules to work, the vertices on the boundary are divided into two categories: regular
vertices and extraordinary vertices. A boundary vertex is called a regular vertex if its valence is 4,
as the one shown in Fig.1(a). Otherwise, a boundary vertex is called an extraordinary vertex.

For each existing boundary vertex, a new vertex is computed as a linear combination of the
existing vertex and its two neighbors with weights 3/4, 1/8 and 1/8, respectively. This vertex
formula applies to both regular vertices and extraordinary vertices.
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For each boundary edge, a new edge vertex is generated in two ways. If the endpoints of the edge
are both regular or both extraordinary, then the new vertex is just the average of the endpoints. If one
of them is regular and the other one is extraordinary, then the new vertex is a linear combination
of the regular vertex and the extraordinary vertex with weights 5/8 and 3/8, respectively, as in
Fig.1(c).

Limit points are computed using two formulas, one for regular vertices and one for extraordinary
vertices, as in Fig.1(e) and Fig.1(f). These formulas require both neighbors to be regular vertices.
On boundaries of the initial mesh, one vertex could have either regular or extraordinary vertices.
There are totally 6 different configurations. For each configuration, we can get a new limit point
formula by combining the boundary subdivision rules with the standard limit points. These 6 limit
point formulas are shown in Fig.1(e) to Fig.1(j).

(a) Regular vertex (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 1: Boundary subdivision rules (b)-(d) and limit point forumlas (e)-(j), where the solid circular
points are regular vertices and rectangle points are extraordinary vertices.

Note that boundary subdivision involves only the boundary vertices. Therefore interpolation can
be performed for boundary vertices first. Once we have all the boundary vertices, interpolation of
interior vertices is then performed without making any changes to the boundary vertices. The final
mesh will interpolate both the boundary vertices and the interior vertices exactly. Interpolation of
the boundary vertices is done using our progressive interpolation technique. The convergence of the
interpolation is guaranteed. A mesh could have several disconnected closed boundaries, such as 6
in the pipe model in Fig.3(a). For each closed boundary, a linear system of equations can be built
based on the limit point formulas for boundary vertices.

V∞
B = EVB

Since very row is from one of the 6 limit point formulas, then E must be a strictly diagonally
dominant matrix which means

∑n

j=1,j 6=i eij < eii. The eigenvalues λi of E satisfy |λi| ≤ 1 for
∑n

j=1 eij = 1. Thus the eigenvalues of E are in (0, 1]. The advantage of our technique is very
desirable. No matter how many disconnected boundaries there are, interpolation is done for all
boundaries at the same time just through the local geometric operations. It avoids explicitly solving
several linear equations separately.

Interpolation of interior vertices also uses the progressive interpolation technique. Its convergence
is also provable. Let V = VB∪VI be the vertex set of the initial mesh M , where VB and VI are the
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set of boundary vertices and interior vertices, respectively. If we add one extra vertex q to M and
connects every boundary vertices with q, we get an closed mesh M ′ with vertex set VC = V ∪ q.

Applying the vertex limit point formula Eq.3 to interior vertices, we get a linear equation:

V∞
I = WV

= WIVI + WBVB

WI is a submatrix of W consisting of |VI| columns of W corresponding to the interior vertices.
WB is a similar submatrix corresponding to the boundary vertices. WI is similar to B for closed
meshes. It can be decomposed into one diagonal matrix DI and a symmetric matrix SI.

For this new closed mesh M ′, it is okay to apply the progressive interpolation technique developed
in the previous sections. Therefore, the following equations hold.

V∞
C = FVC

That is,




V∞
I

V∞
B

q∞



 =





WI 0
WB 0
wq αq









VI

VB

q





It is clear that W is just a submatrix of F. F is decomposed into DC and SC . SC depends only
on the topology of the mesh. M is part of M ′. Therefore, SI is just a minor of a positive definite
matrix SC. Now it is clear that WI satisfies the convergent condition for progressive interpolation.
The examples in Fig.3 show interpolation results of open meshes.

5 Results

The progressive interpolation process is implemented for Loop subdivision surfaces on a Windows
platform using OpenGL as the supporting graphics system. Quite a few cases have been tested.
Some of the closed cases (a hog, a rabbit, a tiger, a statue, a boy, a turtle and a bird) are presented
in Figure 2. All the data sets are normalized, so that the bounding box of each data set is a unit
cube. For each closed case, the given mesh and the constructed interpolating Loop surface are
shown. The sizes of the data meshes, numbers of iterations performed, maximum and average errors
of these cases are collected in Table 1.

Open mesh examples are shown in Fig. 3. The performance is about the same as the closed mesh
examples. For instance, for the face model (299 vertices) shown in Fig.3(c), it takes 10 iterations to
reach an error of 0.000998516 for boundary vertex interpolation and also 10 iterations to reach an
error of 0.000896328 for interior vertex interpolation by the new pogressive interpolation technique.

Table 1: Loop surface based progressive interpolation: test results.

Model # of vertices # of iterations Max Error Ave Error
Hog 606 10 0.000870799 0.000175255
Rabbit 453 13 0.000932857 0.000111197
Tiger 956 9 0.000720453 0.00014148
Statue 711 11 0.000890806 0.000109163
Boy 17342 6 0.000913795 0.000095615
Turtle 445 10 0.000955765 0.0001726
Bird 1129 9 0.000766811 0.000088345

From these results, it is easy to see that the progressive interpolation process is very efficient
and can handle large meshes with ease. This is so because of the expotential convergence rate of
the iterative process. Another point that can be made here is, although no fairness control factor
is added in the progressive iterative interpolation, the results show that it can produce visually
pleasing surface easily.

7



(a) Given mesh (b) I-surface (c) Given mesh

(d) I-surface (e) Given mesh (f) I-surface

(g) Given mesh (h) I-surface (i) G-mesh (j) I-surface

(k) Given mesh (l) I-surface (m) Given mesh (n) I-surface

Figure 2: Examples of progressive interpolation using Loop subdivision surfaces (G-mesh ≡ given
mesh; I-surface ≡ interpolating Loop surface).
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(a) Given mesh (b) I-surface

(c) Given mesh (d) I-surface (e) Different view

Figure 3: Open mesh examples (I-surface ≡ interpolating Loop surface). Red solid dots are boundary
vertices of the given mesh.

6 Concluding Remarks

A progressive interpolation technique for Loop subdivision surfaces is presented and its convergence
is proved. The limit of the iterative interpolation process has the form of a global method. Therefore,
the new method enjoys the strength of a global method. On the other hand, since control points
of the interpolating surface can be computed using a local approach, the new method also enjoys
the strength of a local method. Consequently, we have a subdivision surface based interpolation
technique that has the advantages of both a local method and a global method. The new technique
works for both open and closed meshes. Our next job is to investigate progressive interpolation for
Catmull-Clark and Doo-Sabin subdivision surfaces.

Acknowledgement

Research work presented here is supported by NSF (DMI-0422126). The last author is supported
by NSFC(60625202, 60533070). Triangular meshes used in this paper are downloaded from the
Princeton Shape Benchmark [17].

References

[1] Doo D, Sabin M, Behaviour of recursive division surfaces near extraordinary points, Computer-
Aided Design 1978, 10(6):356-360.

[2] Catmull E, Clark J, Recursively generated B-spline surfaces on arbitrary topological meshes,
Computer-Aided Design 1978, 10(6):350-355.

[3] Halstead M, Kass M, DeRose T, Efficient, fair interpolation using Catmull-Clark surfaces,
Proc.SIGGRAPH 1993, 47-61.

9



[4] Nasri AH, Surface interpolation on irregular networks with normal conditions, Computer Aided
Geometric Design 1991, 8:89-96.

[5] Zheng J, Cai YY, Interpolation over arbitrary topology meshes using a two-phase subdivision
scheme, IEEE Trans. Visualization and Computer Graphics 2006, 12(3):301-310.

[6] Dyn N, Levin D, Gregory JA, A Butterfly Subdivision Scheme for Surface Interpolation with
Tension Control, ACM Trans. Graphics 1990, 9(2):160-169.
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