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Loophole-free Bell test using 
electron spins in diamond: second 
experiment and additional analysis
B. Hensen1,2, N. Kalb1,2, M.S. Blok1,2, A. E. Dréau1,2, A. Reiserer1,2, R. F. L. Vermeulen1,2, 

R. N. Schouten1,2, M. Markham3, D. J. Twitchen3, K. Goodenough1, D. Elkouss1, S. Wehner1, 

T. H. Taminiau1,2 & R. Hanson1,2

The recently reported violation of a Bell inequality using entangled electronic spins in diamonds 

(Hensen et al., Nature 526, 682–686) provided the first loophole-free evidence against local-realist 
theories of nature. Here we report on data from a second Bell experiment using the same experimental 

setup with minor modifications. We find a violation of the CHSH-Bell inequality of 2.35 ± 0.18, in 
agreement with the first run, yielding an overall value of S = 2.38 ± 0.14. We calculate the resulting 
P-values of the second experiment and of the combined Bell tests. We provide an additional analysis 

of the distribution of settings choices recorded during the two tests, finding that the observed 
distributions are consistent with uniform settings for both tests. Finally, we analytically study the effect 
of particular models of random number generator (RNG) imperfection on our hypothesis test. We find 
that the winning probability per trial in the CHSH game can be bounded knowing only the mean of the 
RNG bias. This implies that our experimental result is robust for any model underlying the estimated 

average RNG bias, for random bits produced up to 690 ns too early by the random number generator.

Ever since its inception, the counterintuitive predictions of quantum theory have stimulated debate about the fun-
damental nature of reality. In 1964, John Bell found that the correlations between outcomes of distant measure-
ments allowed under local realism1 are strictly bounded, while certain quantum mechanical states are predicted 
to violate this bound2. Numerous violations of a Bell inequality in agreement with quantum theory have been 
reported3–16. However, due to experimental limitations additional assumptions were required in all experiments 
up to 2015 in order to reject the local-realist hypothesis, resulting in loopholes. Last year we reported the �rst 
experimental loophole-free violation of the CHSH-Bell inequality using entangled electron spins associated with 
nitrogen-vacancy (NV) centers in diamond, separated by 1.3 km17. Less than three months a�er our experiment, 
two groups observed violations of the CH-Eberhard inequality on spatially-separated photons18,19 and before the 
end of the year �rst signatures of a CHSH-Bell violation on single Rubidium atoms were found20.

Below, we report on data from a second loophole-free Bell test performed with the same setup as in Hensen 
et al.17. Additionally, we analyse in detail the recorded distribution of settings choices in both the �rst and sec-
ond datasets. Finally, we investigate the e�ect of arbitrary models underlying the bias in the random number 
generation.

Second run
A�er �nishing the �rst loophole-free Bell experiment in July 2015, both the A(lice) and B(ob) setups were modi-
�ed and used in various local experiments. In December 2015, we rebuilt the Bell setup for performing a second 
run of the Bell test, with three small modi�cations compared to the �rst run.

First, we add a source of classical random numbers for the input choices19. A random basis choice is now made 
by applying an XOR operation between a quantum random bit generated as previously21–23 and classical random 
bits based on Twitter messages, as proposed by Pironio24. In particular, we generate two sets of classical random 
numbers, one for the basis choice at A, and one for the basis choice at B (see details in the following sections). At 
each location, 8 of these bits are fed into an FPGA. Just before the random basis rotation, the 8 Twitter bits and 
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1 quantum random bit are combined by subsequent XOR operations. �e resulting bit is used as the input of the 
same microwave switch as used in the �rst run17. �e XOR operation takes 70 ns of additional time, shi�ing the 
start of the readout pulse to a later time by the same amount. We leave the end of the readout window unchanged, 
resulting in the same locality conditions as in the �rst test.

We note that the Twitter-based classical random bits by themselves cannot close the locality loophole: the 
raw data is available on the Internet well before the trials and the protocol to derive the bits is deterministic and 
programmed locally. �e only operations that are performed in a space-like separated manner are the XOR oper-
ations between 8 stored bits. �erefore, strictly speaking only the quantum-RNG is providing fresh random bits. 
Since a loophole-free Bell test is described solely by the random input bit generation and the outcome recording at 
A and B (and in our case the event-ready signal recording at C), the second run can test the same null hypothesis 
as the �rst run as these events are unchanged. �at being said, the use of the Twitter-based classical randomness 
puts an additional constraint on local-hidden-variable models attempting to explain our data.

Second, we set larger (i.e. less conservative) heralding windows at the event-ready detector in order to increase 
the data rate compared to the �rst experiment. We start the heralding window about 700 picoseconds earlier, 
motivated by the data from the �rst test. We prede�ne a window start of 5426.0 ns a�er the sync pulse for channel 
0, and 5425.1 ns for channel 1. We set a window length of 50 ns.

Finally, we also use the ψ+-Bell state, which is heralded by two photo-detection events in the same beamsplit-
ter output arm at the event-ready station. In general the �delity of this Bell state is lower than that of ψ− due to 
detector a�er-pulsing25 (note that for ψ− the a�er-pulsing is not relevant because ψ− is heralded by photo detec-
tion events in di�erent beamsplitter output arms). However, we found the a�er-pulsing e�ect to be small enough 
for the detectors used in this run. We set an adapted window length of the second window of 4 ns and 2.5 ns for 
channels 0, 1 respectively, where the exponentially decaying NV emission is still large relative to the a�er-pulsing 
probability. As described below, we can combine the ψ−-related and ψ+-related Bell trials into a single hypothesis 
test26.

Apart from these modi�cations, all settings, analysis so�ware, calibrations and stabilisation routines were 
identical to those in the �rst run17.

Random numbers from Twitter. A�er each potential heralding event (corresponding to the E-events 
described in the Supplementary Information of Hensen et al.17), both at location A and B we take 8 new bits from 
a prede�ned random dataset (one for A and one for B) based on Twitter messages, to send to the FPGA-based 
random-number combiner (see Fig. 1).

�e random dataset for A was obtained by collecting 139952 messages from Twitter trending topic with 
hash-tag #2DaysUntilMITAM, starting from 14:47:58 November 11th, 2015. �e messages were collected using 
the Python Tweepy-package (www.tweepy.org). Only the actual message text was used (no headers), consisting of 
at most 140 Unicode characters. From each message a single bit was obtained by �rst converting each character 
into an integer representing its Unicode code point, converting the integer to the smallest binary bit-string repre-
senting that number and �nally taking the parity of all the resulting bit-strings together (even or uneven number 
of ones). �e dataset for B was similarly obtained from 134501 messages with the hash-tag #3DaysTillPURPOSE, 
streamed prior to the dataset A, starting from 16:52:44 November 10th, 2015.

We note that although one may expect the Justin Bieber and One Direction fan-bases to be su�ciently disjoint 
to produce an uncorrelated binary dataset, the hashtag from dataset B featured in 2 out of 139952 tweets of dataset 
A, and vice-versa in 4 out of 134501 tweets. Still, a Fisher-exact independence test of A (�rst 134501 bits) and B’s 
dataset results in a P-value of 0.63. �e bias of the 8-bit parity sets were 0.44% and 0.95%, with statistical uncer-
tainty ( )N

1

2
 of 0.38% and 0.39% for A, B respectively. As these bits are XOR’ed with bits from the quantum ran-

dom number generator with much smaller bias, this has no expected e�ect on the bias in the used input settings. 
Finally, we characterized the performance of the FPGA combiners, which showed no errors on 108 XOR 
operations.

APD replacement. A�er 5 days of measurement, the APD at location C corresponding to channel 0 broke 
down during the daily calibration routine and was subsequently replaced. To take into account the changed 
detection-to-output delay for the event-ready �lter settings, the laser pulse arrival time was recorded for the new 
APD before proceeding. We adapted the start of the event-ready window for channel 0 accordingly, and used this 
for all the data taken a�erwards.

Figure 1. Schematic of random input bit generation by combining bits from a quantum random number 
generator (QRNG) and classical random bits from a dataset based on Twitter messages. 

http://www.tweepy.org
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Joint P-value for ψ− and ψ+ heralded events. Here we expand the statistical analysis used for the �rst 
run17 to incorporate the ψ− and ψ+ events into one hypothesis test. For each of these states we perform a di�erent 
variant of the CHSH game, and then use the methods of Elkouss and Wehner26 to combine the two: �e output 
signal of the “event-ready”-box =

=
tt ( )m

i i
m

1 now has three possible outcomes, where the tag ti =  0 still corre-
sponds to a failure (no, not ready) event. We now distinguish two di�erent successful preparations of the boxes A 
and B: ti =  − 1 corresponds to a successful preparations of the ψ− Bell state, and ti =  + 1 to a ψ+ Bell state. In terms 
of non-local games, Alice and Bob are playing two different games, where in case ti =  − 1 they must have 
− =x y( 1) 1a b

i i
i i  in order to win, and in case of ti =  + 1 they must have − =

⊕ x y( 1) 1a b
i i

( 1)i i  to win. Note that both 
games have the same maximum winning probabilities. �is means that we can take k :=  k− +  k+, with k− the 
number of times − =x y( 1) 1a b

i i
i i , and k+ the number of times − =

⊕ x y( 1) 1a b
i i

( 1)i i ; the remainder of the analysis 
remains the same and in particular the obtained bound to the P-value is unchanged (see Elkouss and Wehner26, 
page 20). We then have for the adapted CHSH function (see Supplementary Information of Hensen et al.17):

∑′ = ⋅
− +

=

+
+

k t
x y

:
( 1) 1

2
,

(1)i
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i
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i i

1

( )i i
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2

and adapted total number of events then becomes:

∑′ = = .

=

n tt:
(2)

m

i

m

i
1

Results
In this test we set the total number of Bell trials n2 =  300. A�er 210 hours of measurement over 22 days during 1 month, 
we �nd S2 =  2.35 ±  0.18, with S2 the weighted average of = ⋅ + ⋅ + ⋅ − ⋅ψ

−S x y x y x y x y
(0,0) (0,1) (1,0) (1,1)

 

for ψ− heralded events (di�erent detectors clicked), and = ⋅ + ⋅ − ⋅ + ⋅ψ
+S x y x y x y x y

(0,0) (0,1) (1,0) (1,1)
 

for ψ+ (same detector clicked). See Fig. 2.
�is yields a P-value of 0.029 in the conventional analysis17 (a non-loophole-free analysis that assumes inde-

pendent trials, perfect random number generators and Gaussian statistics), and with k2 =  237 a P-value of 0.061 in 
the complete analysis17 (which allows for arbitrary memory between the trial, partially predictable random inputs 
and makes no assumptions about the probability distributions).

Combined P-value for the two tests. We now turn to analysing the statistical signi�cance of the two runs 
combined. Let us �rst note that there are many methods for combining hypothesis tests and P-values, each with 
its own assumptions. Extending the conventional analysis, we take the weighted sum of the CHSH parameters 
obtained for both tests to �nd Scombined =  2.38 ±  0.136, yielding a P-value of 2.6 · 10−3. For the complete analysis, we 
give here two example cases. �e �rst case is where the tests are considered to be fully independent; the P-values 
can then be combined using Fisher’s method, resulting in a joint P-value of 1.7 · 10−2 for the complete analysis. As 
a second example the two runs are considered to form a single test; the data can then be combined, k1 +  k2 =  433 
for n1 +  n2 =  545, resulting in a joint P-value of 8.0 · 10−3 for the complete analysis. We emphasize that these are 
extreme interpretations of a subtle situation and these P-values should be considered accordingly.

Figure 2. Second loophole-free Bell test results. (a) Summary of the data and the CHSH correlations. We 
record a total of n2 =  300 trials of the Bell test. Dotted lines indicate the expected correlation based on the spin 
readout �delities and the characterization measurements presented in Hensen et al.17. Shown are data for both 
ψ− heralded events (red, two clicks in di�erent APD’s at location C), and for ψ+ heralded events (blue, two clicks 
in the same APD). Numbers in bars represent the amount of correlated and anti-correlated outcomes 
respectively, for ψ− (red) and ψ+ (orange). Error bars shown are − ⋅x y n(1 )/a b a b( , )

2
( , ) , with n(a,b) the number 

of events with inputs (a, b).
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Although the prede�ned event-ready �lter settings were used for the hypothesis tests presented, the datasets 
recorded during the Bell experiments contain all the photon detection times at location C. �is allows us to 
investigate the e�ect of choosing di�erent heralding windows in post-processing. Such an analysis does not yield 
reliable global P-values (look-elswehere e�ect), but can give insight in the physics and optimal parameters of the 
experiment. In Fig. 3 we present the dependence of the recorded Bell violation S, and number of Bell trials n, if we 
o�set the start of the windows. For negative o�sets, photo-detection events caused by re�ected laser light starts to 
play an important role, and as expected the Bell violation decreases since the event-ready signal is in that regime 
no longer a reliable indicator of the generation of an entangled state. �e observed di�erence between the runs in 
o�set times at which the laser re�ections start to play a role are caused by the less aggressive �lter settings in the 
second run. However, we see that in both runs the S-value remains constant up a negative o�set of about 0.8 ns, 
indicating that the �lter settings were still chosen on the conservative side.

Statistical analysis of settings choices. Both for the Bell run in Hensen et al.17 and for the Bell run pre-
sented above, we are testing a single well-de�ned null hypothesis formulated before the experiment, namely that a 
local-realist model for space-like separated sites could produce data with a violation at least as large as we observe. 
�e settings independence is guaranteed by the space-like separation of relevant events (at stations A, B and C). 
Since no-signalling is part of this local-realist model, there is no extra assumption that needs to be checked in the 
data. We have carefully calibrated and checked all timings to ensure that the locality loophole is indeed closed.

Nonetheless, one can still check (post-experiment) for many other types of potential correlations in the 
recorded dataset if one wishes to. However, since now many hypotheses are tested in parallel, P-values should 
take into account the fact that one is doing multiple comparisons (the look-elsewhere e�ect, LEE). Failure to do 
so can lead to too many false positives, an e�ect well known in particle physics. In contrast, there is no LEE for a 
single pre-de�ned null hypothesis as in our Bell test.

Formulation and testing of multiple hypotheses can result in obtaining almost arbitrarily low local P-values. 
which may have almost no global signi�cance27–29. As an example, recalculating the P-value for the local realist 
hypothesis, given the �rst dataset for a window start o�set of − 900 picoseconds compared to the prede�ned win-
dow starts, results in a local P-value of 0.0081 using the complete analysis (see Fig. 3). Taking this to the extreme 
by doing a search of the window start o�sets for both channels independently and the joint window length o�set, 
results in a local P-value of 0.0018. �ese examples clearly illustrate that without taking into account that multiple 
hypotheses are being tested, such local P-values can not be used to assign signi�cance.

With these considerations in mind we analyse the settings choices in the two sub-sections below.

Settings choices in the first and second dataset. �e distribution of the 245 input settings in the �rst 
dataset (see Fig. 4a in Hensen et al.17 ) is (n(0,0), n(0,1), n(1,0), n(1,1)) =  (53, 79, 62, 51), with n(a,b) the number times the 
inputs (a, b) were used. �is realisation looks somewhat unbalanced for a uniform distribution, and one could 
be motivated to test the null hypothesis that the RNGs are uniform. Performing a Monte-Carlo simulation of 105 
realisations of a uniform multinomial distribution with size n =  245 we �nd a local P-value of 0.053 to get such a 
distribution or more extreme. We can get further insight by looking at all the setting choices recorded during the 
test. Around every potential heralding event about 5000 settings are recorded, for which we �nd a local P-value of 
0.57 (Table 1), consistent with a uniform setting distribution.

Many additional tests can be performed on equally many slices or subsets of the data, where one or more of 
the �lters (see Supplementary Information of Hensen et al.17) is relaxed. In Table 1 we list the individual (local) 
P-values for a set of 4 hypotheses regarding the settings choices, for both the �rst and second dataset.

Figure 3. CHSH parameter S, number of Bell trials n, and post-selected complete-analysis local P-value 
versus window start o�set for the event-ready photon detections at location C, for the �rst (grey) and 
second (orange) dataset. �e time-o�set shown is with respect to the prede�ned windows (corresponding 
to the dotted line). Con�dence region shown is one sigma, calculated according to the conventional analysis. 
Shi�ing the window back in time, the relative fraction of heralding events caused by photo-detection from laser 
re�ections increases, thereby reducing the observed Bell violation.
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1. RNG A is uniform
2. RNG B is uniform
3. RNG A and RNG B are jointly uniform
4. Fisher’s exact test30 for n <  5000, Pearson’s χ2 test31 for n >  5000)

For tests 1 and 2 we evaluate a two tailed binomial test with equal success probability. For test 3 we perform a 
Monte-Carlo simulation of 105 realisations of a uniform multinomial distribution with size �xed to the number 
of observations in that particular row, i.e. n =  245 for the second row in Table 1.

We observe that only one local P-value is below 0.05: Fisher’s exact test on the distribution of the settings in 
the �rst data set yields a local P-value of 0.029. However, as described in the next subsection below, when properly 
taking the look-elsewhere e�ect into account this does not result in a signi�cant rejection of the uniform settings 
hypothesis at the 0.05 level. Finally, the valid Bell trials of the �rst and second dataset combined, shown in the last 
row of Table 1, are also consistent with uniformly chosen input settings.

Significance and look-elsewhere effect. We now analyse the signi�cance of the local P-values in Table 1 
by taking into account the look-elsewhere e�ect. Say we are looking for correlations between parameters that are 
in fact completely independent. Looking at one correlation, it is as if we take one random sample from a distribu-
tion; the probability that it is at 2 sigma or more extreme is thus about 0.05. If we look for 4 di�erent correlations 
(assuming all parameters are independent), it is similar to taking 4 random samples, and thus the probability 
that at least one is at 2 sigma or more extreme is 1 −  (1 −  0.05)4 =  0.18. In reverse, assuming fully independent 
hypotheses, the local P-value p′  should have obeyed roughly 1 −  (1 −  p′ )4 <  0.05, so p′  <  0.013, to be statistically 
signi�cant at the 0.05 level.

In our case it is actually more complicated because there can be dependencies between hypotheses. We can 
numerically get some of these numbers. For instance, we have simulated the random number generation (RNG) 
using Monte-Carlo under the assumption of independent uniform outputs and calculated local P-values for the 
four hypotheses listed above. �e probability that at least one of these yield local P-value p′  <  0.05 turns out to 
be about 0.13 for the 245 events in the Bell test. �is is di�erent from 1 −  (1 −  0.05)4 =  0.18 because of correla-
tions between the tests, but it is clearly much higher than 0.05. In reverse, to arrive at an overall probability of 
0.05 of �nding at least one test yielding local P-value p′  <  pthreshold for the data in the �rst Bell dataset, we �nd  
pthreshold =  0.021. In other words, if we would only be looking at the settings corresponding to the valid Bell trials, 
then a local P-value below 0.021 would signal a statistically signi�cant violation of our hypothesis at the 0.05 level. 
We do not �nd such evidence for the valid Bell trial data (see �rst row in Table 1).

�e last column gives the probability that at least one of the hypothesis tests on the data in that row yields a 
local P-value p′  <  0.05, given uniform settings. In the one-but-last column we give pthreshold, again only for the data 
set in that row, for a signi�cance at the 0.05 level. �ese values assume that we would only be testing our hypothe-
ses on that particular row. Since we are now looking at di�erent rows, pthreshold for each row is a strict upper bound 
to the pthreshold for the full table, as we are looking at di�erent cross-sections of the raw data set at the same time; 
the pthreshold for the full table will thus be lower but it is not trivial to compute this, given the large dependence 
between the subsets of data used for each row. However, since we do not �nd any local P-value to be below pthreshold 
for the corresponding row, we can conclude that the data does not allow rejection of the settings independence 
hypothesis, even without calculating the global pthreshold for the full Table.

Refined analysis of imperfect random number generators. Ideally, the RNGs yield a fully unpredict-
able random bit in every trial of the Bell test. A deviation from the ideal behaviour can be denoted by an excess 
predictability or bias b, that can take on values between 0 and 1

2
. In principle the value of b can be di�erent in 

every trial of a Bell test, which can be modelled by some probability distribution over the value of b. By character-
ising the physical RNGs, we can hope to learn something about the mean τ of this probability distribution. As a 
particular example of an underlying probability distribution for the bias, consider the case where the random bit 

Figure 4. �e P-value of the two runs as a function of τ, the mean bias of the RNG. 
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is perfectly predictable =( )b
1

2
 with probability f and perfectly unpredictable (b =  0) with probability 1 −  f. �is 

example could model a scenario where the random numbers are generated with some spread in time such that 
some of them are produced so early that they could be known by the other party before the end of the trial.

A recent analysis of the e�ect of partial predictability of RNGs on the bound of the CH-Eberhard inequality 
revealed a strong dependence on the interpretation of the mean excess predictability32, estimated from characteri-
sation of the RNGs. In particular, for a model in which the mean excess predictability ε is distributed (evenly) over 
all trials, the CH-Eberhard inequality can be violated even if the relevant Bell parameter J (which can be viewed 
as an average violation per trial in terms of probabilities) is much lower than ε. On the other hand, Ko�er et al.32  
found that in case of an all-or-nothing scenario, such that in a fraction ε of the trials the RNG is fully predictable 
and in the rest of the trials fully unpredictable, the threshold value for a violation is roughly given by J >  ε.

Motivated by these �ndings, we generalize here the analysis of the e�ect of imperfect random number gen-
erators on the winning probability per trial in the CHSH game. We extend the analysis in the Supplementary 
Information of Hensen et al.17 (see also Elkouss and Wehner26) to the case where any bias b is produced by an 
arbitrary underlying probability distribution per trial. �at is, there is no maximum bias, but rather the bias can 
probabilistically take on any value. We �nd that in our case, as long as the event-ready signal is independent of the 
random bits, the only relevant parameter is the mean τ of the bias; the concrete form of the random variable has 
no impact on the bound on the probability of winning CHSH. In the example of early production of random bits, 
there exists a time-window in which independence of the event-ready signal can be guaranteed by its space-like 
separation from the early random generation event.

In the analysis below we explicitly take into account the possibility of early production of random bits, which 
we expect to be a particular interpretation of the probability distribution over b as above. Indeed we �nd that 
when the random bits are perfectly predictable with probability f, and perfectly unpredictable with probability 
1 −  f, then a distribution over the bias b with a mean of τ =  f/2 links the two viewpoints of the analysis.

In order to make the discussion precise, in the following we describe the random variables that characterize 
the experiment, then make a rigorous derivation of the winning probability.

Properties of the tested LHVM. We introduce the following sequences of random variables. �e notation 
and arguments borrow from earlier work26,33–35. Let = =

= =
A BA B( ) , ( )m

i i
m m

i i
m

1 1 the outputs of the boxes where i 
is used to label the i-th element, =

=
HH ( )m

i i
m

1 the histories of attempts previous to the i-th attempt, =
=

CC ( )m
i i

m
1 

denotes the scores at each attempt and =
=

TT ( )m
i i

m
1 is the sequence of event-ready signals in the case of an 

event-ready experiment. In an event-ready experiment, we make no assumptions regarding the statistics of the 
event-ready station, which may be under full control of the LHVM and can depend arbitrarily on the history of 
the experiment.

We introduce three sequences of random variables to model each RNG. Let = =
= =

X YX Y( ) , ( )m
i i

m m
i i

m
1 1 

denote the inputs to the boxes. Let = =
= =

Q QQ Q( ) , ( )i
A

i
m

i
B

i
mA B

1 1

m m

 denote two sequences of binary variables that 
take value 1 if the random number was generated so early that signaling is possible and 0 otherwise. We call the 
former an early number and the latter a on-time number. Finally, let = =

= =
F FF F( ) , ( )i

A
i
m

i
B

i
mA B

1 1

m m

 take values in 
the range [− 1/2, 1/2] and denote the bias of the random number generators at each attempt. We here assume that 
these distributions can di�er for all i, they do not depend on the history Hi. Using more involved notation, the 
same bound can be made if their mean is known conditioned on the history.

dataset n00 n01 n10 n11 n RNG A RNG B
RNG 
A&B Pearson Fisher pthreshold pjoint

Run 1
All recorded 
data 4938847 4942101 4939328 4942337 19762613 0.872 0.159 0.568 0.956 0.016 0.144

Bell trials 53 79 62 51 245 0.250 0.371 0.054 0.029 0.021 0.121

Run 2
All recorded 
data 4529615 4530943 4528295 4526440 18115293 0.171 0.901 0.486 0.455 0.016 0.144

Bell trials 69 69 78 84 300 0.184 0.773 0.545 0.817 0.018 0.131

Bell trials of both runs 
combined

122 148 140 135 545 0.864 0.392 0.452 0.211 0.020 0.138

Table 1.  From le� to right each column corresponds with: dataset on which statistics are computed, 

local P-value for the null hypothesis RNG A is uniform, local P-value for the null hypothesis RNG B is 

uniform, local P-value for the null hypothesis RNG A&B is uniform, Fisher’s test, Pearson’s test, and 

pthreshold and joint P-values pjoint. �e joint P-value for a set of hypotheses is the probability that for at least one 
of the hypotheses we observe a P-value less than α where here α =  0.05. �is captures the fact that the more 
hypotheses we test, the more likely it becomes that one of them will fall below the signi�cance threshold. �e 
value pthreshold the largest threshold for individual tests for which the joint P-value for that row is less than 0.05. 
�e local P-values in the row should this be compared to this number. �is captures the fact that when testing 
multiple hypothesis, the local P-values of the individual ones actually need to be much smaller for the overall 
test to be signi�cant. �e local P-values in columns RNG A, RNG B, Fisher and Pearson are exact calculations. 
�e columns RNG A&B, pthreshold and pjoint are approximations obtained via 105, 104 and 104 trials of a Monte-
Carlo simulation, respectively.
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�e random variable Hi models the state of the experiment prior to the measurement. As such, Hi includes any 
hidden variables, sometimes denoted using the letter λ33. It also includes the history of all possible con�gurations 
of inputs and outputs of the prior attempts 

=

−X Y A B T( , , , , )j j j j j j
i

1
1.

�e null hypothesis (to be refuted) is that our experimental setup can be modelled using a LHVM. LHVMs 
verify the following conditions:

1. Independent random number generators. Conditioned on the history of the experiment the random num-
bers are independent of each other

and of the output of the event-ready signal

We allow Xi and Yi to be partially predictable given the history of the experiment. �e predictability is gov-
erned by some random variables F F,i

A
i
B. For ∈ ∈b F b F,x i

A
y i

B we have

∀ − ≤ = = = = ≤ +( )i x h b X x H h F b F b b( , , ),
1

2
Pr , ,

1

2
,

(5)i i x i i i i i
A

x i
B

y x

∀ − ≤ = = = = ≤ +( )i y h b Y y H h F b F b b( , , ),
1

2
Pr , ,

1

2
,

(6)i i y i i i i i
A

x i
B

y y

Furthermore, from the characterization of the devices we have that for all i:   τ≤ ≤Q f F[ ] , [ ] ,i
A

A i
A

A

  τ≤ ≤Q f F[ ] , [ ]i
B

B i
B

B. We de�ne f =  max{fA, fB} and τ =  max{τA, τB}.
2. Locality. �e outputs ai and bi only depend on the local input settings and history: they are independent of 

each other and of the input setting at the other side, conditioned on the previous history, the current event-
ready signal and the inputs being generated on-time

3. Sequentiality of the experiments. Every one of the m attempts takes place sequentially such that any possible 
signalling between di�erent attempts beyond the previous conditions is prevented36.

Except for these conditions the variables might be correlated in any possible way.

Winning probability for imperfect random number generators. Here, we derive a tight upper bound 
on the winning probability of CHSH with imperfect random number generators in an event-ready setup. For 
CHSH, the inputs Xi, Yi, outputs Ai, Bi and output of the heralding station Ti take values 0 and 1. If Ti =  0 the scor-
ing variable Ci takes always the value zero, if Ti =  1 then Ci =  1 when x · y =  a ⊕  b and Ci =  0 in the remaining cases. 
We will take the RNGs to have maximum advantage f of producing early random numbers.

Lemma 1. Let ∈m , and let a sequence of random variables as described in the previous section correspond 
with m attempts of a CHSH heralding experiment. Suppose that the null hypothesis holds, i.e., nature is governed by 
an LHVM. Given that for all i ≤  m:    τ τ= ≤ = ≤Q f F Q f F[ ] , [ ] , [ ] , [ ]i

A
i
A

i
B

i
B , we have for i ≤  m, any pos-

sible history Hi =  hi of the experiment, and Ti =  1 that the probability of Ci =  1 is upper bounded by 

β= | = = ≤C H h TPr( 1 , 1) , (8)i i i i win
1

where β τ τ= − + − + ′ − ′( )f f f2 (1 )win
1 2 2 3

4
2  and τ′ = τ +

−{ }: min ,f

f

2

2(1 )

1

2
.

Proof. Let us �rst bound the e�ect of the early random numbers in the winning probability. We have

∑= | = = = = =

× = | = = = =

∈
( )

( )

C H h T Q s Q s

C H h T Q s Q s

Pr( 1 , 1) Pr ,

Pr 1 , 1, , (9)

i i i i
s s

i
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x i
B

y

i i i i i
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x i
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y

, {0,1}x y

≤ = = + = = + = =

+ = = = = = = =( )
Q Q Q Q Q Q

Q Q C H h T Q s Q s

Pr( 0, 1) Pr( 1, 0) Pr( 1, 1)
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i i i i i
A

x i
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≤ − + − = = = = =f f f C H h T Q Q2 (1 ) Pr( 1 , 1, 0, 0) (11)i i i i
A B2 2

�e �rst inequality follows by assuming that the CHSH is won with probability one when a random number is 
early. �e second inequality follows from assuming that  = =Q Q f[ ] [ ]i

A
i
B .
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Let us now bound the bias for the on-time numbers. We focus on the random numbers Xi; the same argument 
can be made for Yi. For simplicity, we omit the explict conditioning on Hi =  hi. First of all, note that since

∫= = = = =X db F b X F bPr( 1) Pr( )Pr( 1 ) (12)i x i
A

x i i
A

x

we have together with (5) that

 − ≤ = ≤ +F X F
1

2
[ ] Pr( 1)

1

2
[ ]

(13)i
A

i i
A

which implies 1/2 −  τ ≤  Pr(Xi =  1) ≤  1/2 +  τ. Furthermore, note that we can expand the probability as

= = = = = + = = = .X Q X Q Q X QPr( 1) Pr( 1)Pr( 1 1) Pr( 0)Pr( 1 0) (14)i i
A

i i
A

i
A

i i
A

Combining (14), (13) and the assumption  =Q f( )i
A  we obtain

τ= = ≤ + ′X QPr( 1 0)
1

2 (15)i i
A

where τ′ = τ +

−{ }: min ,f

f

2

2(1 )

1

2
. Let us now expand the probability that Ci =  1 conditioned on the event that both 

numbers were on-time. For simplicity, we drop the explicit conditioning on Hi =  hi, Ti =  1, QA =  0, QB =  0.

∑

∑

= = = = = =

+ = = ⊕ = = .

∈ ≠

∈

C A z B z X x Y y

A z B z X Y

Pr( 1) Pr( , , , )

Pr( , 1, 1, 1)
(16)

i
x y z x y

i i i i

z
i i i i

, , {0,1} ( , ) (1,1)

{0,1}

We can break these probabilities into simpler terms

= = = = = = = = =A a B b X x Y y A a X x B b Y yPr( , , , ) Pr( , )Pr( , ) (17)i i i i i i i i

= = = = = = = .X x A a X x Y y B b Y yPr( )Pr( )Pr( )Pr( ) (18)i i i i i i

�e �rst equality followed by the locality condition, the second one simply by the de�nition of conditional 
probability. With this decomposition, we can express (16) as

∑ α β χ γ χ γ α β χ γ χ γ= = + − − + − + −

∈ ≠

( )CPr( 1) (1 )(1 ) ( (1 ) (1 ) )
(19)

i
x y x y
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∑ α β= .

∈

f
(20)x y

x y x y
, {0,1}

,

where we have used the shorthands

χ = =A: Pr( 1), (21)x i

γ = =B: Pr( 1), (22)y i

α = =X x: Pr( ), (23)x i

β = =Y y: Pr( ), (24)y i

χ γ χ γ

χ γ χ γ
=
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

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
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+ − − ≠

− + − .
f

x y
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(1 )(1 ) if ( , ) (1, 1),
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x y

x y x y

x y x y
,

Now we will expand (20). We know that 1/2 −  τ ≤  αx, βy ≤  1/2 +  τ. In principle, τ does not need to take the 
values in the extreme on the range. Without loss of generality let α0 =  1/2 +  τA and β0 =  1/2 +  τB, with τA, τB ∈   
[− 1/2, 1/2].
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It thus remains to bound the sum of fx,y. Note that we can write

∑ χ γ χ γ χ γ χ γ
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Since (30) is a sum of two convex combinations, it must take its maximum value at one of the extreme points, 
that is with χ0 ∈  {0, 1} and χ1 ∈  {0, 1}. We can thus consider all four combinations of values for χ0 and χ1 given by

∑

γ χ χ

γ χ χ

γ χ χ

γ χ χ

=



















− =

− =

+ =

+ = .

∈

f

3 2 if ( , ) (0, 0),

3 2 if ( , ) (0, 1),

1 2 if ( , ) (1, 0),

1 2 if ( , ) (1, 1) (31)

x y
x y

, {0,1}
,

0 0 1

1 0 1

1 0 1

0 0 1

Since 0 ≤  γ0, γ1 ≤  1, we have in all cases that the sum is upper bounded by 3.
Now, using (28) we have

τ τ τ τ τ τ τ τ= ≤ + − +



 − − +






CPr( 1) 2( 2 ) 3
1

4

1

2

1

2 (32)i A B A B A B A B

τ τ τ τ= + + −
3

4

1

2
( )

(33)A B A B

τ τ≤ + ′ − ′
3

4 (34)
2

where in the �rst inequality we bound f0,0, f0,1, f1,0 by 1. �e second inequality follows since τ′  ≤  1/2 and for τA, 
τB below 1/2 (33) is strictly increasing both in τA and τB; this implies that the maximum is found in the extreme: 
τ =  τA =  τB.

Finally, we can plug the bound in the winning probability given that both numbers were on time into the 
winning probability and we obtain:
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Equation (35) shows the equal footing of f
1

2
 and τ. �is result highlights the fact that early production of ran-

dom numbers is just a particular distribution underlying the bias of the random number generators, where the 
probability f of producing an early number corresponds to a mixture of completely predictable numbers τ =( )1

2
 

and the probability 1 −  f to unpredictable numbers.
�e �nding that the only relevant RNG parameter for the winning probability of the CHSH game is the mean 

bias makes a Bell test based on this winning probability particularly robust against RNG imperfections. In our 
two Bell test runs, we �nd a violation in terms of the CHSH winning probability of about 0.05 and 0.04 respec-
tively, both orders of magnitude larger than the mean bias (< 10−4), and, given our theory result, independent of 
the underlying distribution of bias over the trials. As depicted in Fig. 4, this means for instance that our P-values 
are hardly a�ected if the generator produces random numbers too early with a probability up to 10−3. �e above 
only holds if the event-ready signal is still independent of the early produced random bits: in case the random 
bits are produced so early that they are not anymore space-like separated from the event-ready signal genera-
tion, the event-ready detector could select the Bell trials based on random bits being produced too early. In our 
experimental setup, we can thus test theories in which random bits are produced up to 690 ns too early (this time 
can be increased by moving the event-ready signal backwards in time) with a probability up to about 10−3. For 
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comparison, for testing such theories an experiment using the CH-Eberhard inequality would require J >  10−3 
to obtain a violation32, which is two orders of magnitude beyond the state of the art of photonic experiments18,19. 
�is di�erence may be traced back to the use of event-ready detectors in our experiments, which dramatically 
increases the �delity of the entangled state and thus the winning probability per Bell trial.

Conclusion
�e loophole-free violation of Bell’s inequality in the second data run reported here further strengthens the rejec-
tion of a broad class of local realistic theories. We �nd that the data is consistent with independent setting choices, 
both in the �rst and second dataset, as well as in the combined dataset. Re�ned analysis of the e�ect of a bias in 
the random number generators shows that only the mean bias plays a role in the winning probability. As a conse-
quence, the P-value bound for our experiments is independent of the underlying distribution for the RNG bias, 
for random bits produced up to 690 ns too early by the random number generator. �e large spatial separation and 
the strong violation in winning probability per trial of about 0.05 makes our implementation promising for future 
applications of non-locality for device-independent quantum key distribution37 and randomness generation38,39.
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