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Esterel is a synchronous design language for the specification of reactive systems. Thanks to
its compact formal semantics, code generation for Esterel is essentially provably correct. In

practice, due to the many intricacies of an optimizing compiler, an actual proof would be in order.
To begin with, we need a precise description of an efficient translation scheme, into some lower-
level formalism. We tackle this issue on a specific part of the compilation process: the translation
of loop constructs. First, because of instantaneous loops, programs may generate runtime errors,

which cannot be tolerated for embedded systems, and have to be predicted and prevented at
compile time. Second, because of schizophrenia, loops must be partly unfolded, making C code
generation as well as logic synthesis non-linear in general. Clever expansion strategies are required

to minimize the unfolding. We first characterize these two difficulties w.r.t. the formal semantics of
Esterel. We then derive very efficient, correct-by-construction algorithms to verify and transform
loops at compile time, using static analysis and program rewriting techniques. With this aim in
view, we extend the language with a new gotopause construct, which we use to encode loops. It

behaves as a non-instantaneous jump instruction compatible with concurrency.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory; F.3.3 [Logics and Meanings of Programs]: Studies of Program Constructs

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: synchronous languages, static analysis, code generation

1. INTRODUCTION

The design of modern complex embedded systems borrows from a number of en-
gineering disciplines. Software, hardware, system, network, sometimes mechanical
or scientific engineering for physical modeling, are customarily involved in the full
system development. Due to the natural heterogeneity of components in the pro-
jected system, a first prototype software model is generally built, that serves for
analysis, extensive simulation, and verification of many features beforehand.

Synchronous reactive formalisms [Benveniste et al. 2003] are becoming more and
more attractive for the specification of reactive systems [Halbwachs 1992; Edwards
2000] as, in contrast with unconstrained “simulation” semantics of usual software
models, they allow formal verification as exhaustive testing, as a result of their
precise mathematical semantics.

Many synchronous formalisms and tools are available today, from industry and
academia. There are imperative synchronous languages like Esterel or Quartz
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[Schneider 2000], data-flow languages such as Lustre/Scade [Halbwachs et al.
1991], and graphical description languages, for instance Argos [Maraninchi 1991]
and SyncCharts [André 1996a; 1996b]. Input languages to hardware model-
checkers such as SMV [McMillan 1993], COSPAN/FormalCheck [Hardin et al.
1996], or VIS [Brayton et al. 1996] are mostly of synchronous nature. We shall
focus throughout this paper on Esterel.

High-level synthesis and code generation tools provide implementation means for
designs specified in these languages. Hopefully faithful to the semantics, implemen-
tation steps should provide a correct-by-construction design flow, thereby avoiding
the all too often occurring problem of adequacy between simulation and synthesis
semantics found in neighboring formalisms such as HDLs (VHDL, Verilog,. . . ).

The primary concern of the current paper is to contribute to this “correct-by-
construction” approach to code generation/synthesis, in our case by providing for-
mal ground for some of the key transformation steps involved in the implementation
of Esterel programs. While apparently utterly theoretical in nature, we feel this
kind of work can greatly help gain confidence in the soundness and semantic preser-
vation of the compiling process, with potential incidence on future certification
procedures for highly safety-critical embedded domains where compiler correctness
may have to be asserted at semantic level.

EsterelEsterel

Esterel [Berry and Gonthier 1992; Berry 2000a; 2000b; Boussinot and de Simone
1991] is an imperative synchronous parallel language dedicated to the programming
control-oriented systems. Sophisticated controllers may be described using sequen-
tial and parallel compositions of behaviors, suspension and preemption mechanisms,
cases, loops, and synchronizations by mean of instantly broadcast signals. Both
synthesis and efficient simulation (via C code generation) are supported.

Esterel enjoys a full-fledged formal semantics under the form of Structural
Operational Semantic rules [Plotkin 1981]. Many issues on transformational steps
involved in the compilation process can thus be handled mathematically on these
rules. In the current paper we shall consider a precise exercise of this nature. While
specific, it seems to us of utter importance as it leads to a smooth transition from
a definitional level, that we might call dynamic, in which successive execution steps
create new program residuals to be further executed, to a lower static level, where
memory resources for both data and control are assigned at compile time, in a way
favored by embedded targets or hardware circuit implementations.

As Esterel disallows general recursive definitions and dynamic process creation,
this static interpretation is feasible. The main problem which remains to be solved
in our case goes with the treatment of “loop” iterative constructs.

Loops

In synchronous formalisms execution is divided into (a discrete sequence of) be-
havioral reactions. While following the natural flow of control in a given reaction,
loop constructs may have to be unrolled (in the dynamic version of the semantics).
The following problem now comes as obvious: if a loop can be unrolled infinitely
many times inside a given reaction, without execution halting to pause until the
next reaction, then one may never reach completion of the behavior for the current
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instant, ending in some kind of divergence. This phenomenon, called instantaneous
loop in Esterel literature, has to be discarded as incorrect.

More subtly perhaps, without infinite unrolling, the body of a loop may contain
elements whose multiple occurrences are executed simultaneously, which is referred
to as schizophrenia in Esterel literature. These elements need to be duplicated
appropriately at compile time. This is reminiscent of Single Static Assignment
forms in classical compiler techniques. Here also the amount of code duplication
should be minimized, while ensuring the desired property.

While current implementations already provide practical solutions for these two
problems, they are not satisfactory in our view. For instance (first problem), com-
pilers reject varying sets of correct programs, with no clear boundaries, i.e. arbi-
trarily as far as the user is concerned, because they rely on ad hoc loop analyses,
that still need to be better understood. We shall see an example of such a program
in Section 3.

Outline of the Paper

The paper starts with an introductory presentation of a kernel Esterel language
in Section 2.

We tackle the first problem of incorrect loops [Tardieu and de Simone 2003]
by extracting the relevant information from the semantic rules using abstract in-
terpretation [Cousot and Cousot 1977]. This is the topic of Section 3, in which
we provide a criterion, general enough, that ensures non-instantaneous divergence
of loop structures. Importantly this criterion is correct by construction, as it is
formally derived from the semantic rules themselves.

We describe and formalize the schizophrenia problem in Section 4. It has been
remarked before [Mignard 1994] that schizophrenia can be solved by some amount
of loop unrolling. A simple and naive solution would then be to unroll each loop
construct once. But, because of loop nesting, this can produce an exponentially
larger program. So one has to look for more selective expansions. This requires
again clever static analysis, to identify as precisely as possible the potentially prob-
lematic locations. Here again our goal will be to specify this analysis step in a
formal, provably correct fashion.

Then, in Section 5, in order to perform these code expansions as compactly as
possible, we introduce a new gotopause construct in Esterel [Tardieu 2004a], so
that several behaviors can be connected to the same halting point. Technically,
we first rewrite the rules of the semantics using active halting points instead of
program residuals, where active halting points act as pc program counters in a
parallel setting. Defining gotopause is then straightforward.

We provide our solution [Tardieu and de Simone 2004] to the schizophrenia prob-
lem by program rewriting for our kernel language in Section 6. We start from the
basic exponential expansion, called reincarnation in Esterel literature. We then
describe a quadratic rewriting using gotopause. We improve this algorithm by
selectively transforming the problematic statements located by our static analysis,
thus achieving a quasi-linear rewriting in practice.

We extend our transformation to full Esterel in Section 7, and discuss our im-
plementation in Section 8. It provides an experimental validation of our approach.

ACM Journal Name, Vol. V, No. N, Month 20YY.



4 · O. Tardieu and R. de Simone

p, q ::= [p]
nothing does nothing and terminates instantly

pause suspends the execution for one instant
p; q executes p followed by q if/when p terminates
p || q executes p in parallel with q
loop p end repeats p forever

signal S in p end declares signal S in p
emit S emits signal S
present S then p else q end executes p if S is present, q otherwise
trap T in p end declares and catches exception T in p

exit Td raises exception T of depth d ∈ IN

S, T ::= identifier

Fig. 1. Pure Esterel

Note: We tried our best to keep the paper self-contained, including complex definitions

and comprehensive proofs. At times this was not completely possible, due to space con-

siderations. In particular, the introduction of a new language feature in Section 5 would

call for an adaptation of the contents and the proofs of previously stated results, most of

which remain similar (but not all). These, and more generally the full technical material

including lengthy proofs and complete definitions can be found in [Tardieu 2004b].

2. THE PURE ESTEREL KERNEL LANGUAGE

Esterel was born in the eighties [Berry and Cosserat 1984], and evolved since then.
In this work, we consider the Esterel v5 dialect [Berry 1999; 2000a] endorsed by
current academic compilers [INRIA et al. 2000; Edwards et al. 2004].

Pure Esterel is the fragment of the full Esterel language where data variables
and data-handling primitives are abstracted away. Data abstraction makes loop-
related issues decidable and is a first step toward efficient (conservative) heuristics
to deal with them. We shall first concentrate on pure Esterel, then return to full
Esterel in Section 7.

2.1 Syntax and Intuitive Semantics

Without loss of generality, we focus on a kernel language, which retains just enough
of the pure Esterel language to attain its full expressive power. Figure 1 describes
the grammar of our kernel language, as well as the intuitive behavior of its con-
structs. The non-terminals p and q denote statements, S signals and T exceptions.

The infix “;” operator binds tighter than “||”. Brackets “[” and “]” may be
used to group statements in arbitrary ways. In a present statement, then or else
branches may be omitted. For example, “present S then p end” is a shortcut
for “present S then p else nothing end”.

In the sequel, the words statement and program are synonymous.

Instants and Reactions

An Esterel statement runs in steps called reactions in response to the ticks of
a (possibly virtual) global clock. Each reaction takes one instant. Except for the
pause instruction, primitive statements execute in zero-time, which is an ideal view
of the fact that reactions are supposed to converge and terminate before the next
clock tick occurs, so that no overlap is possible. Of course, just as gates in digital
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circuits have delays, instruction in Esterel take physical time to execute. But at
the formal semantics level, only “logical” time matters, that is to say instructions
behave as if instantaneous1.

When the clock ticks, a reaction occurs. It may either finish the execution in-
stantly or delay part of it till the next instant, because it reached at least one pause
instruction. In the latter case, the execution is resumed when the clock ticks again,
and so on.

The statement “emit A; pause; emit B; emit C; pause; emit D” emits the
signal A in the first instant of its execution, then emits B and C in the second
instant, finally emits D and terminates in the third instant. It takes three instants
to complete, i.e. proceeds by three reactions.

Synchronous Concurrency

Concurrency in Esterel is synchronous and deterministic. One reaction of “p || q”
is made of exactly one reaction of each branch, until the termination of all branches.
The statement “pause; emit A; pause; emit B || emit C; pause; emit D”
emits C in the first instant of its execution, then emits A and D in the second instant,
then emits B and terminates in the third instant.

Exceptions

Exceptions are lexically scoped, declared and caught by the “trap T in p end”
construct, and raised by the “exit Td” instruction. The integer d encodes the
depth of “exit T”:

—if “exit Td” is enclosed in a declaration of T then d must be the number of
exception declarations that have to be traversed before reaching that of T ;

—if “exit Td” is not enclosed in a declaration of T then d must be greater or equal
to the number of exception declarations enclosing this exit statement.

For instance,

trap T in

trap U in

exit T1 has depth 1 because of the declaration of U
||

exit U0 has depth 0
||

exit V3 could have any depth greater or equal to 2
end;

exit T0 has depth 0
end

Such a “De Bruijn” encoding of exceptions for Esterel was first advocated for
in [Gonthier 1988]. In a complete program all exceptions are declared so that
depths are unambiguously inferred from scoping information by a traversal of the
program. But depths are required to state the semantics of terms in general (i.e.
incomplete pieces of programs). In the sequel, we shall only make depths explicit
when necessary.

1As a result, the main goal of an Esterel compiler is to ensure by a proper scheduling of instruc-

tions in each instant that the implemented behavior complies with the idealized semantics.
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In sequential code, the exit statement behaves as a goto to the end of the
matching trap block. For example,

trap T in

emit A; pause; emit B; exit T; emit C

end;

emit D

emits A in the first instant, then B and D and terminates in the second instant. The
statement “emit C” is never executed.

An exception occurring in a parallel context causes it to terminate instantly. In

trap T in

emit A; pause; emit B; pause; emit C

||

emit D; pause; exit T

end;

emit E

A and D are emitted in the first instant, then B and E in the second and final
one. Again, “emit C” is never executed. Exceptions implement weak preemption:
“exit T” in the second branch does not prevent B to be simultaneously emitted in
the first one.

Exception declarations may be nested. In the following program, A is never
emitted. The outermost exception T has priority over U. In general, the exception
of greater depth (T1) has priority over the exception of lower depth (U0).

trap T in

trap U in

exit T1

||

exit U0

end;

emit A

end

Loops

The statement “loop emit S; pause end” emits S at each instant and never ter-
minates. Finitely iterated loops may be obtained by combining loop, trap and
exit statements, as in the kernel expansions2 of “await S” and “await_not S”:

await S
def
=

trap T in

loop

pause;

present S then exit T end

end

end

2Since the pause and present statements are sequentially executed in this order, the status of S

in the first instant of execution of “await S” or “await_not S” is ignored. This is true as well of

suspension and abortion instructions (defined below).
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await_not S
def
=

trap T in

loop

pause;

present S else exit T end

end

end

Loop bodies may not be instantaneous. For example “loop emit S end” is not a
correct program. As explained before, such a pattern would prevent the reaction
to reach completion. Therefore, loop bodies are required to raise an exception or
retain the control for at least one instant, i.e. execute a pause or an exit statement.

Signals

The instruction “signal S in p end” declares the local signal S in p. The free
signals of a statement are said to be interface signals for this statement. Full Es-
terel defines modules and distinguishes input, output and inputoutput signals.
In this work however, we have no need for such definitions. Basically, all interface
signals are “inputoutput” signals.

In an instant, the status of a signal S is either present or absent. If S is present
then all “present S then p else q end” statements executed in this instant,
execute their “then p” branch in this instant; if S is absent they all execute their
“else q” branch. A local signal S is present iff it is explicitly emitted in this instant
by some “emit S” statement, absent otherwise. Its status is not maintained for the
next instant. Interface signals are present iff locally emitted or generated by the
environment. For example,

—In “signal S in emit S; pause; present S then emit O end end”, signal
S is present in the first instant of execution only, thus O is not emitted by this
statement, as S is absent at the time of the “present S” test.

—In “present A then emit B end || emit A”, both A and B are emitted.

—In “signal S in present I then emit S end end”, the status of I depends
on the environment, and the status of S follows from that of I.

Suspension and Abortion

Our kernel instructions are those of [Berry 1999] except for its “suspend p when S”
statement. It can nevertheless be encoded by substituting all pause instructions of
p by “await_not S” instructions:

suspend p when S
def
= p[pause → await_not S]

Thanks to trap and suspend statements, we can encode weak and strong abortion
(described in [Berry 1999]):

weak abort p when S
def
=

trap T in

p;
exit T

||

await S;
exit T

end

(where T is a fresh exception name)
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abort p when S
def
=

weak abort

suspend p when S
when S

2.2 Logical Behavioral Semantics

The logical behavioral semantics of Esterel [Gonthier 1988; Berry 1999] defines
the reactions of a statement p via a labeled transition system:

p
E′, k
−−−→

E
p′

where:

—the set E is the set of present signals,

—the set E′ is the set of emitted signals,

—the integer k is the completion code of the reaction,

—the statement p′ is the residual of the reaction.

Each transition represents one possible reaction of p (i.e. one instant of execution).
Figure 2 expresses the logical behavioral semantics of Esterel as a set of facts

and deduction rules in a structural operational style [Plotkin 1981]. We now com-
ment on the use of the various rule ingredients, in their most interesting cases.

Signals

The sets E of present signals and E′ of emitted signals are meant to encode the
I/Os of the reaction. By construction, all reactions defined by this semantics are
such that E′ ⊂ E. The statement p reacts to inputs I with outputs O iff:

p
O, k
−−−→
I∪O

p′

By construction, the set E′ is a subset of the set of interface signals of p. In addition,
one can prove by structural induction on p that if S is not an interface signal of p
then:

p
E′, k
−−−→

E
p′ ⇔ p

E′, k
−−−−→
E∪{S}

p′

The signal coherence law (a signal is present iff emitted or generated by the envi-
ronment for an interface signal) is enforced by the form of the following rules, from
Figure 2:

(present+) if S is present then execute p in “present S then p else q end”.
(present−) if S is absent then execute q in “present S then p else q end”.

(emit) if S is emitted then S is present.
(signal+) if the local signal S is present then S is emitted.

As a consequence, the two rules for “signal S in p end” encode:

(signal+) S is present in p and emitted by p.
(signal−) S is absent in p and not emitted by p.

Remark that these rules are in general neither exclusive, nor complementary, with-
out further requirements (see below, Section 2.3).
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Completion Code and Residual

The completion code k and the residual p′ encode the status of the execution:

—If k = 1 then this reaction does not complete the execution of p.
It has to be continued by the execution of p′ in the next instant.

—If k 6= 1 then this reaction ends the execution of p, and the residual p′ is nothing:

—k = 0 if the execution completes normally, that is to say without exception;
—k = d + 2 if an exception of depth d escapes from p.

In particular, the completion code of “exit Td” is “2 + d”. If p terminates with
completion code k and q with completion code l then “p || q” terminates with
code “max(k, l)”, hence the encoding of exceptions.

In order to compute the completion code “↓k” of “trap T in p end” from the
completion k of p, we define:

↓k =







0 if k = 0 or k = 2
1 if k = 1
k − 1 if k > 2

For example,

trap T in trap U in exit T1 || exit V5 end end
∅, 3
−−→
∅

nothing

In order to normalize the residual p′ when k is not 1, we define:

δk(p′) =

{

nothing if k 6= 1
p′ if k = 1

Execution

An execution of the statement p is a potentially infinite chain of reactions, such
that all completion codes are equal to 1, except for the last one in the finite case:

—finite execution: p
O1, 1

−−−−→
I1∪O1

p1
O2, 1

−−−−→
I2∪O2

...
On, k

−−−−→
In∪On

pn with k 6= 1

—infinite execution: p
O1, 1

−−−−→
I1∪O1

p1
O2, 1

−−−−→
I2∪O2

...
On, 1

−−−−→
In∪On

...

For example, the statement “emit A; pause; emit B” with input I emits A and
does not terminate instantly (k = 1), with the residual “nothing; emit B” re-
maining to be executed. In the second and final instant of execution, B is emitted.

emit A; pause; emit B
{A}, 1
−−−→
{I,A}

nothing; emit B
{B}, 0
−−−→
{J,B}

nothing

We say that the statement q derives from the statement p, and note p ։ q, if q
may be generated in the course of the execution of p, that is to say iff there exits
n ≥ 0 and (pk, Ek, E′

k)0<k≤n such that:

p = p0, q = pn,∀k ∈ IN : 0 < k ≤ n ⇒ pk−1

E′

k, 1
−−−→

Ek

pk

By definition, the ։ relation is reflexive: ∀p : p ։ p.
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nothing
∅, 0
−−→

E
nothing (nothing)

pause
∅, 1
−−→

E
nothing (pause)

exit Td
∅, d+2
−−−−→

E
nothing (exit)

S ∈ E

emit S
{S}, 0
−−−−→

E
nothing

(emit)

p
E′, k
−−−→

E
p′ k 6= 0

loop p end
E′, k
−−−→

E
δk(p′; loop p end)

(loop)

p
E′, k
−−−→

E
p′ q

F ′, l
−−−→

E
q′ m = max(k, l)

p || q
E′∪F ′, m
−−−−−−−→

E
δm(p′ || q′)

(parallel)

S ∈ E p
E′, k
−−−→

E
p′

present S then p else q end
E′, k
−−−→

E
p′

(present+)

S /∈ E q
E′, k
−−−→

E
q′

present S then p else q end
E′, k
−−−→

E
q′

(present−)

p
E′, k
−−−→

E
p′

trap T in p end
E′, ↓k
−−−−→

E
δk(trap T in p′ end)

(trap)

p
E′, k
−−−→

E
p′ k 6= 0

p; q
E′, k
−−−→

E
δk(p′; q)

(sequence-p)

p
E′, 0
−−−→

E
p′ q

F ′, k
−−−→

E
q′

p; q
E′∪F ′, k
−−−−−−→

E
q′

(sequence-q)

p
E′, k

−−−−−→
E∪{S}

p′ S ∈ E′

signal S in p end
E′\{S}, k
−−−−−−−→

E
δk(signal S in p′ end)

(signal+)

p
E′, k

−−−−−→
E\{S}

p′

signal S in p end
E′, k
−−−→

E
δk(signal S in p′ end)

(signal−)

Fig. 2. Logical Behavioral Semantics
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2.3 Logical Correctness

A statement p is said to be logically correct iff the logical behavioral semantics
defines a unique reaction for it at any stage of any execution (that is to say after
any number of reactions and for any sequence of inputs):

p is logically correct iff ∀q,∀I : p ։ q ⇒
[

∃!O,∃!k,∃!q′ : q
O, k
−−−→
I∪O

q′
]

This is not always so. For example,

(1) “loop nothing end” is not logically correct as no reaction is defined.

(2) “present S else emit S end” is not logically correct since no reaction is de-
fined in the absence of inputs. On the one hand (signal−), if we suppose S

absent for the duration of the reaction then it is emitted, which contradicts the
hypothesis. On the other hand (signal+), if we suppose S present then it has
no emitter.

(3) “present S then emit S end” is not logically correct. The signal S may be
both present or absent in the absence of inputs. For the empty set of inputs
there exist two possible sets of outputs: ∅ and {S}:

present S then emit S end
∅, 0
−−→
∅∪∅

nothing

present S then emit S end
{S}, 0
−−−−→
∅∪{S}

nothing

Logical correctness characterizes programs that have reactive (at least one possible
behavior), and deterministic (at most one possible behavior) reactions. These are
the minimal requirements that any Esterel compiler must enforce.

2.4 Causality

Logical correctness does not take into account causality. The following program,
while being logically correct (S can only be present), is not causal, since the emission
of S depends on a test on S:

present S then emit S else emit S end

The logical behavioral semantics of Esterel can be refined into various semantics
formalizing causal dependencies, such as the constructive semantics [Berry 1999].
This semantics is based on a notion of constructive causality, and heavily relies on
causality analysis techniques, that have been extensively studied in the context of
digital circuit description at gate netlist level in order to allow descriptions that
are safe but might contain static combinatorial dependency cycles between wires
[Malik 1993; Shiple et al. 1996; Namjoshi and Kurshan 1999].

In Esterel constructive issues are typically dealt with in compilers after the
loop related issues considered in the present paper. The formulation of construc-
tiveness as semantic rules across statements is rather involved, requiring recursive
application of auxiliary functions. Its match against the simpler and more direct
formulation at circuit level is also a delicate matter. Altogether this strongly sug-
gests to deal with loops independently from causality considerations, which we
shall leave for “further work”. As a consequence, we shall study loops in the single
framework of the logical semantics.
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3. INSTANTANEOUS LOOPS

The logical behavioral semantics provides a unique rule for loop statements:

p
E′, k
−−−→

E
p′ k 6= 0

loop p end
E′, k
−−−→

E
δk(p′; loop p end)

(loop)

As expected, the side condition k 6= 0 disallows loop bodies to terminate instantly
without raising an exception, making programs such as “loop nothing end” log-
ically incorrect. This requirement is of dynamic nature, as it is enforced in each
reaction, and may be responsible for runtime errors at any instant. For example,
“await I; loop nothing end” fails upon the reception of the signal I.

In the context of embedded systems however, runtime errors cannot be tolerated.
As a consequence, Esterel compilers have to prevent them. Intuitively, they may
only compile safe programs, that is to say programs for which the runtime check
k 6= 0 can be safely ignored, because it cannot fail (under any circumstances).
Reciprocally, unsafe programs must be rejected.

Compilers must replace a runtime check by a compile time analysis of programs.
As already mentioned in the introduction, we believe that this issue is a typical
example of a well known complexity of Esterel, already solved by existing imple-
mentations, but not yet fully understood. For example, depending on the compiler,
the following program may be (correctly) compiled or rejected:

loop

trap T in

trap U in

trap V in

exit U || exit V

end;

exit T

end;

pause

end

end

Intuitively, establishing the logical correctness of this program requires to take into
account the relative priority of U over V, which shows that “exit T” is unreach-
able, which in turn implies that “pause” is executed in each instant [Tardieu and
de Simone 2003]. Several implementations, such as SAXO-RT [Closse et al. 2002],
do lack this power of analysis.

Our goal in this section is to specify such a conservative filtering of programs:

—in a formal, provably correct fashion,

—of reasonable computational complexity,

—while keeping the user’s satisfaction in mind.

We shall formalize the algorithm implemented in the Esterel compiler of [INRIA
et al. 2000], which, in our view, provides a reasonable trade off between these
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last two points. In particular, it handles the above example. To the best of our
knowledge, no available Esterel compiler achieves a more powerful analysis, that
is to say accepts more programs than the algorithm we shall formalize.

3.1 (Non-)Instantaneous Loops and (Un)safe Programs

We define for a statement p:

(1) p may be instantaneous, in other words p is potentially instantaneous iff:

∃E,∃E′,∃p′ : p
E′, 0
−−−→

E
p′

(2) p cannot be instantaneous, in other words p is non-instantaneous iff:

∀E,∀E′,∀k,∀p′ : p
E′, k
−−−→

E
p′ ⇒ k 6= 0

(3) p is safe iff every loop body of p cannot be instantaneous, unsafe otherwise.

Theorem 1. If p is safe and q derives from p (p ։ q) then q is safe.

Proof. If a reaction of the statement p produces the residual p′ then the bodies
of the loops of p′ occur in p, by definition of the (loop) rule.

Removing the runtime check k 6= 0 for loop bodies means replacing the (loop) rule
of the logical behavioral semantics with the following (unsafe-loop) rule:

p
E′, k
−−−→

E
p′

loop p end
E′, k
−−−→

E
δk(p′; loop p end)

(unsafe-loop)

Theorem 2. If p is safe then the reference and revised semantics define the
same executions for p.

Proof. If p is safe then all subterms of p are safe. Structural induction makes

sense here. A simple induction on p shows that p
E′, k
−−−→

E
p′ in the revised semantics

iff p
E′, k
−−−→

E
p′ in the reference semantics. Hence, the two semantics define the same

reactions for p, thus same executions, thanks to Theorem 1.

As a consequence, rejecting unsafe programs, that is to say potentially instanta-
neous loop bodies, removes the need for runtime check of completion codes of loop
bodies, thus the risk of corresponding runtime errors.

Unsafe programs may nevertheless be logically correct as illustrated by the pro-
gram “loop emit S; pause end || loop present S then pause end end” in
which the left loop enforces the correct execution of the right one, through the con-
tinuous emission of S. Similarly, “trap T in exit T; loop nothing end end” is
unsafe but logically correct, since the potentially instantaneous loop is unreachable.

But these intricate patterns serve no purpose. Rejecting such programs is not
an issue; it even enforces a good coding style. Indeed, the subterms of a safe
program are all safe, whereas the subterms of a logically correct program may well
be logically incorrect, as shown by the above examples. As a result, as far as
instantaneous loops are concerned, safe programs may be arbitrarily (de)composed
safely, whereas, in general, programs with non-instantaneous loops cannot be.
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Therefore, the restriction to safe programs is a conservative approach which
makes sense both from the compiler’s and from the user’s perspective.

3.2 Exact Analysis

Deciding whether a statement may be instantaneous requires to take into account all
its possible executions, thus 2n possible valuations of its n interface signals, which
is unreasonable in practice. In fact, SAT (boolean satisfiability in propositional
logic) can be expressed in term of instantaneous termination in Esterel, via a
polynomial reduction, as shown by the example of Figure 3. Therefore, compilers
rely on conservative static analysis techniques, such as the one formalized below.

(A ∨ ¬B ∨ C) ∧ (¬A ∨ C ∨ ¬D) ∧ (¬B ∨ ¬C ∨ D) is satisfiable
m

present A else present B then present C else pause end end end;

present A then present C else present D then pause end end end;

present B then present C then present D else pause end end end

may be instantaneous

Fig. 3. Reducing SAT to Instantaneous Termination

nothing →֒ 0 (nothing)

pause →֒ 1 (pause)

exit Td →֒ d + 2 (exit)

emit S →֒ 0 (emit)

p →֒ k k 6= 0

loop p end →֒ k
(loop)

p →֒ k q →֒ l

p || q →֒ max(k, l)
(parallel)

p →֒ k

present S then p else q end →֒ k
(present+)

q →֒ k

present S then p else q end →֒ k
(present−)

p →֒ k

trap T in p end →֒ ↓k
(trap)

p →֒ k k 6= 0

p; q →֒ k
(sequence-p)

p →֒ 0 q →֒ k

p; q →֒ k
(sequence-q)

p →֒ k

signal S in p end →֒ k
(signal+)

p →֒ k

signal S in p end →֒ k
(signal−)

Fig. 4. Abstract Semantics
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p Γp

nothing {0}
pause {1}
exit Td {d + 2}
emit S {0}
loop p end Γp\{0}
p || q {m ∈ IN s.t. ∃k ∈ Γp, ∃l ∈ Γq , m = max(k, l)} i.e. max(Γp, Γq)

present S then p else q end Γp ∪ Γq

trap T in p end {l ∈ IN s.t. ∃k ∈ Γp, l = ↓k} i.e. ↓Γp

p; q if 0 ∈ Γp then (Γp\{0}) ∪ Γq else Γp

signal S in p end Γp

Fig. 5. Potential Completion Codes of Reactions

3.3 Static Analysis

By making abstraction of signals (E and E′) and residuals (p′) in the logical behav-
ioral semantics of Esterel we obtain the abstract semantics of Figure 4, where:

p
E′, k
−−−→

E
p′ is abstracted into p

·, k
−−→
·

· which we note p →֒ k

We define the set of the potential completion codes of p: Γp = {k ∈ IN s.t. p →֒ k}.

Theorem 3. For any statement p:

{

k ∈ IN s.t. ∃E,∃E′,∃p′ : p
E′, k
−−−→

E
p′

}

⊂ Γp.

Proof. For any completion code k:

[

∃E,∃E′,∃p′ : p
E′, k
−−−→

E
p′

]

⇒ p →֒ k.

In particular, if 0 /∈ Γb then b cannot be instantaneous. Thus, if 0 /∈ Γb for each
loop body b of a program p then p is safe.

3.4 Algorithm

Figure 5 derives a recursive algorithm for the computation of Γ from the abstract se-
mantics of Figure 4, by collecting the completion codes obtained using all deduction
rules that may apply to each Esterel construct. For example, loop p end →֒ k iff
p →֒ k with k 6= 0, thus Γloop p end = Γp\{0}. Similarly, k ∈ Γp; q iff:

—either k ∈ Γp and k 6= 0 (sequence-p),

—or 0 ∈ Γp and k ∈ Γq (sequence-q).

In order to ensure that a program p is safe, one has to compute Γb for every loop
body b of p, and check that none of these sets Γb contains zero. This check can be
easily embedded within the computation of Γ itself by replacing:

Γloop p end = Γp\{0}

with the following definition:

Γloop p end = if 0 ∈ Γp then error else Γp

We shall require the explicit computation of Γq in a sequence “p; q” even if 0 /∈ Γp,
so that the computation of Γp unconditionally traverses all subterms q of p:

Γp; q = compute Γq; if 0 ∈ Γp then (Γp\{0}) ∪ Γq else Γp
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Theorem 4. If the computation of Γp completes without error then p is safe.

Proof. If p contains a loop of body q then “loop q end” is a subterm of p so
that the computation of Γloop q end completes without error, thus 0 /∈ Γq, therefore
q cannot be instantaneous. As a result, p is safe.

This algorithm requires a unique exhaustive traversal of the statement. It is linear
in the size of the statement provided that the number of levels of nested trap
statements (thus the cost of set operations) remains bounded.

From now on, we shall only consider programs for which the computation of Γ
completed without error, therefore programs with guaranteed non-instantaneous
loop bodies.

4. SCHIZOPHRENIA

As already mentioned in the introduction, it is highly desirable for embedded code
targets (either software or hardware) to rely on statically allocated memory space,
and even further Single Static Assignment properties. As soon as every element
of the description assumes only one value at each instant, important synthesis,
optimization and mapping techniques become available.

The pure Esterel semantics “almost” provides this property. In a loop-free
program, each statement is executed at most once. More precisely, the execution
of a statement q of the loop-free program p is started or restarted at most once per
instant. For example, in “pause; signal S in pause; pause end; pause”, the
execution of the statement “signal S in ... end” is started in the second instant
of execution of p, restarted in the third and fourth instants.

In particular, local signals have to be allocated or deallocated at most once per
instant. In fact, they may be allocated globally, once for all, that is to say statically
allocated, provided that statuses are reset between instants. And so on, for all
“components” of the program.

Intuitively, every reaction in the execution of a loop-free program p can be com-
pletely described with a set of Boolean variables, the size of which is linear in the
size of p, and can be computed using at most one assignment to each of these
variables per instant. Indeed, the synthesis of a Digital Sequential Circuit from
a loop-free pure Esterel program can be achieved in linear time and space, for
example using the so-called “naive” translation scheme of Berry (first translation
described in [Berry 1999]) restricted to loop-free programs.

But going from the “dynamic” semantics of pure Esterel to such a “static”
model of computation is not so easy, once we add (safe) loops to the picture. For
instance, the naive translation scheme of Berry is incorrect in general; and the fixed
version of the translation (again in [Berry 1999]) is quadratic instead of linear.

The loop construct is the only construct that allows to go back. In particular,
because of loops, and only them, the residual of a reaction defined by the logical
behavioral semantics, may be larger than the initial program. Of course, this is
not specific to the Esterel language. But, as a new iteration of a loop starts in
the very instant the previous one finishes, that is to say simultaneously (even if in
sequence), loops are responsible for complex behaviors.

This is called schizophrenia in Esterel literature, a notion which can be grasped
through the following examples:
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(1) First, statements can be executed several times in a single reaction, even if
loops are required to be non-instantaneous. Consider the program

loop

present I then pause end; emit O

||

pause

end

in which signal I is present in the first instant, and absent in the next. In
the second reaction the “emit O” instruction is executed first because control
had reached the previous pause statement in the first instant; then the whole
parallel construct terminates instantly, and thus is immediately reentered; this
time, as I is absent, the “emit O” instruction is executed again, so twice in the
same reaction.
While this may seem harmless for a statement such as “emit O”, if we replace
it with a “data” statement, for instance “V:=V+1”, the fact that we have to pay
attention to such program patterns becomes obvious.

(2) Second, distinct instances of a local signal may coexist in a single reaction, if
a loop body containing its scope is exited and instantly reentered, as in:

loop

signal S in

present S then emit O end;

pause;

emit S

end

end

From the second instant onward, an old occurrence of S (corresponding to
the completed iteration of the loop), coexists with a new one (created by the
iteration started in the current instant).

Single Static Assignment

Obviously, an encoding of such statements (respectively signals), complying with
the Single Static Assignment per reaction principle, must be large, that is to say
of size at least proportional to the number of possible simultaneous executions
(respectively instances).

In general, if a statement is enclosed in n nested loops, it may be executed up
to n + 1 times [Berry 1999] in an instant. A program of size O(n) (i.e. O(n) loops
and O(n) “emit O” statements) may produce up to O(n2) simultaneous “emit O”,
hence the quadratic worst-case complexity of circuit synthesis.

Memory Allocation

The compilation of Esterel loops into less “static” frameworks, as in C code
generation for example, may seem easier. In the last example, it is possible to
statically allocate a unique instance of S, provided that its status is reset each time
the scope of S is entered, in addition to the usual reset between instants. Thus, in
this case, the memory footprint remains linear in the number of local signals.
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Let’s now consider the program3:

signal A in

signal S in

present A then emit S end

end;

signal T in

present T then emit A end

end

end

In this example, while T is declared in sequence with S, the status of S cannot be
decided without knowing the status of A, thus without deciding the status of T. By
folding this code using a loop statement, we can merge the roles of S and T and
obtain a (different) program where, similarly, the status of the old incarnation of S
depends on the status of its new incarnation, rather than the other way around:

signal A in

loop

signal S in

present S then emit A end;

pause;

present A then emit S end

end

end

end

As a consequence, the memory allocation scheme we described is not correct in
general, and simultaneous instances of the same signal cannot share a single sta-
tically allocated memory cell. In summary, a single local declaration may require
the simultaneous allocation of several memory cells.

Schizophrenic Programs

Berry claims that Esterel programs with loops can be linearly translated into
Digital Sequential Circuits provided that no parallel statement (Example 1) and
no local signal declaration (Example 2) is ever left and instantly reentered [Berry
1999]. Therefore, we shall focus on programs with potentially instantly reentered
signal declarations and parallel statements4. We call them schizophrenic programs.
We shall formalize these definitions below.

In all cases, schizophrenia can be suppressed by single recursive unrolling of loops
(called reincarnation in Esterel literature, cf. Section 6). But this has an exponential
price in presence of nested loops. So we want to be more perceptive in the code
duplication involved. But then the correctness of the method used becomes an
issue. This means we need a formal description of schizophrenia, in order to later
prove the adequacy of our transformations (i.e. removal of schizophrenia).

3The several examples of this section are constructive, that is to say not only logically correct
but also correct w.r.t. the constructive semantics of Esterel [Berry 1999]. Therefore, the issues
discussed here remain the same for constructive programs.
4In [Tardieu 2004b], Chapter 5, we further illustrate the intricacies of such program patterns.
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nothingn ∅, 0, {n}
−−−−−−→

E
nothing (nothing)

pausen ∅, 1, {n}
−−−−−−→

E
nothingn (pause)

exitn Td

∅, d+2, {n}
−−−−−−−−→

E
nothing (exit)

S ∈ E

emitn S
{S}, 0, {n}
−−−−−−−→

E
nothing

(emit)

p
E′, k, M
−−−−−−→

E
p′ k 6= 0

loopn p end
E′, k, M⊎{n}
−−−−−−−−−→

E
δk(p′; loopn p end)

(loop)

p
E′, k, M
−−−−−−→

E
p′ q

F ′, l, N
−−−−−→

E
q′ m = max(k, l)

p ||n q
E′∪F ′, m, M⊎N⊎{n}
−−−−−−−−−−−−−−−→

E
δm(p′ ||n q′)

(parallel)

S ∈ E p
E′, k, M
−−−−−−→

E
p′

presentn S then p else q end
E′, k, M⊎{n}
−−−−−−−−−→

E
p′

(present+)

S /∈ E q
E′, k, M
−−−−−−→

E
q′

presentn S then p else q end
E′, k, M⊎{n}
−−−−−−−−−→

E
q′

(present−)

p
E′, k, M
−−−−−−→

E
p′

trapn T in p end
E′, ↓k, M⊎{n}
−−−−−−−−−−→

E
δk(trapn T in p′ end)

(trap)

p
E′, k, M
−−−−−−→

E
p′ k 6= 0

p;n q
E′, k, M⊎{n}
−−−−−−−−−→

E
δk(p′;n q)

(sequence-p)

p
E′, 0, M
−−−−−−→

E
p′ q

F ′, k, N
−−−−−→

E
q′

p;n q
E′∪F ′, k, M⊎N⊎{n}
−−−−−−−−−−−−−−−→

E
q′

(sequence-q)

p
E′, k, M
−−−−−−→

E∪{S}
p′ S ∈ E′

signaln S in p end
E′\{S}, k, M⊎{n}
−−−−−−−−−−−−−→

E
δk(signaln S in p′ end)

(signal+)

p
E′, k, M
−−−−−−→

E\{S}
p′

signaln S in p end
E′, k, M⊎{n}
−−−−−−−−−→

E
δk(signaln S in p′ end)

(signal−)

Fig. 6. Rules with labels
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4.1 Formal Characterization

In this section, in order to formally characterize instantly reentered statements and
schizophrenic programs, we label all pure Esterel constructs with integers:

—signallabel ... in ... end

—... ||label ...

—etc. for all constructs of pure Esterel

Then, in Figure 6, we instrument Esterel logical behavioral semantics as follows:

(1) We add an extra component M to the transitions of the logical behavioral
semantics of Figure 2 (top right-most position): the multiset of labels of a
reaction, obtained by collecting the labels of the statements executed during
the reaction. For example, if p reacts with the multiset M and q with N then
“p ||n q” produces the multiset M ⊎ N ⊎ {n}.

(2) We preserve labels in the rewriting which produces the residual of the reaction,
if the execution has to be continued in the next instant (k=1).

Loop unrolling may replicate labels as well as statements. For example,

loop1 pause2 end
∅, 1, {1,2}
−−−−−−→

∅
nothing2; loop1 pause2 end

∅, 1, {1,2,2}
−−−−−−−→

∅
...

Intuitively, if a label of a program initially labeled with pairwise distinct labels is
encountered twice in the same instant of execution, this means that corresponding
statement of the initial program is left and instantly reentered in this instant, be-
cause of some loop, whose unrolling replicated the statement in a previous reaction.
In the above example, the initial pause statement of label 2 is left and instantly
reentered in the second instant of execution, as both the residual nothing2 and the
statement pause2 are executed during this instant.

Therefore, we define for a program p initially labeled with pairwise distinct labels:

—potentially instantly reentered statement: a statement q of label n of the program
p is potentially instantly reentered iff its label n is repeated in the multiset M of
one of the reaction of an execution of p:

∃r,∃E,∃E′,∃k,∃M,∃r′ : p ։ r ∧ r
E′, k, M
−−−−−→

E
r′ ∧ {n, n} ⊂ M

—schizophrenic statement: a signal declaration or parallel statement is said to be
schizophrenic iff it is potentially instantly reentered.

—schizophrenic program: the program p is said to be schizophrenic iff it contains
a schizophrenic statement.

These definitions do not depend on the labeling, provided that labels are initially
pairwise distinct. In the sequel, we shall omit unneeded labels.

Figure 7 deals with our previous example of instantly reentered signal declaration.
Initially, the program contains a unique signal declaration, which we here arbitrarily
label 5. The deduction tree of the first reaction considers once this signal declaration
in its behavior, producing the singleton {5}. But, as part of the same reaction loop
unrolling occurs, and the residual term now contains two declarations with the
duplicated label 5. As the program part prior to the loop does instantly terminate,
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loop

signal5 S in

present S then

emit O

end;

pause;

emit S

end

end

∅, 1, {5}
−−−−−→

∅

signal5 S in

nothing;

emit S

end;

loop

signal5 S in

present S then

emit 0

end;

pause;

emit S

end

end

∅, 1, {5,5}
−−−−−−−→

∅
· · ·

Fig. 7. Schizophrenic Signal Declaration

in the second instant the label 5 is collected twice in the behavior production,
leading to the multiset {5, 5} adorning the second transition. Thus, this signal
declaration is potentially run across twice, so instantly reentered, and the program
is schizophrenic.

4.2 Static Analysis

Deciding at compile time whether a program is schizophrenic or not a priori requires
to explore all possible execution paths, which is unreasonable for large programs,
as mentioned earlier. We need an effective decision procedure amenable to imple-
mentation. More precisely, we would like to ensure statically that statements are
not schizophrenic, so that a “naive” translation is enough. In this section, we shall
build a conservative static analysis for this safety property.

Potential Completion Codes

In Figure 5, we defined function Γ : p 7→ Γp which provides an overapproximation
of the set of possible completion codes of the first reaction of p. Similarly, in
Figure 8, we define function Ω : p 7→ Ωp which overapproximates the set of possible
completion codes of chains of reactions starting from p. The computation of Ωp

matches that of Γp except for pause statements for which Γpause = {1} whereas
Ωpause = {0, 1}.

p Ωp

nothing {0}
pause {0, 1}
emit S {0}
exit Td {d + 2}
p || q {m ∈ IN s.t. ∃k ∈ Ωp, ∃l ∈ Ωq, m = max(k, l)} i.e. max(Ωp, Ωq)
loop p end Ωp\{0}
present S then p else q end Ωp ∪ Ωq

trap T in p end {l ∈ IN s.t. ∃k ∈ Ωp, l = ↓k} i.e. ↓Ωp

p; q if 0 ∈ Ωp then (Ωp\{0}) ∪ Ωq else Ωp

signal S in p end Ωp

Fig. 8. Potential Completion Codes of Chains of Reactions
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The following result states that Ωp indeed contains all possible exit levels that
may occur in the future (after any number of “normal”, non-terminating reactions):

Theorem 5. If p
E′

1
, 1

−−−→
E1

...
E′

n, k
−−−→

En

pn for some n ≥ 1 then k ∈ Ωp.

Proof. There are two lemmas:

—∀p : Γp ⊂ Ωp by structural induction on p.

—Second, ∀p,∀E,∀E′,∀p′ : p
E′, 1
−−−→

E
p′ ⇒ Ωp′ ⊂ Ωp by structural induction on p.

Let us for instance suppose p = “loop q end”. If p
E′, 1
−−−→

E
p′ then by rule (loop),

there exists q′ such that q
E′, 1
−−−→

E
q′ and p′ = “q′; loop q end”.

Ωp = Ωloop q end. Ωp′ = Ωq′; loop q end.
Ωp = Ωq\{0} by definition of Ω for loops.
Ωp′ ⊂ (Ωq′\{0}) ∪ Ωloop q end by definition of Ω for sequences.
Ωp′ ⊂ (Ωq′\{0}) ∪ (Ωq\{0}) by definition of Ω for loops.
By induction hypothesis, Ωq′ ⊂ Ωq, thus Ωp′ ⊂ Ωp.

Thanks to Theorem 3, we obtain: k ∈ Γpn−1
⊂ Ωpn−1

⊂ ... ⊂ Ωp.

Contexts

Following standard notation [Barendregt 1981], we say that C[ ] is the context of
the statement q in the program p iff p = C[q]. For example, the context of q in
p =“loop pause; q end” is “loop pause; [ ] end”. Contexts are statements with
a single hole [ ]. They are recursively defined:

—[ ] is the empty context,

—if C[ ] is a context and q is a statement then C[present S then [ ] else q end]
is a context,

—etc. for all constructs of pure Esterel.

As usual, C[x] denotes the statement (respectively context) obtained by substi-
tuting the hole [ ] of C[ ] by the statement (respectively context) x, without any
renaming of signals or exceptions.

Risk

Of course the fact that p may terminate or exit and be instantly reentered in C[p]
depends primarily on C[ ], but also on p. For a given context C[ ] one can identify
risky completion codes, those that may cause the phenomenon whenever produced
by p. For example, if p (non-instantly) terminates with code k = 0 or k = 2 in
either of the following examples, instantaneous reentering is as such:

p is instantly reentered? k = 0 k = 2
loop trap T in [p]; pause end end no yes
trap T in loop [p] end end yes no

We now proceed with the definition of the risk function C〈 〉 associated with a
context C[ ]. It provides the exit levels which, if ever produced by the component
plugged in the context hole, would cause the context to terminate and restart this
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〈 〉
def
= ∅

C[present S then 〈 〉 else q end]
def
= C〈 〉

C[present S then p else 〈 〉 end]
def
= C〈 〉

C[loop 〈 〉 end]
def
= {0} ∪ C〈 〉

C[〈 〉; q]
def
= if Γq ∩ C〈 〉 = ∅ then C〈 〉\{0} else C〈 〉 ∪ {0}

C[p; 〈 〉]
def
= if 0 ∈ Γp then C〈 〉 else ∅

C[trap T in 〈 〉 end]
def
= {k ∈ IN, ↓k ∈ C〈 〉}

C[signal S in 〈 〉 end]
def
= ∅

C[〈 〉 || q]
def
= ∅

C[p || 〈 〉]
def
= ∅

Fig. 9. Risk

component. The definition, provided in Figure 9, is compositional according to
language constructs, and thus of course pertain to static analysis techniques. It
specifies, for example, that 0 is a risky completion code for any context whose inner
construct is a loop: ∀C[ ] : 0 ∈ C[loop 〈 〉 end].

The goal here is to achieve the following result: if p is schizophrenic then there
exists C[ ] and q such that p = C[q] and Ωq∩C〈 〉 6= ∅ for some q = “signal ... end”
or q = “...||...”. In other words, if p is schizophrenic then there exists a signal
declaration or parallel construct in p whose execution may complete with a risky
completion code. Rather than formally establishing this property now, we shall
directly prove in Section 6 that an optimized program transformation based on risk
analysis successfully cures schizophrenia.

5. GOTOPAUSE

In this section, we extend the Esterel language with a new gotopause construct,
which acts as a non-instantaneous jump instruction compatible with Esterel syn-
chronous concurrency. Both pause and gotopause instructions use integer labels,
with the following syntax:

“gotopause label” and “label:pause”

These labels should not be confused with those of the previous section. From now
on, we shall only consider labels of this new kind.

We want gotopause to behave as follows:

—When the control reaches a “gotopause label” instruction, it stops for the current
instant, as if it had reached a regular pause instruction.

—At the next instant, execution is resumed out of and past the corresponding pause
instruction (the one with identical label), as if this pause was indeed reached in
the previous reaction.

For example, the execution of “gotopause 1;emit S;1:pause” should not emit S.
There are several reasons for this extension [Tardieu 2004a]. For instance, state

machines (automata) can be easily encoded with conditional jumps, as illustrated
by the example of Figure 10. In the current paper, we are interested in using
gotopause to efficiently compile schizophrenic programs (cf. Section 6).
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1:pause;

action 1;
present A then gotopause 2 end;

present B then gotopause 3 end;

gotopause 1;

2:pause;

action 2;
gotopause 1;

3:pause;

action 3;
gotopause 2

2
3

1
A

B

 1  2

 3

action action

action

Fig. 10. Automata in Esterel⋆

Because of the non-locality of branching, such an extension usually requires some
kind of continuation-passing style semantics. In the case of Esterel, we first have
to reformulate the standard logical behavioral semantics of Section 2 in the form of
a state semantics, that we prove equivalent to the former in the sense of bisimulation
[Park 1981]. Then, we introduce and formalize gotopause and the semantics of the
extended language, which we call Esterel⋆.

5.1 Labeled Behavioral Semantics

In the sequel, we consider Esterel programs with labeled pause instructions,
unless otherwise stated. The function unlabel removes the labels of statements.
We do not require labels to be unique yet. We call L(p) the set of labels of p, for
example L(1:pause; emit S; 2:pause; 1:pause) = {1, 2}.

In Figure 11, we introduce a labeled behavioral semantics (7→) for Esterel
by replacing the residual p′ of the logical behavioral semantics (→) with a set of
labels L:

p p

E′, k
−−−→

E
L

This set collects the labels of the active pause instructions of the statement, that
is to say those that will retain the control at the end of the reaction. For example,
“present S then 1:pause else 2:pause end” in the presence of S produces the
set {1}. In particular, for the (parallel) rule, the computed set of labels is:

γm(L ∪ L′) =

{

L ∪ L′ if m = 1
∅ if m 6= 1

so that if p p

E′, k
−−−→

E
L then k 6= 1 ⇔ L = ∅

Theorem 6. ∀(p,E,E′, k) :

[

∃p′ :unlabel(p)
E′, k
−−−→

E
unlabel(p′) ⇔ ∃L : p p

E′, k
−−−→

E
L

]

.

Proof. Possible deductions in these semantics do not depend on the values of
residuals (→) or active labels (7→), hence the result by structural induction on p.

Intuitively, provided that the labeling is non-ambiguous, it should be possible to
reconstruct p′ from L and p, and precisely relate these two semantics. We formalize
the correspondence below, with the definition of states and their expansion.
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nothing p

∅, 0
−−→

E
∅ (nothing)

l : pause p

∅, 1
−−→

E
{l} (pause)

exit Td p

∅, d+2
−−−−→

E
∅ (exit)

S ∈ E

emit S p

{S}, 0
−−−−→

E
∅

(emit)

p p

E′, k
−−−→

E
L k 6= 0

loop p end p

E′, k
−−−→

E
L

(loop)

p p

E′, k
−−−→

E
L q p

F ′, l
−−−→

E
L′ m = max(k, l)

p || q p

E′∪F ′, m
−−−−−−−→

E
γm(L ∪ L′)

(parallel)

S ∈ E p p

E′, k
−−−→

E
L

present S then p else q end p

E′, k
−−−→

E
L

(present+)

S /∈ E q p

E′, k
−−−→

E
L

present S then p else q end p

E′, k
−−−→

E
L

(present−)

p p

E′, k
−−−→

E
L

trap T in p end p

E′, ↓k
−−−−→

E
L

(trap)

p p

E′, k
−−−→

E
L k 6= 0

p; q p

E′, k
−−−→

E
L

(sequence-p)

p p

E′, 0
−−−→

E
L0 q p

F ′, k
−−−→

E
L

p; q p

E′∪F ′, k
−−−−−−→

E
L′

(sequence-q)

p p

E′, k
−−−−−→
E∪{S}

L S ∈ E′

signal S in p end p

E′\{S}, k
−−−−−−−→

E
L

(signal+)

p p

E′, k
−−−−−→
E\{S}

L

signal S in p end p

E′, k
−−−→

E
L

(signal−)

Fig. 11. Labeled Behavioral Semantics
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5.2 States

We say that a statement is well labeled iff the labels of its pause instructions are
pairwise distinct. From the combination of the well-labeled statement p and the
set of labels L ⊂ L(p), we build the state ⌈p|L⌋. We say that a pause statement of
label l is selected in ⌈p|L⌋ if l ⊂ L.

We shall use states to represents possible points5 in the execution of a program.
For example, the state ⌈present S then 1:pause else 2:pause end|{1}⌋ spec-
ifies that the execution of “present S then 1:pause else 2:pause end” has to
be restarted from the pause instruction of label 1. In particular, the state ⌈p|∅⌋
means that the execution of p is over. So, we call it an inactive state. Reciprocally,
a state with at least one selected pause is an active state. We also define an extra
state, called initial state, and noted ⌈p|∗⌋, which tells that the execution of p has
not started yet. Our definition of states slightly departs from the original one from
[Mignard 1994], as we need to distinguish between active locations.

Not all states are useful. For example no execution of “1:pause; 2:pause” may
generate the state ⌈1:pause; 2:pause|{1; 2}⌋, as no reaction can reach two pause

statements in sequence. We formalize this idea with the definition of valid states.
We say that q and r are exclusive in p, and write q#r, iff there exists three

contexts C[ ], C1[ ], and C2[ ] such that one of the following holds:

—p = C[C1[q]; C2[r]]

—p = C[C1[r]; C2[q]]

—p = C[present S then [C1[q] else C2[r] end]]

—p = C[present S then [C1[r] else C2[q] end]]

For example, in “p; [q || r]”, p and q are exclusive, p and r are exclusive, q and
r are not exclusive, that is to say compatible.

We say that a state of p is valid iff it is the initial state ⌈p|∗⌋ of some state ⌈p|L⌋
such that selected pause statements are pairwise compatible. In other words, in a
valid state, no two pause statements are selected in both parts of a sequence or
both branches of a present statement

Invalid states are states that cannot be reached in the execution of the program6.

Theorem 7. If p is well labeled and p p

E′, k
−−−→

E
L′ then ⌈p|L′⌋ is valid.

Proof. By structural induction on p. For instance, if p = “q; r” then

—either q p

E′, k
−−−→

E
L with k 6= 0: ⌈q|L⌋ is valid by induction hypothesis, moreover

L ⊂ L(q) and L(q) ∩ L(r) = ∅, thus ⌈q; r|L⌋ is valid;

—or q p

A, 0
−−→

E
L0 and r p

B, k
−−→

E
L for some A,B, and L0: ⌈r|L⌋ is valid by induction

hypothesis, hence ⌈q; r|L⌋ is valid.

5We shall use states to represent starting and ending points of reactions, that is to say macro-steps.
However, micro-steps within a reaction cannot be represented by such states.
6The set of valid states contains the set of reachable states. But there still are unreachable valid
states. For example, ⌈1:pause || 2:pause|{1}⌋ is both valid and unreachable in the execution of

“1:pause || 2:pause”.
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initial state : ǫ⌈p|∗⌋
def
= p

inactive state : ǫ⌈p|∅⌋
def
= nothing

active states : ǫ⌈l : pause|{l}⌋
def
= nothing

(L 6= ∅) ǫ⌈p; q|L⌋
def
= ǫ⌈p|L⌋; q if L ⊂ L(p)

ǫ⌈p; q|L⌋
def
= ǫ⌈q|L⌋ if L ⊂ L(q)

ǫ⌈present S then p else q end|L⌋
def
= ǫ⌈p|L⌋ if L ⊂ L(p)

ǫ⌈present S then p else q end|L⌋
def
= ǫ⌈q|L⌋ if L ⊂ L(q)

ǫ⌈trap T in p end|L⌋
def
= trap T in ǫ⌈p|L⌋ end

ǫ⌈p || q|L⌋
def
= ǫ⌈p|L ∩ L(p)⌋ || ǫ⌈q|L ∩ L(q)⌋

ǫ⌈loop p end|L⌋
def
= ǫ⌈p|L⌋; loop p end

ǫ⌈signal S in p end|L⌋
def
= signal S in ǫ⌈p|L⌋ end

Fig. 12. State Expansion

5.3 State Expansion

In Figure 12, we recursively define a state expansion function ǫ. It derives a state-
ment from a valid state. Remark that the rule for the empty set L has priority
over the other rules. For example, ǫ⌈trap T in p end|∅⌋ is nothing rather than
“trap T in nothing end”.

Basically, this ǫ function expands a valid state into a statement of equal “mean-
ing”. For example, if a pause is selected in the left component p of a sequence
“p; q”, then the execution of the sequence has to be continued by the end of this
left component, which is exactly the expansion of the state of p, followed by the right
component q of the sequence. Therefore, if L ⊂ L(p) then ǫ⌈p; q|L⌋ = ǫ⌈p|L⌋; q.

The expansion retains labels (in the right-hand side of sequences and loop bodies).
We observe that even if ⌈p|L⌋ is a valid state of the well-labeled statement p, the
labeled statement ǫ⌈p|L⌋ is not necessarily well labeled, as loop unrolling may occur.
For example,

ǫ⌈loop 1:pause;2:pause end|{1}⌋ = nothing;2:pause;loop 1:pause;2:pause end

This is not an issue, as we shall not build states out of such statements. Moreover,
validity is a stable property:

Theorem 8. If ⌈p|L⌋ is valid and ǫ⌈p|L⌋ p

E′, k
−−−→

E
L′ then ⌈p|L′⌋ is valid.

Proof. Structural induction on p. Similar to Theorem 7.

Thanks to this state expansion function, we can now express the fact that the
logical and labeled semantics define the same reactions.

Theorem 9. If p is well labeled:

—If p p

E′, k
−−−→

E
L then unlabel(p)

E′, k
−−−→

E
unlabel(ǫ⌈p|L⌋).

—If unlabel(p)
E′, k
−−−→

E
p′ then there exists L s.t. p p

E′, k
−−−→

E
L and unlabel(ǫ⌈p|L⌋) = p′.

Proof. Structural induction on p. Let us for instance suppose that p = “q || r”:
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—If p p

E′, k
−−−→

E
L then q p

E′

q, kq

−−−−→
E

kq and r p

E′

r, kr
−−−−→

E
Lr for some E′

q, kq, kq, E
′
r, kr, kr such

that E′ = E′
q ∪ E′

r, k = max(kq, kr), and L = Lq ∪ Lr, by definition of rule

(parallel) in the labeled behavioral semantics.

By induction hypothesis,











unlabel(q)
E′

q, kq

−−−−→
E

unlabel(ǫ⌈q|Lq⌋) with Lq ⊂ L(q)

unlabel(r)
E′

r, kr

−−−−→
E

unlabel(ǫ⌈r|Lr⌋) with Lr ⊂ L(r)

As a consequence, by definition of rule (parallel) in the logical behavioral seman-

tics, unlabel(q) || unlabel(r)
E′, k
−−−→

E
unlabel(ǫ⌈q|Lq⌋) || unlabel(ǫ⌈r|Lr⌋). Therefore,

unlabel(p)
E′, k
−−−→

E
unlabel(ǫ⌈p|L⌋), by definition of ǫ.

—If unlabel(p)
E′, k
−−−→

E
p′ then there exist E′

q, kq, q
′, Lq such that unlabel(q)

E′

q, kq

−−−−→
E

q′

and q p

E′

q, kq

−−−−→
E

Lq and unlabel(ǫ⌈q|Lq⌋) = q′ and similarly for r, with p p

E′, k
−−−→

E
Lq ∪ Lr.

By definition of ǫ, unlabel(ǫ⌈p|Lq ∪ Lr⌋) = q′ || r′ = p′.

And so on for all constructs of pure Esterel.

This proves that p′ can be obtained from ⌈p|L⌋ and vice versa. The result of a
reaction is equivalently characterized by either the residual p′ or the set of active
labels L we have just introduced. This is the key that enables the definition of a
state behavioral semantics for Esterel.

5.4 State Behavioral Semantics

We define a state behavioral semantics (◦−→) for Esterel as follows:

⌈p|L⌋ ◦
E′, k
−−−→

E
⌈p|L′⌋ iff ǫ⌈p|L⌋ p

E′, k
−−−→

E
L′

One reaction of the well-labeled statement p in the valid state ⌈p|L⌋ produces the
valid state ⌈p|L′⌋ iff L′ is the set of active labels computed by the labeled semantics
for the statement ǫ⌈p|L⌋.

Theorem 10. The logical and state semantics are equivalent, in the sense of
bisimulation [Park 1981].

Proof. We construct a candidate bisimulation “∼” between valid states and
non-labeled statements (i.e. original Esterel statements) as follows:

for all valid state s, s ∼ unlabel(ǫ(s))

By construction of the relation (for details see [Tardieu 2004b], pages 99–100),

—For each valid state s there exists a statement p = unlabel(ǫ(s)) such that s ∼ p.

—For each statement p there exists a valid state s = ⌈p|∗⌋ such that s ∼ p.

—If s ∼ p and s ◦
E′, k
−−−→

E
s′ then there exists p′ such that p

E′, k
−−−→

E
p′ and s′ ∼ p′.

—If s ∼ p and p
E′, k
−−−→

E
p′ then there exists s′ such that s ◦

E′, k
−−−→

E
s′ and s′ ∼ p′.

As a consequence, this relation is a bisimulation between the two semantics.

In particular, this confirms that pure Esterel programs are finite state.
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5.5 Labeled Behavioral Semantics of Esterel⋆Esterel⋆

The “gotopause label” instruction can be introduced in the labeled behavioral
semantics using a simple rule:

gotopause l p

∅, 1
−−→

E
{l} (gotopause)

It specifies, that “gotopause l” activates the label l. For example,

⌈gotopause 1; emit S; 1:pause|∗⌋ ◦
∅, 1
−−→

E
⌈gotopause 1; emit S; 1:pause|{1}⌋

For simplicity, we suppose that, in a program, there is no gotopause without target,
that is to say pause instruction of equal label. We do not suppose however that
gotopause statements have pairwise distinct labels. Simultaneous jumps to the
same target make sense.

5.6 Well-formedness

Arbitrary simultaneous jumps are not always harmless, however. In fact, validity
is no longer preserved by the extended semantics:

⌈[gotopause 1||2:pause];1:pause|∗⌋ ◦
∅, 1
−−→
∅

⌈[gotopause 1||2:pause];1:pause|{1, 2}⌋

The expansion of ⌈[gotopause 1||2:pause];1:pause|{1, 2}⌋ is undefined as two
pause instructions are selected in sequence. Such a state does not make sense,
as the activity status of locations contradict the structural shape of the program.
Therefore, the initial state ⌈[gotopause 1||2:pause];1:pause|∗⌋ cannot be con-
sidered to be correct, and the program “[gotopause 1||2:pause];1:pause” has
to be rejected. This is dealt with through a proper definition (and compile time
analysis) of well-formedness, which ensures that gotopause is compatible with Es-
terel concurrency, as well as other language constructs7.

If “k:pause” and “l:pause” are exclusive, i.e. cannot be executed simultaneously,
then we shall ensure that they are never activated simultaneously.

Formally, we say that a well-labeled program p is well formed iff:

∀k,∀l : k :pause # l :pause ⇒







gotopause k # gotopause l
gotopause k # l :pause

k :pause # gotopause l

Thanks to well-formedness, we can now recover the stability of validity as follows:

Theorem 11. If p is well formed, ⌈p|L⌋ valid, and ǫ⌈p|L⌋ p

E′, k
−−−→

E
L′ then ⌈p|L′⌋

is valid.

Proof. Similar to Theorem 8. A reaction of ǫ⌈p|L⌋ producing the set of active
labels L′ may reach at most one element of any pair of exclusive pause/gotopause
instructions. Thus, by definition of well-formedness, the pause statements selected
in ⌈p|L′⌋ are exclusive.

7In principle, checking that no invalid state can be reached in the execution of an Esterel⋆

program requires a complete state space exploration. The aim of well-formedness is to avoid such
a prohibitive computation. We provide a simple conservative soundness criterion, amenable to

efficient implementation, which nevertheless allows for the program patterns we are interested in.
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Well-formedness is a static semantic condition. It can be checked easily while
building the abstract syntax tree of a program. Compatible/exclusive pause in-
structions are already identified for optimization purposes.

The gotopause construct is compatible with concurrency in the sense that, for
instance, well-formedness let us compose any set of well-formed programs in parallel.

Of course, every well-labeled Esterel program is a well-formed Esterel⋆ pro-
gram. In the sequel, we shall only generate well-formed Esterel⋆ programs.

5.7 State Behavioral Semantics of Esterel⋆Esterel⋆

We define a state behavioral semantics (◦−→) for Esterel⋆ as follows:

⌈p|L⌋ ◦
E′, k
−−−→

E
⌈p|L′⌋ iff ǫ⌈p|L⌋ p

E′, k
−−−→

E
L′

One reaction of the well-formed statement p in the valid state ⌈p|L⌋ produces the
valid state ⌈p|L′⌋ iff L′ is the set of active labels computed by the labeled semantics
(including the (gotopause) rule) for the statement ǫ⌈p|L⌋.

The state semantics of Esterel⋆ restricted to Esterel programs is exactly the
state semantics of Section 5.4, which we have shown to be equivalent to the initial
logical behavioral semantics. Therefore, Esterel⋆ is truly an extension of the
original pure Esterel language.

6. REWRITING LOOPS

The programming style advocated by Esterel (local declarations plus local concur-
rency plus imperative loops) naturally leads to schizophrenic specifications [Clement
and Incerpi 1989]. So, compilers cannot afford to ignore or reject such program pat-
terns, and let the user deal with schizophrenia all by himself.

The idea of automatically rewriting schizophrenic programs into equivalent non-
schizophrenic programs is thus a natural one. It has been proposed by Mignard
[Mignard 1994]. His method consists in recursively duplicating loop bodies:

dup(nothing)
def
= nothing

dup(signal S in p end)
def
= signal S in dup(p) end
...

dup(loop p end)
def
= loop dup(p); dup(p) end

This program transformation is called reincarnation as it explicitly distributes the
several incarnations (simultaneous instances) of a single statement into several
distinct “bodies”. In other words, one statement having several incarnations is
changed into several statements, each of them having a unique incarnation.

First, if p is safe, it can be shown that p and dup(p) behave the same in all
contexts. Technically, they are strongly bisimilar with respect to Esterel logical
semantics8. In particular, if p cannot terminate instantly then dup(p) cannot either.
As a consequence, each loop body of a rewritten safe program consists of a sequence
of two identical non-instantaneous blocks. Neither block can be instantly left and
reentered. Therefore, dup(p) is not schizophrenic.

8Due to the form of Esterel semantics, strong bisimulation relations are congruence relations.
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surf (nothing)
def
= nothing

surf (exit T )
def
= exit T

surf (emit S)
def
= emit S

surf (p || q)
def
= surf (p) || surf (q)

surf (present S then p else q end)
def
= present S then surf (p) else surf (q) end

surf (trap T in p end)
def
= trap T in surf (p) end

surf (signal S in p end)
def
= signal S in surf (p) end

surf (loop p end)
def
= surf (p)

surf (p; q)
def
= if 0 ∈ Γp then surf (p); surf (q) else surf (p)

surf (label:pause)
def
= gotopause label

Fig. 13. Surface of Statements

This would once and for all take care of schizophrenic programs if the transfor-
mation was efficient enough. It is not the case: dup(p) may be exponentially larger
than p because of nested unfoldings (cf. example in Section 6.3).

6.1 Replacing loop with gotopause

In the sequel, we shall always consider safe and well-labeled Esterel programs
(pairwise distinct labels). Thanks to gotopause, we can partially unfold loop bodies
as follows:

unfold(nothing)
def
= nothing

unfold(signal S in p end)
def
= signal S in unfold(p) end
...

unfold(loop p end)
def
= unfold(p); surf (p)

Intuitively, we shall only duplicate the surface of p, that is to say the part of p which
is instantly reachable, and jump back from the surface to the “regular” copy of p,
using gotopause statements. Again, this unfolding has to be recursive because of
nested loops.

Function surf , for surface, is recursively defined in Figure 13. The three non-
elementary rules are boxed:

—A loop cannot be taken instantly, so it may be removed from the surface.

—If p in “p; q” cannot be instantaneous then q cannot be reached instantly.

—pause statements are changed into gotopause statements, thus effectively re-
placing the initial loop instruction by a bunch of non-instantaneous jumps.

For example,

surf (emit S;1:pause) = emit S;gotopause 1

unfold(loop emit S;1:pause end) = emit S;1:pause;emit S;gotopause 1

Theorem 12. If p is well labeled then “p; surf (p)” is well formed.

Proof. Let k and l be two labels of pause or gotopause instructions occurring
in compatible locations in “p; surf (p)”. Since p and surf (p) are composed in
sequence, k and l must both occur in p or both in surf (p) in compatible locations.
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In the second case, by definition of surf , there exists q and r such that k occurs in
surf (q) and l occurs in surf (r) and “q || r” is a subterm of p. Therefore, k occurs in
q and l occurs in r, so that k and l occurs in p in compatible locations. In summary,
if k and l occur in “p; surf (p)” in compatible locations, then they occur in p in
compatible locations. Since p contains no gotopause instructions, the “k : pause”
and “l : pause” instructions of p are compatible. So “p; surf (p)” is well formed.

Theorem 13. If p is non-instantaneous then “p; surf (p)” and “loop p end”
behave the same in all contexts, that is to say are strongly bisimilar.

Proof. There are several lemmas:

—∀q safe, ∀E,∀E′,∀k,∀L : q p

E′, k
−−−→

E
L ⇔ surf (q) p

E ′, k
−−−→

E
L by induction on q.

—∀L : ⌈p; surf (p)|L⌋ is valid iff ⌈loop p end|L⌋ is valid.

—∀L : ⌈loop p end|L⌋ and ⌈p; surf (p)|L⌋ are strongly bisimilar (if valid).

—⌈loop p end|∗⌋ and ⌈p; surf (p)|∗⌋ are strongly bisimilar,

Their proofs are given in [Tardieu 2004b].

Theorem 14. If p is well labeled then unfold(p) is well formed. Moreover, if p
is safe then p and unfold(p) behave the same.

Proof. By induction on nested loops, using the previous two theorems.

In summary, we have successfully replaced loop statements with gotopause state-
ments, with very limited code replication, as we discard non-instantly reachable
pieces of code in the generated copy of the statement. Of course, the resulting pro-
gram no longer contains potentially instantaneous loops or potentially schizophrenic
statements, since no statement may be left and instantly reentered without loops.

Theorem 15. If p is safe then unfold(p) is not schizophrenic.

6.2 Alternate Rewriting

Even if the previous transformation is the obvious one, it is not the one we work
with. Rather than putting surf (p) in sequence after the regular copy of p, we shall
put it in sequence before this regular copy. We recursively define function unfold ′

as follows, surf being unchanged:

unfold ′(nothing)
def
= nothing

unfold ′(signal S in p end)
def
= signal S in unfold ′(p) end
...

unfold ′(loop p end)
def
= loop surf (p); unfold ′(p) end

We can no longer get rid of the loop statement; but this new transformation is
again provably correct. First, it preserves the behavior of programs:

Theorem 16. If p is well labeled then “surf (p); p” is well formed.

Theorem 17. If p is non-instantaneous then p and “surf (p); p” behave the
same in all contexts.

Theorem 18. If p is well labeled then unfold ′(p) is well formed. Moreover, if p
is safe then p and unfold ′(p) behave the same.
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Proof. Similar to the proofs of Theorems 12, 13, and 14.

Second, this new transformation cures schizophrenia as well.

Theorem 19. If p is safe then unfold ′(p) is not schizophrenic.

Proof. By structural induction on p. Let us consider the case: p = loop q end.
ǫ(⌈loop surf (q); unfold ′(q) end|L⌋) = ǫ(⌈unfold ′(q)|L⌋); loop surf (q); unfold ′(q) end

Since surf (p) cannot be instantaneous, any reaction of the above statement can
involve at most one copy of unfold ′(p) (left occurrence) and surf (p). By induction
hypothesis, unfold ′(q) is not schizophrenic, thus no two copies of the same signal
declaration or parallel constructs of unfold ′(q) in the expansion ǫ(⌈unfold ′(q)|L⌋)
can be reached in one reaction. Therefore, no two copies of the same signal decla-
ration or parallel constructs of “loop surf (q); unfold ′(q) end” can be reached in a
single reaction of its expansion “ǫ(⌈unfold ′(q)|L⌋); loop surf (q); unfold ′(q) end”.
As a result, p is not schizophrenic.

While it may seem worse than the previous one, this new rewriting scheme is a
much better starting point for improvements because of Theorem 17. In compari-
son with Theorem 13, it provides an unfolded equivalent for all non-instantaneous
statements rather than loops only. In the current definition of unfold ′, we system-
atically replace loop bodies p, by their unfolding “surf (p); unfold ′(p)”. In the
sequel, we shall consider doing such substitutions in a much more selective fashion.

6.3 Algorithm

At this point, we can define a first original reincarnation algorithm that rewrites any
safe Esterel program p into a non-schizophrenic equivalent Esterel⋆ program
unfold ′(p̂):

—We first label the pause statements of the program p with pairwise distinct labels.
We denote the result with p̂.

—We then compute the image of p̂ by function unfold ′.

The rewriting of p into surf (p̂) is linear, and unfold ′(p̂) is at most quadratically
larger than p. For example,

• loop [p || loop q end] end

dup
=⇒

loop

[dup(p) || loop dup(q);dup(q) end];
[dup(p) || loop dup(q);dup(q) end];

end

unfold′

=⇒

loop

[surf (p) || surf (q)];
[unfold ′(p) || loop surf (q);unfold ′(q) end]

end

• loop [p || loop [p || loop p end] end] end

dup
=⇒ 2 + 4 + 8 = 14 times p (exponential growth)

unfold′

=⇒ 2 + 3 + 4 = 9 times p (quadratic growth)
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p unfold⋆(p,C 〈 〉)
nothing nothing

label : pause label : pause

exit T exit T
emit S emit S

present S then present S then

p unfold⋆(p,C [present S then 〈 〉 else q end])
else else

q unfold⋆(q,C [present S then p else 〈 〉 end])
end end

loop p end loop unfold⋆(p,C [loop 〈 〉 end]) end

trap T in p end trap T in unfold⋆(p,C [trap T in 〈 〉 end]) end

p; q unfold⋆(p,C [〈 〉; q]); unfold⋆(q,C [p; 〈 〉])

signal S in p end if C〈 〉 ∩ Ωp = ∅ then signal S in unfold⋆(p, ∅) end

else signal S in surf (p) end; skip(signal S in unfold⋆(p, ∅)) end

p || q if C〈 〉 ∩ Ωp || q = ∅ then unfold⋆(p, ∅) || unfold⋆(q, ∅)
else [surf (p) || surf (q)]; skip([unfold⋆(p, ∅) || unfold⋆(q, ∅))]

Fig. 14. Improved Rewriting using Static Analysis

But in these examples, the parallel statements cannot terminate, a fortiori be in-
stantly restarted by the loops. Hence, their unfolding is useless. In general, less
unfolding is possible, if we take into account our static analysis of schizophrenia.

6.4 Improved Rewriting

Schizophrenia arises from the nesting of signal declarations or parallel statements
within loops (Section 4). Instead of systematically unfolding whole loop bodies, we
could (i) expand signal declarations or parallel statements only, and (ii) condition
expansion on the result of our static analysis. These two ideas lead the definition
of unfold⋆ in Figure 14, surf remaining unchanged.

Function unfold⋆ is now context-dependent. It takes two arguments: the state-
ment p to rewrite and the (initially empty) set C〈 〉 of risky completion codes for
the current context. The recursive computation of this second argument exactly
matches that of the risk function (cf. Figure 9). As announced, loops no longer
replicate code on their own. Moreover, signal declarations and parallel statements
are only expanded if potentially schizophrenic (C〈 〉 ∩ Ωp 6= ∅).

Up to now only non-instantaneous statements (loop bodies) where unfolded.
With this new program transformation, potentially instantaneous blocks (signal
declarations and parallel statements) may be unfolded. Therefore, the unfolding
step:

p −→ surf (p); p

is replaced in this last program transformation by:

p −→ surf (p); skip(p)
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where function skip can be defined for instance as the following:

skip(p) = trap T in exit T; p end (where T is a fresh exception name)

Intuitively, function skip let us “skip” over its argument, so that even if surf (p)
in “surf (p); skip(p)” terminates instantly then p and “surf (p); skip(p)” behave
the same. In other words, p in skip(p) can only be reached using gotopause

instructions.

Theorem 20. If p is well labeled then “surf (p);skip(p)” is well formed.

Theorem 21. For all p, p and “surf (p);skip(p)” behave the same in all contexts.

Theorem 22. If p is well labeled then unfold⋆(p, ∅) is well formed. Moreover,
if p is safe then p and unfold⋆(p, ∅) behave the same.

Proof. Similar to the proofs of Theorems 12, 13, and 14.

Theorem 23. If p is safe then unfold⋆(p, ∅) is not schizophrenic.

Proof. This complex proof is sketched in [Tardieu 2004b], pages 127–129.

6.5 Improved Algorithm

In summary, the reincarnation algorithm we propose for an Esterel program p
consists of traversing p a first time to compute Γ and Ω and label p with pairwise
distinct labels, producing p̂, then computing unfold⋆(p̂, ∅). For example,

loop

signal S in

present S then emit O end;

pause;

emit S

end;

present I then emit O end

end

unfold⋆

=⇒

loop

signal S in

present S then emit O end;

1:gotopause;

end;

signal S in

present S then emit O end;

1:pause;

emit S;

end;

present I then emit O end

end

Further code size reduction, such as the removal of the unreachable test (in italic)
can be achieved via standard dead code elimination techniques9.

Again, unfold⋆(∅, p̂) may be quadratically larger than p in the worst case. But
this last algorithm is in practice quasi-linear, as we shall measure in Section 8.
In particular, in the absence of potentially schizophrenic statements, there is no
unfolding at all.

9In our current Esterel⋆ compiler (see Section 8), we achieve dead code elimination at the
circuit level by running the exact same constant propagation algorithm that was used prior to the
introduction of gotopause in the source language. In other words, no new dead code elimination

heuristics is required in order to compile efficiently Esterel⋆ programs.
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7. REINCARNATION IN FULL ESTEREL

Full Esterel adds to pure Esterel the ability to manipulate data of various
kinds: private variables, shared values, counters, registers, etc. The good news is
that data do not lead to more schizophrenia problems. Therefore, extending our
characterization and static analysis to full Esterel is straightforward. The bad
news is it breaks our rewriting scheme. Let’s consider a program where a variable
is declared within a schizophrenic signal scope (var statement):

loop

signal S in

var V in ...; pause;... end

end

end

unfold⋆

=⇒

loop

signal S in

var V in ...; gotopause 1;... end

end;

signal S in

var V in ...; 1:pause;... end

end

end

Unlike signal statuses, variables retain their values between instants. Thus, du-
plicating the declaration of V and jumping from one declaration to the other one,
changes the semantics of the program.

There are two obvious fixes. First, we may move declarations of data (but not
initializations!) up to the loop, using alpha-renaming when needed. In our example,
we obtain:

loop

var V in

signal S in ...; 1:gotopause;... end;

signal S in ...; 1:pause;... end

end

end

But this requires additional syntax for counters for instance. Moreover, much scop-
ing information is lost in this process.

Second, we may introduce static aliasing in Esterel⋆, expressing that the two
distinct declarations of V in the naive rewriting in fact correspond to a unique
memory cell. For instance, we can index variables before expansion, thus planning
memory allocation in advance:

loop

signal S in

var V@1 in ...; gotopause 1;... end

end;

signal S in

var V@1 in ...; 1:pause;... end

end

end

We have chosen the latter solution in our implementation. This technique can be
applied to all data defined in full Esterel. It solves the only problem raised by the
extension of our techniques from the pure subset of Esterel to the full language.
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program number of kernel statements description

source algorithm (6.3) algorithm (6.5)

global 10286 566585 16867 avionics man-machine interface

cabine 7644 67680 8020 avionics cockpit interface
atds100 890 1372 990 video generator

ww 432 833 439 wristwatch

tcint 403 725 418 turbochannel bus

P18 28 86 58 a lot of schizophrenia

abro 14 18 14 no schizophrenia

Table I. Comparison

8. IMPLEMENTATION

We have designed an algorithm that translates any Esterel program into a non-
schizophrenic equivalent Esterel⋆ program, via a rewriting of schizophrenic signal
declarations and parallel statements.

Using this algorithm, we have implemented a prototype compiler for full Esterel
into Digital Sequential Circuits, generating sc6 files10. The compiler code consists
of about 5000 lines of OCaml, structured as follows:

(1) parsing and macro expansion,

(2) link (i.e. source-level inlining of submodules),

(3) static analysis and reincarnation,

(4) compilation (of non-schizophrenic programs),

(5) a bit of boolean optimization (for sc6 compliance).

Relevant to our discussion are Steps 3 and 4 and their relationship. Step 3 rewrites
linked macro-expanded Esterel source code using the algorithms we have de-
scribed in the previous section. Step 4 essentially implements the naive circuit
synthesis of Berry [Berry 1999], in which we incorporate gotopause and data.

Compiling gotopause is straightforward:

—In our circuit generation, we allocate as usual one bit-register per pause state-
ment. But in addition to the regular connection of one wire to the input pin of
this register required by the pause statement itself, we connect (through an or

gate) one extra wire per gotopause statement with corresponding label.

—Esterel compilers are typically based on internal representations of programs
as graphs in which gotopause is easily encoded.

We have conducted some early experiments, summarized in Table I. We count the
number of statements (after macro expansion) in programs of various kinds and
sizes (from [Berry 1999] and [Potop-Butucaru 2002]), before and after reincarnation,
using both the algorithms of Sections 6.3 and 6.5. In the absence of static analysis,
the expansion ratio is unacceptable. With static analysis however, it remains low
in practice11.

10The sc6 file format defines a normalized circuit representation, which can in turn be converted
into C programs by existing tools [INRIA et al. 2000].
11For the “global” example for instance, we could achieve an even tighter expansion by imple-
menting dead code elimination at the source level (instead of constant propagation in Step 5, i.e.

circuit level). “P18” is designed to trigger as much expansion as possible for its size.
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We remark also that the circuit size reduction performed by the standard boolean
optimizations of Esterel compilers is typically linear in all cases. In particular,
such optimizations cannot undo the excessive unfolding of unoptimized reincarna-
tion algorithms. Static analysis at the source level is mandatory for the production
of small circuits.

What makes our compiler architecture really attractive in our view is the com-
bination of the following properties:

—Step 4 is completely independent from Step 3. In other words, the compilation
phase does not need to know anything about the static analysis/reincarnation
phase. They can be implemented independently.

—Step 3 output being an Esterel⋆ program, is still essentially an Esterel pro-
gram, as Esterel⋆ preserves the syntax and the semantics of Esterel. Instead
of having to cope with schizophrenia, a programmer (respectively algorithm)
just has to understand (respectively accept) simple, fully formalized gotopause

statements.

—Even with this complete separation, the generated code is good. Quadratic worst-
case complexity is standard [Berry 1999; INRIA et al. 2000; Schneider and Wenz
2001; Potop-Butucaru 2002; Edwards et al. 2004]. Thanks to static analysis, our
algorithm is quasi-linear in practice. In particular, it is just as effective12 as the
reference compiler for Esterel [INRIA et al. 2000] which internally uses a static
analysis of equal power, but much less formalized, and much more complex.

While former compiler architectures have already exposed some of these benefits,
ours is the first one to gather them all. In particular, in order to add a native fast
C backend to our compiler, we shall reuse the frontend made of the full first three
steps of our current compilation chain.

9. CONCLUSION

Synchronous languages like Esterel have simple and solid mathematical founda-
tions, that make formal reasoning tractable. In particular, logic synthesis or code
generation techniques can be seen as chains of semantic-preserving transformations
amenable to certification by formal proof.

In this work, we provide a formal description of one of the key steps of the
compilation process of Esterel: the treatment of loops. Even if its relevance might
seem limited to very specific Esterel paradigms in the first place, we feel that it
establishes a clear link between two distinct representation levels, ubiquitous in the
embedded world: a dynamic one where resources (time, space, etc.) are allocated
on demand, and a static one where resources are fixed, and behaviors are no longer
allowed to request more.

In practice, we move from one representation level where loops have to be dy-
namically unfolded instantly in the execution of the program, to another one where
unfolding has been completed statically, so that dynamic unfolding is no longer
necessary. In particular, behaviors that might require infinite unfolding to react to
new inputs, i.e. request an infinite amount of time, are discarded as incorrect.

In Esterel vocabulary, this means we have:

12Both the circuits produced and the duration of the synthesis are essentially the same.
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—rejected potentially instantaneous loops, using static analysis techniques;

—unfolded potentially schizophrenic loops, using both program rewriting tech-
niques and static analysis to optimize the rewriting.

Our transformation is:

—very efficient: to the best of our knowledge, no better algorithm is available
(formalized or as part of an implementation).

—provably correct: the skeleton of the proof is sketched in the paper.

Instantaneous loop issues have been discussed in the context of many synchronous
formalisms or languages, schizophrenia problems in a few, for instance in Quartz
[Schneider and Wenz 2001]. Similar attempts at the verification of the compiling
process (including schizophrenia) have been reported in [Schneider 2000; Schneider
et al. 2004]. These works focus on the embedding of a proof for a complete but
pessimistic circuit synthesis in the HOL theorem prover, while, in the current paper,
we concentrate on one part of the translation, but with efficiency in mind. We have
already started discussing the integration of our results into their system.

Our transformation is essentially a source to source transformation, based on
a new Esterel non-instantaneous jump primitive: gotopause. Therefore, this
preprocessing can be used for logic synthesis as well as fast C code generation.
Moreover, we believe the output of this preprocessor is quite valuable, as for in-
stance, debugging a non-schizophrenic program, which is to say a program in some
kind of Single Static Assignment form, is much nicer than working on the original
program.

Thanks to gotopause, compiling Esterel⋆ and compiling to Esterel⋆ are re-
spectively easier than compiling Esterel and compiling to Esterel, because of
(i) the efficient preprocessing of loops in Esterel⋆, and (ii) the efficient encoding
of state machines in Esterel⋆.

A prototype compiler embodying our current results has been realized.
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