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Abstract. Prior research developed a cellular automaton model, that was calib-
rated by using historical digital maps of urban areas and can be used to predict
the future extent of an urban area. The model has now been applied to two
rapidly growing, but remarkably di�erent urban areas: the San Francisco Bay
region in California and the Washington/Baltimore corridor in the Eastern United
States. This paper presents the calibration and prediction results for both regions,
reviews their data requirements, compares the di�erences in the initial con®gura-
tions and control parameters for the model in the two settings, and discusses the
role of GIS in the applications. The model has generated some long term predic-
tions that appear useful for urban planning and are consistent with results from
other models and observations of growth. Although the GIS was only loosely
coupled with the model, the model’s provision of future urban patterns as data
layers for GIS description and analysis is an important outcome of this type of
calculation.

1. Introduction

The human geographical processes of urbanization and urban spread will appar-

ently continue unabated into the twenty-®rst century. By the last decade of this

century (1995), 21 world cities had total metropolitan area populations of over 6

million, led by Tokyo(30 300 000), New York(18 087 251), Seoul (15 850 000),

Mexico City(14 100 000) and Moscow(13 150 000). Also by 1995, the number of

people worldwide living in settlements of ®ve thousand or more reached 51%, a

majority of humankind and a dramatic increase from 29% in 1950. Gottmann (1961)

coined the term megalopolis to describe the coalescence of metropolitan areas in the

northeastern United States. In the era of GIS, remote sensing and digital map

products have recorded the birth and growth of similar megalopolises in California

and in Mexico, South America, Europe, and Asia. New estimates of the world

population in 2100ad indicate an increase from the present population of 5.5 billion

to 10 to 20 billion. We have termed the resultant super cities gigalopolis , the twenty-

®rst century system of world cities containing billions of people centered on the

world’s major urban areas. Gibson’s ®ctional view of the future urban United States,

for example, talks only of the `East Sprawl’ and the `West Sprawl’ (Gibson 1984).

The magnitude of gigalopolis in population terms, however, understates the most

critical permanent impact of increased urban-space consumption, which is usually

at the expense of prime agricultural land essential for food production. Looked at

spatially, each expanding metropolitan area will become both physically and virtually
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connected to other growing concentrations of people in the coming century through

raw gain of territory as well as broader communication, transportation, and economic

ties. Not since the dominance of agriculture within human a�airs millennia ago has

humankind’s habitat changed so quickly and irreversibly. Simultaneously, recent

trends show ®rst that people are consuming more space per person within their

urban environment, but also that the average household size is decreasing, at least

in western cities. Urbanization and urban growth go hand-in-hand, and generate

many other land transitions, with several varied land use types eventually converting

to urban use. The spatial consequences of the urban transition deserve serious study

by scientists and policy makers concerned with global change because they will

impact humankind directly and profoundly. Vitousek (1994 ) called land use/land

cover changes, including the urban transition, one of the few certainties of global

change, because we are `certain that they are going on, and certain that they are

human-caused’.

This paper summarizes research conducted to describe, model, and predict future

urban transitions. We constructed a model using a cellular automaton that simulates

the urban growth process. We calibrated the model with historical data for two

major metropolitan regions in the United States, and used it to produce one-hundred-

year projections of their urban growth. GIS has been an indispensable tool in the

model construction and calibration, and will play far more critical a role when the

predictions are distributed and reproduced for other areas. The broader purpose of

this work is to model and predict the spatial consequences of future urbanization,

so that the impact of human-induced land transformations can be better understood.

Cellular modelling grew out of earlier environmental simulation work on wild®re

behaviour (Clarke et al. 1995 ), that in itself was based on pioneering work by

Michael Batty (Batty and Xie 1994 ). The role of cellular automata as potential

powerful contributions to urban process modelling was demonstrated by Couclelis

(1997) and Takeyama and Couclelis (1997). In¯uencing model choice was the need

for a model that was scale independent, so that local, regional and continental scale

processes could be described in a single context. Cellular automata are simple models

for the simulation of complex systems (Waldrop 1992, Wolfram 1986). A cellular

model assumes only an action space (usually a grid), a set of initial conditions, and

a set of behaviour rules. Characteristic of such models of complexity is that behaviour

is emergent, that is, it is generated by repetitive application of the rules beyond the

initial conditions. Complex systems are also termed self-organizing and are remark-

ably suitable to computational simulation (Wolfram 1984). Simple cellular automata

are characterized by phase transitions between behaviour types, so that a single

model can result in stability, stochastic instability or chaos. As such they seem ideally

suited to modelling the complexity of urban systems, which typically have many

more unknowns than measurable variables. Cellular models are known in ecology

as individual based models and this concept, that complex aggregate behaviour

results from many interacting self-motivated agents, has great value for both urban

modelling and for the data rich environment of GIS. This is especially appropriate

in urban modelling, where the process of urban spread is entirely local in nature

and aggregate e�ects, such as growth booms, are emergent.

Modelling cities with cellular automata is a new approach, and one that was

virtually impossible without the data management capabilities of GIS and powerful

workstation technology. The approach has distant roots in geography in the work

of Hagerstrand (1965) and Tobler (1979). Links to prior urban modelling are less
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clear (Clarke, Gaydos and Hoppen, 1997 ), though Batty and Longley (1994), Makse

et al. (1995 ) and White and Engelen (1992 ) have used essentially similar approaches.

2. The role of GIS in urban cellular modelling

Much has been written on the integration of GIS and modelling, especially for

environmental issues (Wilson 1995, Goodchild et al. 1996, Wagner 1997 ). In a recent

paper, Park and Wagner (1997 ) implemented a tight coupling of several cellular

automaton models (including ours) within Idrisi using the Cellang CA language. In

the context of the our cellular model, GIS served at least three important roles, none

of which could be called tight coupling. The ®rst of these was as data integrator. In

each of the initial applications, data were either already available as ARC/INFO

coverages, or were captured by scanning and digitizing (Crawford-Tilly et al. 1996).

Although the coverages existed, new map extents, projections, and grid resolutions

were required, and the GIS was invaluable in ensuring co-registered input data layers

for the model. All further modelling and analysis depended on this essential ®rst

step, what Chrisman has called a `universal requirement’ for GIS (Chrisman 1997,

p. 108). The input data layers were each raster grids, exported as image ®les and

converted by specialized software. Thus the relation of our modelling to GIS is one

of loose coupling, as classi®ed and described by Anselin et al. (1993).

Secondly, GIS allowed the results to be visualized. This was the weakest compon-

ent of the loose coupling. Stand-alone versions of software for the model were written

to generate map displays, multiple display windows, and results (Clarke et al. 1996,

Acevedo and Masuoka 1997 ). The role for the GIS in this instance was one of taking

intermediate results, and facilitating their comparison with the original and other

layers of information.

Thirdly, the predictions generated were reintroduced into the GIS data sets

available for application, allowing planning decisions to be made with the data. An

example is the ArcView window interface developed to display the three development

scenarios for the Sterling Forest area in New York State (Kramer 1996 ). It is this

third application of GIS that is by far the most powerful from the modelling point

of view. Having `what if ’ model projections available to perform the more traditional

GIS operations and analyses such as bu�ering and overlay is a very powerful GIS

capability. This function alone favours the use of loose coupling. In spite of e�orts

to build cellular modelling functions into GIS directly (Takeyama and Couclelis

1997; Park and Wagner 1997) and the suitability both of speci®c GIS packages (e.g.

GRASS) and of control languages (e.g. MapObjects and Avenue in ArcView), it is

likely that most numerical modelling, especially that requiring exhaustive or rigorous

calibration, will need to parallel the GIS rather than work within the software. This

approach is similar to the way that statistical functions and spatial analytical capabil-

ities have been integrated with GIS. By broadening the de®nition of GIS, such as

that of GIScience, the model coding can even be viewed as part of the science, if not

part of the system (Goodchild 1992, Clarke 1997).

3. Data for the model

Data for the model’s calibration and initial use in prediction came from a variety

of sources. For the San Francisco Bay area, we assembled data from historical maps

and air photos, analog and digital maps for di�erent time periods, from data supplied

by such agencies as local governments, and from satellite images (Kirtland et al.

1994). After success of the initial model application equivalent data, but to more
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speci®c and documented standards, was compiled for the Washington/Baltimore

region (Crawford-Tilley et al. 1996 ). These data are available on-line as part of the

Washington/Baltimore Regional Collaboratory (Clark et al. 1996 ).

Data assembly problems included inconsistent feature de®nitions over time,

especially for urban areas and major roads, extensive manual generalization present

in historical maps, and the need to integrate multiple image and map sources from

di�erent projections, datums, and coordinate systems. Although much of the delin-

eation of urban versus non-urban use had to be interpreted, skilled image interpreters

were available to make the interpretation to acceptable standards.

The model’s input layers are fourfold: (1) A digital elevation model, for which

the GIS was used to create a grid of slopes in percentage, (2) A layer showing the

initial or seed con®guration of urban areas, plus as many additional historical layers

as possible, to calibrate the model, (3 ) As many historical transportation layers as

possible, which the model reads and uses sequentially as their year of construction

is reached, (4) A layer of excluded areas unlikely or impossible to urbanize, such as

national parks, water bodies and protected wetlands. The latest version for the

gigalopolis project, in which several additional land cover types such as agricultural

and forest are included in the model’s behaviour, requires a land use layer as well.

Since the growth rules in this model are de®ned primarily by physical factors,

the San Francisco Bay area was an ideal ®rst test site. Elevations range from sea

level to 2500 m, with some clear topographic control over growth by the dichotomy

between slopes and ¯ats. The region also is diverse in its patterns of urbanization,

re¯ecting its beginnings in small enclaves clustered around the inland waterway

network, the emergence of San Francisco as a transportation hub, and the more

recent urbanization of the surrounding valleys closely re¯ecting the extended highway

system. The model’s temporal input comprised six raster image maps of urban extent

for the years 1900, 1940, 1954, 1962, 1974, and 1990, with 1900 as the inital conditions

or `seed’ year. An 1850 data set was too sparse for modelling purposes. Roads

were available for 1900, 1920 and 1970. The San Francisco data were included

in Clarke et al. (1997) and can be viewed on the World Wide Web at

http://edcwww2.cr.usgs.gov/umap/umap.html.

Similarly, for Washington/Baltimore, urban and road layers were constructed for

1792, 1850, 1900, 1925, 1938, 1953, 1966, 1972, 1982, and 1992 (®gures 1 and 2).

Again due to the sparse and least reliable early data, 1900 was used as the initial

conditions or seed layer. While the Washington/Baltimore Collaboratory digitized

layers for railroads also, these were excluded to ensure reliability and compatibility

between the two applications (Clark et al. 1996).

4. Model description

The urban model is a scale-independent cellular automaton (CA), model with

some variations from the traditional CA, and multiple behaviour types. The growth

rules are uniform throughout a gridded representation of geographical space and

are applied on a cell-by-cell basis. A single time span is one iteration of the CA, and

all changes are applied synchronously at the end of each time period. The set of

growth rules, and the initial condition (map of urban extent at a period in time) are

integral to the data set being used because they are de®ned in terms of the physical

nature of the location under study. In-site calibration then adapts the model to its

local environment. One interpretation is that the urban area corresponds to an

organism. The inital condition is the start `seed’ layer, growth occurs one cell at a
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Figure 1. Historical urban development in the Washington/Baltimore area.

time with each cell acting independently of all others, and patterns emerge during

growth as the organism `learns’ more about its environment.

The model was implemented as a computer program written in the C language.

The program operates as a set of nested loops: the outer control loop repeatedly

executes each growth `history’, retaining cumulative statistical data, while the inner

loop executes the growth rules for a single `year’. The starting point for urban growth
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Figure 2. Historical growth of transportation in the Washington/Baltimore area.
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is an input layer of `seed’ cells, the urban extent for a particular year identi®ed from

historical maps, atlases, and other sources. The rules apply a cell at a time and the

whole grid is updated as the `annual’ iterations complete. The modi®ed array forms

the basis for urban expansion in each succeeding year. Potential cells for urbanization

are selected at random and the growth rules evaluate the properties of the cell and

its neighbours (e.g., whether or not they are already urban, what their topographic

slope is, how close they are to a road). The decision to urbanize is based on

mechanistic growth rules as well as a set of weighted probabilities that encourage

or inhibit growth. The model is described in detail in Clarke et al. (1997).

Five factors control the behaviour of the system. These are: a di�usion factor,

which determines the overall outward dispersive nature of the distribution; a breed

coe�cient, which speci®es how likely a newly generated detached settlement is to

begin its own growth cycle; a spread coe�cient, which controls how much di�usion

expansion occurs from existing settlements, a slope resistance factor, which in¯uences

the likelihood of settlement extending up steeper slopes; and a road-gravity factor

which attracts new settlements toward and along roads. These values, which a�ect

the acceptance level of randomly drawn numbers, are set by the user at the outset

of every model run.

Four types of growth are possible in the model: spontaneous, di�usive, organic,

and road in¯uenced growth. Spontaneous growth occurs when a randomly chosen

cell falls in a suitable location for urbanization at the boundary of an existing

settlement, simulating the fragmenting in¯uence urban areas have on their surround-

ings. Di�usive growth permits the urbanization of cells which are ¯at enough to be

desirable locations for development, even if not near an established urban area.

Organic growth spreads outward from existing urban cores, representing the tendency

of all urban areas to expand. Road in¯uenced growth encourages urbanized cells to

develop along the transportation network, re¯ecting increased accessibility.

A second hierarchy of growth rules, termed self-modi®cation, is prompted by an

unusually high or low growth rate above or below a threshold. The growth rate is

computed by comparing the number of new pixels urbanized in any time period to

the total existing urban area. The limits of `critical high’ and `critical low’ begin an

increase or decrease in three of the growth-control parameters. The increase in the

parameters is by a multiplier greater than one, `boom’, imitating the tendency of an

expanding system to grow ever more rapidly, while the decrease is by a multiplier

less than one, `bust’, causing growth to taper o� as it does in a depressed or saturated

system. However, to prevent uncontrolled exponential growth as the system increases

in overall size, the multiplier applied to the factors is slightly decreased or lagged in

every subsequent growth year.

Other e�ects of self-modi®cation are an increase in the road-gravity factor as the

road network enlarges, prompting a wider band of urbanization around the roads,

and a decrease in the slope resistance factor as the percentage of land available for

development decreases, permitting expansion onto steeper slopes. Under self-

modi®cation, the parameter values increase most rapidly in the beginning of the

growth cycle when many cells are available for urbanization, and decrease as urban

density increases in the region and expansion levels o�. Without self- modi®cation

the model produces linear or exponential growth as long as new land remains

available; self-modi®cation generates the typical S-curve growth rate of urban

expansion observed within a region.
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5. Model calibration

Calibration of the original model was described in Clarke et al. (1996). Since

then, a new procedure has been developed and tested for the two study areas. After

assembly of the various data sets and their conversion to the input format for the

model, the calibration problem may be stated: given a starting image of urban extent,

which set of initial control parameters leads to a model run which best ®ts the

observed historical data? Pursuit of this question implies that `best’ can be quanti®ed,

and used to test statistically the observed against the expected. These parameters

are then used for prediction.

We chose four ways to test statistically the degree of historical ®t, and are

investigating twelve measures in our latest work. The four initial tests are correlation

coe�cients of predicted outcomes from the model with values computed from the

historical map layers. The speci®c measures were: (1) the r-squared ®t between the

actual and predicted number of urban pixels; (2 ). the r-squared ®t between the actual

and the predicted number of edges in the images (i.e. those pixels that have contact

between urban and non-urban on any side, so that a single isolated urban pixel

counts as 4 edges); (3 ) the r-squared ®t between the actual and the predicted number

of separate clusters in the urban distribution, computed by eroding cluster edges

with an image processing routine until all separate blobs collapse onto just one pixel,

then counting these pixels; and (4) A modi®ed Lee-Sallee shape index, computed by

combining the actual and the predicted distributions as binary urban/non-urban

layers, and computing the ratio of the intersection over the union. For perfect

correspondence the value is 1.0. Practically, values of about 0.3 were obtained. The

four measures were computed as averages of multiple runs. We used 4, 10, and 100

runs in the tests, although more rigorous multi-start tests were conducted in the

initial calibration (Clarke et al. 1996). We devised a single composite measure, the

®rst three summed and multiplied by the fourth, to rank overall outcomes.

Calibration then proceeded with a UNIX script written in the PERL shell

language. The script generated a control ®le for the program, executed the program

so that it iterated over four Monte Carlo runs, wrote log ®les of its outputs, then

executed a stand-alone program that computed the four measures, and wrote these

into a master log ®le. The ®rst of two PERL scripts performed coarse iterations over

the control parameters, with increments of 20 units at a time and 25 for Washington/

Baltimore. Even so, this procedure involved iterating over the 0±100 range of the

di�usion coe�cient, the breed coe�cient, the spread coe�cient, the slope-resistance

and the road-gravity control parameters. For San Francisco, six, six, six, ®ve and

seven combinations were tested for the parameters respectively, starting in 1900 and

terminating at the 1990 data set. This gave r-squared values computed for 1940,

1954, 1962, 1974, and 1990, for only ®ve `observations’ although each r-squared was

a composite of four measures and an average over four model runs. The 7560

combinations executed in about 252 hours of CPU time on a Silicon Graphics

Indigo 2 Impact 10000 workstation. The longer runs for the much larger Washington/

Baltimore data set mandated fewer combinations, on the order of 3000. This broad

coverage phase of the calibration gave those combinations of parameter setting that

tended to produce the best `projections’ of the present day.

The initial test was then repeated for unit increments of the control parameters

above and below the `winning’ values for the coarse calibration. The additional step

or ®ne calibration involved another 6 x 5 x 5 x 5 combinations of four iterations

each for 3000 combinations and another 100 hours of CPU time. Again, for the
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larger data set only about 1800 combinations were computed. A ®nal set of para-

meters was then used for a 100-run iteration, saving the terminating values of the

control parameters (changed by the self-modi®cation) as input for a 100-iteration

prediction run into the future, stopping at the year 2100.

One obvious problem with this approach is the processing time. Therefore, the

Washington/Baltimore data set was used in an experiment to test sensitivity of the

calibration process to scale dependence. In the original calibration, at the full reso-

lution and extent of the data set, the mapped area was 486 by 720 pixels with a

resolution of 210 m. The entire two step calibration process described above was

then repeated at resolutions of 410 m, 820 m, and 1640 m. New data sets were created

by direct sub-sampling, i.e. taking every other pixel in each case. To prevent the

drop out problem or loss of connectivity in the roads map, the roads were thickened

prior to re-sampling. this did indeed cut the processing time. The 1640 m data set

was fully calibrated in only 6 hours of CPU time, a 42 fold speed-up.

6. Results

The self-modi®cation internal to the cellular model enhances phase changes. In

geographical terms, this means that di�erent periods of time should be dominated

by di�erent growth behaviour, and by increasing spatial adaptation to the local

environmental conditions. As a result, it was expected that the impact of slope would

be more pronounced in San Francisco at ®rst, followed by a `spilling out’ of growth

into the Central Valley. On the other hand, topography is clearly less of a constraint

to growth in the Washington/Baltimore corridor, so that little di�erence in behaviour

would be expected to result from to the slope factor. There were indeed signi®cant

di�erences in slope behaviour. For example, for the population (number of urban

pixels) correlation, the San Francisco ®t was high but varied, and increased as the

slope resistance increased. On the contrary, in Washington/Baltimore, there was very

little variance in response, and ®t declined with the slope resistance (®gure 3). This

implied that slope explains far more of the urbanization in San Francisco than in

Washington and Baltimore. While a rather obvious point, it con®rms the basic

soundness of the model.

Phase changes are obvious from the coarse calibration data. In each case, the

®ve control parameter initial settings were compared to the scores. Some remarkable

behaviour was evident within the full range of model applications. For example, for

the population r-squared (actual vs. predicted urban extent for each observation

period ), the mean score decreased as the di�usion coe�cient increased, but the

Figure 3. Calibration results: initial values for the model control parameters.
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lowest setting had four iterations that scored higher than all others. A phase transition

was clearly precipitated by changing the spread parameter. Extremely high correla-

tion ( in excess of 0.99 r-squared) dropped markedly between spread settings of 1

and 20, but then increased linearly for the remainder of the values. In other words,

at a setting between 1 and 20, some interaction was triggered that precipitates a

behaviour change. Spatially, for example, this may be the breaking out of the initial

constrained urban areas and valleys. The e�ect is evident, though less clearly, in the

Washington/Baltimore data also. Phase transitions were evident in all four of the

test measures.

If the success measures can be characterized, then the four are increasingly spatial

in nature. The population value is, as expected, the easiest to simulate with the

model. Most ®ts were in the 0.99 range, partly due to the low number of data years.

The number of clusters was an indication of how many separate spreading centres

or independent communities were present. This value proved a far better discrimin-

ator in San Francisco than in Washington/Baltimore. The number of edges was the

total number of pixel contact edges between urban and non-urban within the grids.

As such, it has already been shown to be in¯uenced strongly by the map source.

Remotely sensed data are more speckled than map sources, and thus have more

edges. Finally, the Lee Sallee measure is a modi®ed shape index, de®ned as a ratio

of the AND to the OR of the actual and predicted urban images as binary layers.

This measure penalizes spatial mismatch twice; for example if a good spatial shape

match was displaced slightly, the intersection would be smaller but the union would

be larger by twice the displacement area. Values rarely approached even a 30%

match, and the ability to discriminate spatial match with this measure was quite

good. Again, the spread-parameter phase change was evident, both in San Francisco

and Washington/Baltimore. In a few cases, evidence pointed to a local maximum,

for example in the breed coe�cient for both data sets.

The second round of calibration selected the best outcome from the coarse

calibration and iterated single parameter-value increments above and below. Not all

values were permuted, since some were already clearly at maxim. Most striking from

the ®ne tuning results was the scaling nature of the model. Phase transitions, trends,

maxim and even oscillations (e.g. breed in Washington/Baltimore for the Lee-Sallee

measure) were evident. While in each case a single value was chosen as maximum,

in fact many individual runs can attain far higher success, in a speci®c measure and

overall. Nevertheless, stability across many runs was considered important for Monte

Carlo modelling. We made 100 permutations of the ®nal predictive runs. This was

done by starting the model at the present time, but using the terminating values

(because of the self-modi®cation) of the control parameters.

Predictions made for over 100 Monte Carlo runs allow us to map probabilities.

We decided to divide the probabilities into three categories. Stopping the predictions

at di�erent future dates created multiple frame displays (®gures 4 and 5). The images

of the future urban extent are most convincing when animated with the historical

data. In a ®rst attempt to animate the San Francisco data, it was di�cult to tell

where the observed data ended and the simulations began.

Finally, the results of the multiscale calibration were very encouraging. Table 1

shows the results of the `best’ combinations for the Washington/Baltimore data set

arrived at by successive halving of the resolution. As can be seen, the only major

di�erences in the degree of success came after the change from 820 to 1640 m. We

attribute this change to the severe distortion of the roads layer when roads must be
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Figure 5. CA model predictions for the Washington/Baltimore area.

over one and a half kilometers wide, and occasionally disconnect. Slope also su�ers

from the resolution change, with maximum and average slopes diminishing quickly

as the scale is made smaller. From table 1, is was clear that the di�usion factor seems

most scale sensitive, and that the breed factor seems almost a self-similar fractal,

with complete scale invariance. The obvious conclusion from the multi-scale calib-

ration is that a nested or hierarchical approach to calibration would be optimal,

®rst using coarse data to investigate the scaling nature of each parameter in a

di�erent city setting, then scaling up once the best data ranges are found. As a result,

far fewer combinations need be run at the ®nest scales, and CPU times can be

signi®cantly reduced, with no loss of calibration rigour.
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Table 1. Best overall calibrations by resolution: Washington/Baltimore.

210 m 420 m 840 m 1680 m
Resolution (486 x 720) (243 x 360) (121 x 180) (60 x 100)

Composite score 1 0.900014 0.950593 0.993430 0.841441
Composite score 2 3.223740 3.237434 3.226773 3.213986
r-squared urban 0.971070 0.969425 0.960926 0.967818
r-squared edges 0.965636 0.972149 0.972061 0.985269
r-squared clusters 0.978280 0.969293 0.949094 0.973370
Shape match 0.308754 0.326567 0.344692 0.287529
Di�usion 75 10 50 75
Breed 25 2 2 3
Spread 22 26 20 22
Slope 9 1 5 5
Roads 4 25 3 9

7. Predictions

Figures 4 and 5 show model predictions of future urbanization patterns for the

two applications areas. Obviously, the short-term predictions are more reliable than

the long term. The Monte Carlo probabilities have been reduced to three classes.

Shaded pink are those areas that the model predicts as 100% certain of growth.

Some of these areas are the existing urbanized areas, but as can be seen from the

®gures, this area expands over time. Most conservatively, these would be judged as

potential growth zones. Because ordinary outward expansion and in®lling of existing

settlements are the most predictable types of growth, the organic spread of the

settlements has the highest degree of con®dence. Shaded green are areas with less

than 100%, but greater than 50% or even chance of growth. The greater-than-even-

odds criterion may be a good compromise for spatial forecasting. Taking in this

class of prediction much of the highway-based growth is captured. Finally, a high-

risk projection category of greater than zero but less-than-even-odds is plotted in

light green. This zone combines more extended and fragmented growth of transporta-

tion, but also includes many entirely new urban centers. When a new spreading

centre forms in repeated model runs, it could be identi®ed as a `city waiting to

happen’, a site so potentially ripe for growth that it is merely a matter of time before

urbanization arrives. Examples of such settlements are: Vacaville and Morgan Hill

in California, and Chantilly and Manassas in Virginia.

The utility of these predictive layers clearly lies in their being placed in the public

realm. The San Francisco Bay area projections have been posted on the World Wide

Web for some time. The Washington D.C./Baltimore projections are available at

http:// urban.wr.usgs.gov/ urban.html. They will be most useful as data layers in a

GIS data format, for integration with existing information.

8. Conclusions

Work on the model so far has established that the approach can produce useful

results. While the calibration phase is slow and highly dependent on the size of the

input data set and on the quality and quantity of historical data, historical map and

image data as the basis for future settlement predictions seems suitable and the

multi-scale calibration process could speed the process. Monte Carlo methods,

coupled with the variance estimates they generate, allow clear con®dence limits to

be placed on projected future spatial patterns. As sensitive and potentially controver-
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sial as growth predictions are from the political and societal viewpoint, the rigour

of the calibration, the repeatability of the experiment and the utility of a prediction-

probability layer for further GIS work justify the outcomes of the modelling. Only

the real future, as it slowly unfolds, can verify our model. But then, is the purpose

of modelling to actually predict, or to help imagine, test, and choose between possible

futures? If so, then this model and approach can indeed be useful for scenario

planning (Kramer 1996).

While the role of the model as both a consumer and provider of GIS data has

been evident, the functional coupling of the model with any particular GIS has been

loose, at best. On the other hand, we see such models as valuable enriching sources

of GIS data layers, and layers that have real value for planning and GIS application.

For example, what location decisions pending today might change in the light of

predicted future patterns? Could better decisions on siting waste disposal be made

given predictions of urban spread? Would zoning or land-preservation policies change

if their future consequences were better known, or even better understood? Could

cities test and evaluate alternative growth-control strategies by spatial modeling?

Experience with existing models have shown this to be the case.

Future work with the model will involve extending the land transition to a

broader set of land use and land-cover changes. We have set the Anderson Level I

classes as a ®rst goal for the new work (Anderson et al. 1976). In addition, the model

needs to be ported to and repeatedly applied to new study areas and at di�erent

map scales. We intend to further examine the impact of scale and locale of application

of the model on the initial conditions, on the best start parameters, and on the

process of self-modi®cation. Our plans call for testing the model at about 1 km

resolution for the entire lower 48 United States for the full Anderson Level I

classi®cation, and for applications in New York, Chicago, Philadelphia, and Portland.

Finally, can the model be used to predict the extent and impact of gigalopolis ? Can

the model be coupled with other models of the global environment to provide

multiple assessments of the impact of global change? If these questions are answerable

in the a�rmative, the cellular model could become a valuable tool for anticipating,

and e�ectively addressing some aspects of our children’s, and our childrens children’s,

urban future.
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