
Loose-Ordering Consistency

for Persistent Memory

Youyou Lu1, Jiwu Shu1,

Long Sun1, Onur Mutlu2

1Tsinghua University
2Carnegie Mellon University

•  Problem: Strict write ordering required for storage
consistency dramatically degrades performance in
persistent memory

•  Our Goal: To keep the performance overhead low while
maintaining the storage consistency

•  Key Idea: To Loosen the persistence ordering with
hardware support
–  Eager commit: A commit protocol that eliminates the use of

commit record, by reorganizing the memory log structure

–  Speculative persistence: Allows out-of-order persistence to
persistent memory, but ensures in-order commit in programs,
leveraging the tracking of transaction dependencies and the
support of multi-versioning in the CPU cache

•  Results: Reduces average performance overhead of
persistence ordering from 67% to 35%

Summary

2

Outline

•  Introduction and Background

•  Existing Approaches

•  Our Approach: Loose-Ordering Consistency

–  Eager Commit

–  Speculative Persistence

•  Evaluation

•  Conclusion

3

Outline

•  Introduction and Background

•  Existing Approaches

•  Our Approach: Loose-Ordering Consistency

–  Eager Commit

–  Speculative Persistence

•  Evaluation

•  Conclusion

4

LLC

L2
L1

Persistent Memory

•  Persistent Memory
–  Memory-level storage: Use non-volatile memory in main memory

level to provide data persistence

•  Storage Consistency
–  Atomicity and Durability: Recoverable from unexpected failures

–  Boundary of volatility and persistence moved from Storage/
Memory to Memory/Cache

Memory
(NVM)

Disk Storage

LLC

L2
L1

Memory
(DRAM)

Disk Storage

5

Storage Consistency – Write-Ahead Logging(WAL)

•  Step 1. Log Write

•  Step 2. Commit Record Write

•  Step 3. In-place Write

•  Step 4. Log Truncation

C

E F

I J

M N O

M’ O’ P’ J’ J’

M’ O’ P’

Ordering is required for storage consistency.

Intra-tx Ordering

Inter-tx Ordering

Program Ack

6

High Overhead for Ordering in PM

•  Persistence ordering

–  Force writes from volatile CPU cache to Persistent Memory

Memory
(NVM)

•  High overhead for persistence ordering

–  The boundary between volatility and persistence lies between
the H/W controlled cache and the persistent memory

•  Costly software flushes (clflush) and waits (fence)

–  Existing systems reorder writes at multiple levels, especially in

the CPU and cache hierarchy 7

LLC

L2
L1

Volatile

Persistent

Outline

•  Introduction and Background

•  Existing Approaches

•  Our Approach: Loose-Ordering Consistency

–  Eager Commit

–  Speculative Persistence

•  Evaluation

•  Conclusion

8

LLC

L2
L1

LLC

L2
L1

Existing Approaches

•  Allowing asynchronous commit of transactions
–  Allow the execution of a later transaction without waiting for

the persistence of previous transactions

–  Allow execution reordering, but no persistence reordering

Memory
(NVM)

Memory
(NVM)

•  Making the CPU cache non-volatile
–  Reduce the time gap between volatility and persistence by

employing a non-volatile cache

–  Is complementary to our LOC approach

 3

2

1

 1

9

LLC

1 2 3 4 1 2 3 4
T1: A, B, C, D

T2: A, F

T3: B, C, E

T4: D, E, F, G

LLC

L2
L1

Our Solution: Key Ideas

•  Loose-Ordering Consistency (LOC)

–  Allow persistence reordering

Memory
(NVM)

4

3

2

1

 3

 1

•  Eager Commit
–  Remove the intra-tx ordering

•  Delay the completeness check till recovery phase

–  Reorganize the memory log structure

•  Speculative Persistence
–  Relax the inter-tx ordering

•  Speculatively persist transactions but make the
commit order visible to programs in the program order

–  Use cache versioning and Tx dependency tracking
10

1 2 3
4

Outline

•  Introduction and Background

•  Existing Approaches

•  Our Approach: Loose-Ordering Consistency

–  Eager Commit

–  Speculative Persistence

•  Evaluation

•  Conclusion

11

LOC Key Idea 1 – Eager Commit

•  Goal: Remove the intra-tx ordering

•  Eager Commit: A new commit protocol without

commit records

•  Step 1. Log Write

•  Step 2. Commit Record Write

•  Step 3. In-place Write

•  Step 4. Log Truncation

Intra-tx Ordering

Inter-tx Ordering

Program Ack

12

Eager Commit
•  Commit Protocol

–  Commit record: Check the completeness of log writes

•  Eager Commit

–  Reorganize the memory log structure for delayed check

•  Remove the commit record and the intra-tx ordering

–  Use count-based commit protocol: <TxID, TxCnt>

13

Eager Commit

•  Count-based commit protocol
–  During normal run,

•  Tag each block with TxID

•  Set only one TxCnt to the total # of blocks in the tx, and others to ‘0’

–  During recovery,

•  Recorded TxCnt: Find the non-zero TxCnt for each tx TxID

•  Counted TxCnt: Count the tot. # of blocks in the tx

•  If the two TxCnts match (Recorded = Counted), committed;
otherwise, not-committed

14 No commit record. Intra-tx ordering eliminated.

Tx1, 0 Tx1, 0 Tx1, 0 Tx1, 4 Tx2, 0

LOC Key Idea 2 – Speculative Persistence

•  Goal: relax the inter-tx ordering

•  Speculative Persistence

–  Out-of-order persistence: To relax the inter-tx ordering

to allow persistence reordering

–  In-order commit: To make the tx commits visible to

programs (program ack) in the program order

•  Step 1. Log Write

•  Step 2. Commit Record Write

•  Step 3. In-place Write

•  Step 4. Log Truncation

Intra-tx Ordering

Inter-tx Ordering

Program Ack

15

A B C D A F B C E D E F G

Speculative Persistence

Strict Ordering

A B C D A F B C E D E F G A B C D A B C D A F B C E A F B C E D E F G D E F G

16

A B C D A F B C E D E F G

A B C D E F G

A B C D A F C E A B C D E F G D E F G B

Loose Ordering

volatile CPU cache

persistent memory

volatile CPU cache

persistent memory

 T1: (A, B, C, D) -> T2: (A, F) -> T3: (B, C, E) -> T4: (D, E, F, G)

Inter-tx ordering relaxed. Write coalescing enabled.

Speculative Persistence

•  Speculative Persistence enables write coalescing for
overlapping writes between transactions.

•  But there are two problems raised by write coalescing of
overlapping writes:
–  How to recover a committed Tx which has overlapping writes

with a succeeding aborted Tx?

•  Overlapping data blocks have been overwritten

–  Multiple Versions in the CPU Cache

–  How to determine the commit status using the count-based
commit protocol of a Tx that has overlapping writes with
succeeding Txs?

•  Recorded TxCnt != Counted TxCnt

–  Commit Dependencies between Transactions

•  Tx Dependency Pair: <Tp, Tq, n>

17 See the paper for more details.

Recovery

•  Recovery is made by scanning the memory log.

•  More details in the paper.

18

Outline

•  Introduction and Background

•  Existing Approaches

•  Our Approach: Loose-Ordering Consistency

–  Eager Commit

–  Speculative Persistence

•  Evaluation

•  Conclusion

19

Experimental Setup

•  GEM5 simulator
–  Timing Simple CPU: 1GHz

–  Ruby memory system

•  Simulator configuration
–  L1: 32KB, 2-way, 64B block size, latency=1cycle

–  L2: 256KB, 8-way, 64B block size, latency=8cycles

–  LLC: 1MB, 16-way, 64B block size, latency=21cycles

–  Memory: 8 banks, latency=168cycles

•  Workloads
–  B+ Tree, Hash, RBTree, SPS, SDG, SQLite

20

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

B+Tree Hash RBTree SPS SDG SQLite GmeanN
o

rm
a

liz
e

d
 T

x
 T

h
ro

u
g

h
p

u
t

 (
tx

s
/s

)

S-WAL
H-WAL

LOC-WAL
Kiln

LOC-Kiln

Overall Performance

21

•  LOC significantly improves performance of WAL: Reduces

average performance overhead of persistence ordering from 67% to 35%.

•  LOC and Kiln can be combined favorably.

LOC effectively mitigates performance degradation from

persistence ordering.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

B+Tree Hash RBTree SPS SDG SQLite Gmean

N
o

rm
a

liz
e

d
 T

x
 T

h
ro

u
g

h
p

u
t

 (
tx

s
/s

)

H-WAL
EC-WAL

Effect of Eager Commit

22

Eager Commit outperforms H-WAL by 6.4% on average
due to the elimination of intra-tx ordering.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

B+Tree Hash RBTree SPS SDG SQLite GmeanN
o

rm
a

liz
e

d
 T

x
 T

h
ro

u
g

h
p

u
t

 (
tx

s
/s

)

LOC(SD=1)
LOC(SD=2)

LOC(SD=4)
LOC(SD=8)

LOC(SD=16)
LOC(SD=32)

Effect of Speculative Persistence

23

The larger the speculation degrees, the larger the performance benefits.

Speculative Persistence improves the normalized transaction throughput
from 0.353 (SD=1) to 0.689 (SD=32) with a 95.5% improvement.

Outline

•  Introduction and Background

•  Existing Approaches

•  Our Approach: Loose-Ordering Consistency

–  Eager Commit

–  Speculative Persistence

•  Evaluation

•  Conclusion

24

•  Problem: Strict write ordering required for storage
consistency dramatically degrades performance in
persistent memory

•  Our Goal: To keep the performance overhead low while
maintaining the storage consistency

•  Key Idea: To Loosen the persistence ordering with
hardware support
–  Eager commit: A commit protocol that eliminates the use of

commit record, by reorganizing the memory log structure

–  Speculative persistence: Allows out-of-order persistence to
persistent memory, but ensures in-order commit in programs,
leveraging the tracking of transaction dependencies and the
support of multi-versioning in the CPU cache

•  Results: Reduces average performance overhead of
persistence ordering from 67% to 35%

Conclusion

25

Loose-Ordering Consistency

for Persistent Memory

Youyou Lu1, Jiwu Shu1,

Long Sun1, Onur Mutlu2

1Tsinghua University
2Carnegie Mellon University

