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•  Problem: Strict write ordering required for storage 
consistency dramatically degrades performance in 
persistent memory 

•  Our Goal: To keep the performance overhead low while 
maintaining the storage consistency 

•  Key Idea: To Loosen the persistence ordering with 
hardware support 
–  Eager commit: A commit protocol that eliminates the use of 

commit record, by reorganizing the memory log structure 

–  Speculative persistence: Allows out-of-order persistence to 
persistent memory, but ensures in-order commit in programs, 
leveraging the tracking of transaction dependencies and the 
support of multi-versioning in the CPU cache 

•  Results: Reduces average performance overhead of 
persistence ordering from 67% to 35% 
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Persistent Memory 

•  Persistent Memory  
–  Memory-level storage: Use non-volatile memory in main memory 

level to provide data persistence 

•  Storage Consistency 
–  Atomicity and Durability: Recoverable from unexpected failures 

–  Boundary of volatility and persistence moved from Storage/
Memory to Memory/Cache 
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Storage Consistency – Write-Ahead Logging(WAL) 

•  Step 1. Log Write 

•  Step 2. Commit Record Write 

•  Step 3. In-place Write 

•  Step 4. Log Truncation 
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Ordering is required for storage consistency. 

Intra-tx Ordering 

Inter-tx Ordering 

Program Ack 
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High Overhead for Ordering in PM 

•  Persistence ordering 

–  Force writes from volatile CPU cache to Persistent Memory 

Memory 
(NVM) 

•  High overhead for persistence ordering 

–  The boundary between volatility and persistence lies between 
the H/W controlled cache and the persistent memory 

•  Costly software flushes (clflush) and waits (fence) 

–  Existing systems reorder writes at multiple levels, especially in 

the CPU and cache hierarchy 7 
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Existing Approaches 

•  Allowing asynchronous commit of transactions 
–  Allow the execution of a later transaction without waiting for 

the persistence of previous transactions 

–  Allow execution reordering, but no persistence reordering 

Memory 
(NVM) 

Memory 
(NVM) 

•  Making the CPU cache non-volatile 
–  Reduce the time gap between volatility and persistence by 

employing a non-volatile cache 

–  Is complementary to our LOC approach 
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LLC 

1 2 3 4 1 2 3 4 
T1: A, B, C, D 

T2: A, F 

T3: B, C, E 

T4: D, E, F, G 
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Our Solution: Key Ideas 

•  Loose-Ordering Consistency (LOC) 

–  Allow persistence reordering 

Memory 
(NVM) 
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•  Eager Commit  
–  Remove the intra-tx ordering 

•  Delay the completeness check till recovery phase 

–  Reorganize the memory log structure 

•  Speculative Persistence 
–  Relax the inter-tx ordering 

•  Speculatively persist transactions but make the 
commit order visible to programs in the program order 

–  Use cache versioning and Tx dependency tracking 
10 
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LOC Key Idea 1 – Eager Commit   

•  Goal: Remove the intra-tx ordering 

•  Eager Commit: A new commit protocol without 

commit records 

•  Step 1. Log Write 

•  Step 2. Commit Record Write 

•  Step 3. In-place Write 

•  Step 4. Log Truncation 

Intra-tx Ordering 

Inter-tx Ordering 

Program Ack 
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Eager Commit 
•  Commit Protocol 

–  Commit record: Check the completeness of log writes 

•  Eager Commit  

–  Reorganize the memory log structure for delayed check 

•  Remove the commit record and the intra-tx ordering 

–  Use count-based commit protocol: <TxID, TxCnt> 
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Eager Commit 

•  Count-based commit protocol 
–  During normal run, 

•  Tag each block with TxID 

•  Set only one TxCnt to the total # of blocks in the tx, and others to ‘0’ 

–  During recovery, 

•  Recorded TxCnt: Find the non-zero TxCnt for each tx TxID 

•  Counted TxCnt: Count the tot. # of blocks in the tx 

•  If the two TxCnts match (Recorded = Counted), committed; 
otherwise, not-committed 

14 No commit record. Intra-tx ordering eliminated. 

Tx1, 0 Tx1, 0 Tx1, 0 Tx1, 4 Tx2, 0 



LOC Key Idea 2 – Speculative Persistence  

•  Goal: relax the inter-tx ordering 

•  Speculative Persistence 

–  Out-of-order persistence: To relax the inter-tx ordering 

to allow persistence reordering 

–  In-order commit: To make the tx commits visible to 

programs (program ack) in the program order 

•  Step 1. Log Write 

•  Step 2. Commit Record Write 

•  Step 3. In-place Write 

•  Step 4. Log Truncation 

Intra-tx Ordering 

Inter-tx Ordering 

Program Ack 
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Speculative Persistence 

Strict Ordering 

A B C D A F B C E D E F G A B C D A B C D A F B C E A F B C E D E F G D E F G 
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Loose Ordering  

volatile CPU cache 

persistent memory 

volatile CPU cache 

persistent memory 

 T1: (A, B, C, D) -> T2: (A, F) -> T3: (B, C, E)  -> T4: (D, E, F, G)  

Inter-tx ordering relaxed. Write coalescing enabled. 



Speculative Persistence 

•  Speculative Persistence enables write coalescing for 
overlapping writes between transactions. 

•  But there are two problems raised by write coalescing of 
overlapping writes:  
–  How to recover a committed Tx which has overlapping writes 

with a succeeding aborted Tx? 

•  Overlapping data blocks have been overwritten 

–  Multiple Versions in the CPU Cache 

–  How to determine the commit status using the count-based 
commit protocol of a Tx that has overlapping writes with 
succeeding Txs? 

•  Recorded TxCnt  !=  Counted TxCnt 

–  Commit Dependencies between Transactions 

•  Tx Dependency Pair: <Tp, Tq, n> 

17 See the paper for more details. 



Recovery 

•  Recovery is made by scanning the memory log. 

•  More details in the paper. 
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Experimental Setup 

•  GEM5 simulator 
–  Timing Simple CPU: 1GHz 

–  Ruby memory system 

•  Simulator configuration 
–  L1: 32KB, 2-way, 64B block size, latency=1cycle 

–  L2: 256KB, 8-way, 64B block size, latency=8cycles 

–  LLC: 1MB, 16-way, 64B block size, latency=21cycles 

–  Memory: 8 banks, latency=168cycles 

•  Workloads 
–  B+ Tree, Hash, RBTree, SPS, SDG, SQLite 
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•  LOC significantly improves performance of WAL: Reduces 

average performance overhead of persistence ordering from 67% to 35%. 

•  LOC and Kiln can be combined favorably. 

LOC effectively mitigates performance degradation from 

persistence ordering. 
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Eager Commit outperforms H-WAL by 6.4% on average 
due to the elimination of intra-tx ordering. 
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The larger the speculation degrees, the larger the performance benefits. 
 

Speculative Persistence improves the normalized transaction throughput 
from 0.353 (SD=1) to 0.689 (SD=32) with a 95.5% improvement. 
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