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A loosely coupled Inertial Navigation System (INS) and Global Positioning System (GPS)
are studied, particularly considering the constant lever arm effect. A five-element vector,
comprising a craft’s horizontal velocities in the navigation frame and its position in the
earth-centred and earth-fixed frame, is observed by GPS, and in the presence of lever arm
effect, the nonlinear observation equation from the state vector to the observation vector is
established and addressed by the correction stage of an unscented Kalman filter (UKF). The
conditionally linear substructure in the nonlinear observation equation is exploited, and a
computationally efficient refinement of the UKF called marginalized UKF (MUKEF) is
investigated to incorporate this substructure where fewer sigma points are needed, and the
computational expense is cut down while the high accuracy and good applicability of the
UKEF are retained. A performance comparison between UKF and MUKF demonstrates that
the MUKEF can achieve, if not better, at least a comparable performance to the UKF, but at a
lower computational expense.
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1. INTRODUCTION. An Inertial Navigation System (INS) is entirely self-
contained within the vehicle, in the sense that it is not dependent on the transmission
of signals from the vehicle or reception from an external source. However the
performance of an INS is characterised by an unbounded drift in the error of
the navigation results. This problem can be addressed by using sensors that are
more accurate, but are, as a result, much more expensive. Low cost is thus a basic
requirement along with high accuracy, and often these requirements conflict. Thus it is
often not economic to use more accurate sensors to get accurate long-term navigation
results (Titterton and Weston, 2004). Alternatively, an external source of navigation
information can be employed to aid the INS. The Global Positioning System (GPS),
or other global navigation satellite systems (GNSS) (Yang et al., 2011), can provide
drift-free position and velocity with good accuracy. However, the main drawbacks of
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GPS are threefold: the signal can be jammed; the outputs are at a relatively low rate;
and accurate attitude information cannot be provided through single-antenna GPS
receivers. However GPS can be used to aid INS due to their complementary attributes
(Jwo et al., 2012). It can be expected to obtain improved navigation results with
better reliability, latency, bandwidth and update rate through the integration of INS
and GPS.

The celebrated Kalman filter (KF) is often chosen as the information fusion
algorithm in integrated navigation. If the phase centre of the GPS antenna and the
geometrical centre of the IMU do not coincide with each other, which is often the case,
the lever arm effect must be considered. The observation equation considering the
lever arm effect is very nonlinear (Geng et al., 2011). Nonlinearity in the state and/or
measurement equations can be addressed by the extended Kalman filter (EKF).
However the simple “first order Taylor series truncation” in the EKF has several flaws
which have been revealed by many scholars and engineers, see e.g. (Julier et al., 2000;
Jwo and Lai, 2009).

There has been intensive interest in proposing new nonlinear filters to address the
aforementioned flaws of EKF since around 2000. Many of these new filters fall into
the class of sample-based ones in which the derivatives or the Jacobian matrices of
the nonlinear equations are no longer needed. One of these filters is called the
unscented Kalman filter (UKF) which is based on the intuition that it is easier to
approximate a Gaussian distribution than it is to approximate an arbitrary nonlinear
function or transformation (Julier et al., 2000). The finite-difference-based central
difference filter (CDF) (Ito and Xiong, 2000) and Sterling-polynomial-interpolation-
based divided difference filter (DDF) (Norgaard et al., 2000) were proposed
independently and almost simultaneously. In Van Der Merwe (2004), UKF, CDF,
and DDF are treated as a family of algorithms called sigma point Kalman filters
(SPKF). Lefebvre et al. (2002), revisited the UKF from the perspective of statistical
linear regression through sampling. Lerner reveals that the core of UKF, called the
unscented transformation (UT), is essentially the Gaussian quadrature rule for third
order monomials (Lerner, 2002), and the fifth order UKF is proposed implying that
the standard UKF is just the third order one. A review of nonlinear filters from the
perspective of numerical integrations can be found in Wu et al. (2006). Arasaratnam
and Hawkin (2009) proposed the so-called cubature Kalman filter (CKF) through the
third order spherical-radial cubature rule. It has been pointed out in several papers
that CKF can be seen, in some sense, as a special form of UKF, see e.g. Dunik et al.
(2012). Quite recently a high-degree CKF was proposed by Jia et al. (2012) based on
the fifth order spherical-radial cubature rule which is similar to the fifth order UKF in
Lerner (2002) and Wu et al. (2006).

The superiority of these SPKFs are at some cost of heavier computational load,
because square roots of matrices are needed to generate sigma points whose number is
usually 2n+ 1 with n being the dimension of the state, and moreover nonlinear func-
tion evaluations should be carried out at all these points, as opposed to EKF in which
these evaluations are carried out only once in one recursion. So if both UKF and EKF
can meet the accuracy requirement, the latter is preferred (Daum, 2005). The
dimension related problems can be addressed to some extent with the simplex UKF
whose sigma points are fewer but can only give degraded performance (Julier, 2003).

In many cases there is some linear substructure in the nonlinear function under
consideration, i.e. the function is nonlinear only in some of the state elements while the
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remaining part is (conditionally) linearly mapped to the functional values. By
exploiting this special structure in the nonlinear function, a refined form of UKF
called marginalized UKF (MUKF) can be adopted without degrading the
performance, where sigma points are generated only to capture the “nonlinear” part
of the state elements, and a reduced number of sigma points can result in a reduction
in the computation burden (Chang, 2012; Morelande & Moran, 2007).

In an integrated INS/GPS system, the accumulating INS errors are effectively
restrained through periodical integration with GPS observations. Also, the INS
calculation is at a high rate, with a small update interval within which the errors can be
small values. So the linear error equation based on small angle errors is constructed.
The lever arm effects on position and velocity are expressed in earth-centred-earth-
fixed and navigation frames, respectively (Geng et al., 2011). Under refined
perceptions, it is pointed out that the observations are a nonlinear function of only
eight elements of the 13-element state vector while the remaining ones, the north and
east velocity errors and the three accelerometer biases, are conditionally linearly
mapped to the observation vector. The nonlinearity in the observation equation due to
the lever arm effect is addressed by the MUKF instead of the standard UKF and the
computational cost is relatively lower while attaining the high accuracy and easy
applicability desired.

The remainder of the paper is organised as follows. The state equation and
observation equation are constructed in Section 2 and Section 3 respectively. The
implementation of the MUKF in INS/GPS is presented in Section 4. In Section 5,
the performance of MUKF and UKF is compared in simulation studies, and the
performance of the former is validated. Some concluding remarks are given in
Section 6.

The reference frames used in this paper are briefly introduced here. All the frames
are orthogonal, right-handed Cartesian. The inertial frame (i-frame) is an approxi-
mate one with its origin at the centre of the earth and axes non-rotating with respect
to the fixed stars. The earth-centred-earth-fixed frame (e-frame) has its origin at the
centre of the earth and is fixed to the earth. The first axis is along the earth pole and
the second axis lies along the intersection of the plane of the Greenwich meridian with
the earth’s equatorial plane. The navigation frame (n-frame) is a local horizontal one
with three axes along north, east, and downward respectively. The body frame
(b-frame) is fixed to the vehicle, particularly with the origin at the location of the IMU.
Three axes point to forward, rightward, and downward respectively.

2. STATE SPACE MODELLING. The state space dynamic model is
composed of the INS error model and inertial sensor error model. In this section
INS attitude, velocity and position error equations and inertial sensor bias and noise
models are presented, and the discretisation of the continuous model is also studied at
the end of this section.

2.1. INS error models. For the sake of simplicity, the INS error equations are
listed as follows. Details about the derivation of these equations can be found in many
textbooks on INS, see e.g. Titterton and Weston, (2004. P.342). This has
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where ¢ is the angle error vector, whose elements can be considered as roll, pitch and
yaw; oy, denotes the angular velocity of the y frame with respect to the x frame
expressed in the z frame; C%, called the attitude matrix or direction cosine matrix
(DCM), can be used to transform the coordinates of one vector in the X frame to the
coordinates of this same vector in the y frame; v, called ground velocity, is the velocity of
the b frame with respect to the e frame expressed in the n frame; f° ? is the specific force
expressed in the b frame; g is the gravity vector expressed in the n frame; ¢ is the latitude;
Ais the longitude; £ is the height; R is the radius of the earth; a dot above a value denotes
the time derivative and a delta before a value denote the errors in this value. Note that
wh, and f? can be measured by the gyro-triad and accelerometer-triad in the inertial
measurement unit and the earth is assumed to be a sphere for the sake of simplicity.

2.2. Inertial sensor models. dwh and Jf° represent the errors in the gyro-
measured angular rate and the accelerometer-measured specific force respectively.
These errors are due to the imperfections in the inertial sensors. There are many error
sources in inertial sensors including the fixed biases, in-run random biases, g-
dependent biases, scale-factor errors and misalignment errors. Part of these error
sources can be modelled and calibrated through testing and the measurement of these
sensors can be compensated with the testing results. The residual errors after
calibration and compensation can be effectively modelled as the sum of one constant
term and one random term, known as biases and noises respectively, i.e.

dob = e+ng, " =4+n, “4)

§=0,4=0 (5)

where ¢ and 4 are biases in the measurements of gyro and accelerometer respectively.
Similarly n, and n, are noises in these measurements which are always modelled as
white, zero-mean, and normally distributed noises.

Since it is usually more intuitive to know how the noise affects the calculated angle
and velocity, it is common for manufacturers to specify noises using angle random
walk (ARW) or velocity random walk (VRW) (Woodman, 2007). The relation
between the random walk and the noise, taking the ARW as an example, is as follows

1
(1) = Var(J s(r)dr) R
0

V&lr(étZN,-) =@t nvar(N) = oot -t (6)
i=1

ARW = 6y(1) = a+/5t (7

where N, is the ith random variable in the white noise sequence with ¢ as its standard
deviation, d¢ is the sample interval in the sensor testing. The relation between the
ARW and the power spectral density (PSD) of ¢ is

PSD = 3600(ARW)? (®)

with (°/h)’>/Hz and °/+/h as the units of PSD and ARW respectively.
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2.3.  State space models and discretisation. Equations (1)-(5) can be combined to
form a single error equation in the vector form as

X =Ax+ Gu )
where x and u are the state vector and noise vector respectively,
X = [¢N ¢E ¢D ovN  OVE 54” o & &y & Ay Ay Vip ]T (10
Uu=_[ngx Ngy Ng. Mgy Ngyp Ny I an
The details of the corresponding matrices A and G can be found in textbooks such as
Titterton and Weston (2004. P. 345).

Note that the vertical components of velocity and position errors are not included.
The pure inertial vertical channel is numerically unstable and consequently certain
height or barometric measurements should be blended with the INS data, so these
downward velocity errors and the height or depth error are not included in the state

vector (Bekir, 2007). It should also be noted that all the values in Equation (9) are
essentially time dependent values, and the time indices are omitted for the sake of

simplicity.
Equation (9) can be converted into discrete time form as in Bekir (2007):
X1 = Fiexp + vy (12)
Fy = exp(Adt) &~ I + Adt + 0-54%(5t)? (13)
Or = E{uu]'} ~ exp(0-5461)GQG” exp(0-547 51)dt (14)

where Q= E{uu”}; the E operator represents the mathematical expectation.

3. OBSERVATION MODELLING. Since the GPS antenna phase centre is
not located at the same location as the IMU centre, the velocity and position GPS
observations correspond to not only the translational state, i.e. the velocity and the
position, but also the rotational state, i.e. the attitude of the vehicle, or the body frame.
Assume that the north and east velocities are observed (Geng et al., 2011) as

b b
Veps = V' + Chopy, X I7 4+ nygps

. n n n_b b (15)
=1+ (o), — o}, + Cyowy) x I” + nygps

where Visps and n,6ps are the GPS measured velocity and the corresponding noise
expressed in the n frame, /” is the 3D constant lever arm vector expressed in the b
frame.

Since it is difficult to express the lever arm effect on the positions of the GPS and
IMU represented in their latitude, longitude, and height, the position observation
model is represented in the e frame (Geng et al., 2011) as

Pops =D° + CECHIP + ngps (16)
with
» =+ [¢xDCy ys (17
0 —¢p ¢
[¢x1=| ¢ép 0 —gy (18)
—¢r Py 0
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The true values in the above equations, such as vy, vg, ¢, and A, as the ones to be
estimated, are certainly not available and are represented as the sums of the INS-
estimated values and the corresponding errors, e.g.

VN = VNS + Ovy (23)
Equations (15) and (16) are combined into a vector function
Yk = h(xp) + ny (24)

It can be concluded from Equation (15) that the velocity observation is the
nonlinear function of attitude errors, gyro biases, and from Equation (16) that the
position observation is the nonlinear function of the latitude and longitude errors,
attitude errors and gyro biases. So as a whole, in Equation (24), the five-element
observation vector is nonlinearly related to the attitude errors, the latitude and
longitude errors, and the gyro biases, with the remaining part of the state vector, while
the north and east velocity error and the accelerometer biases are linearly mapped to
the observation vector.

4, KALMAN FILTER DESIGN. The Kalman filter, providing the optimal
estimation in the sense of minimum mean squared errors (Anderson and Moore,
1979), has been recognized as one of the most powerful state estimation techniques,
and has been successfully implemented in INS/GPS integrated systems. In this section,
the basic KF/EKF and the standard UKF are briefly introduced in the first two
subsections, and then, the MUKF is derived and the hybrid implementation of
MUKEF used in the INS/GPS integrated system is summarised in the last two sections.

4.1.  Kalman filter and extended Kalman filter. The KF is a two-stage algorithm,
i.e. the time update and the observation update, also termed as the prediction and the
correction. Assuming that the state space equation and observation equation are both
linear, and with additive noises

Xk = Fr_1xp—1 + wi—1 (25)
Vi = Hixp + vk (26)

Wi _1, Vi are process and measurement noises respectively, both of which are zero-
mean uncorrelated Gaussian white noise satisfying E[Wkw_,-T 1= Okdy, E[v/(va] = Ri0y,
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E[wkva 1=0, where Qy and Ry, are corresponding covariances, and dy; is the Kronecker
delta function whose value is one when k=j, and zero otherwise. The basic discrete
KF is summarized as follows:

ALGORITHM 1
A. Initialization. The initial estimate of the state vector and covariance matrix

are given or assumed as £ and Py which are independent with the noises at any
instance.
B.  Prediction. Getting the a priori mean and covariance, for k=1, 2, ...
& = Fax, Py =Fa P FL 4+ Ok 7
C. Correction. Getting the a posteriori mean and covariance,
Py, =P H/!, P, = HP;H] + Ry (28)
Ki = Py(Pyy)~! (29)
=% + K@ — Hi$y), P = Py — Ki Py K[! (30)

D. Recursion. If it does not terminate, k < k+1, and go to B.

If the state space and/or observation equations are nonlinear, EKF can be adopted,
in which the state space equation is linearized at £}, to get F;_; and/or the
observation equation is linearized at X to get Hj, and then Algorithm 1 can be
implemented.

4.2. Standard unscented Kalman filter. As stated in previous sections, the
simple first-order linearization in EKF may introduce large errors in the transform-
ation of mean and covariance through nonlinear equations and the SPKFs can
address this problem. In this subsection the SPKF, or specifically UKF is introduced
in an intuitive manner, i.e. the deterministically sampling manner adopted by Julier
et al. (2000). It is noted that UKF, or specifically its core, UT, bears other, more
theoretical meanings (see the “introduction” section). The UT is firstly introduced as
follows, and then incorporated into the KF scheme as stated in Algorithm 1 to get
the UKF.

Without loss of generality, UT addresses the following problem: given an
arbitrary nonlinear function with additive zero-mean normally distributed noise
y=f(x)+#, which can be the state and/or observation equations in the filtering
problem, and the mean X and the covariance P*, the mean yand covariance P*” are to
be estimated.

Firstly an ensemble of 2n+1 samples, called sigma points, with corresponding
weights, is generated deterministically, where n is the dimension of x.

Xo=
pi=%+ [VoF DPL], =120 31)
Yoy =% — [\/(n+/1)Pxx]i, i=1,2-.n
where [v/(n + )Py ], is the ith column or row of the matrix /(n + )Py, which is the
square root of the matrix (n +1)P.,. The square root of a matrix can be found through
matrix decompositions, such as the efficient Cholesky decomposition. The associated

=1
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weights of the above sigma points are

m _ %

0 n+4

. A
W(C): 1 — 2 32
0 n+/1+ o« +h (32)

A

W(n1):W(C)= L i=1,2,---,2

N T "

where W and W are used to weigh the sigma points in the calculation of
propagated mean and covariance respectively. The scaling parameter / is defined as

I=a*(n+x)—n (33)

The tuning parameters a, £ and x are used to tune the UT. Different parameters result
in a different sigma-points construction strategy that differentiates the UTs and their
corresponding accuracies, numerical stabilities, computational cost, etc.

Then, every sigma point is propagated through a nonlinear filter to yield an
ensemble of sigma points capturing the statistics of y

7i=f ), i=0,1,2,---,2n (34)

The mean and covariance matrix of y are approximated by the weighted mean and
covariance of the above transformed sigma points as

2n

Fay WMy, (35)
i=0
2n
Py WO -, - D" +R (36)
i=0
2n
Py~ Y WOy — 00— DT 37
i=0

Implementing the above UT approach into the scheme of the KF gives the UKF
method which can effectively address the nonlinearities in the state and/or observation
equations.

4.3. Marginalised unscented Kalman filter. The aforementioned discussion about
the UKF or specifically about the UT is only the general case, however, for some
nonlinear problems with special structure, some ingenious versions of the UT with
both non-degrading accuracy and less computational burden can be constructed. The
marginalized UT (MUT) used in the MUKEF is just a refined form of UT derived by
exploiting the conditionally linear substructure in the nonlinear equations.

The MUT is proposed to address the transformation of the mean and covariance
through the following nonlinear equation

a

sesornms([i])srms@ssanen o

where f1(°) is a nonlinear function while f>(-) is an arbitrary function.
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Before the derivation of the MUT, a lemma called conditionally Gaussian
distribution Lemma, that for two jointly Gaussian random variables ¢ and b the
conditional density p(bla) is also Gaussian, is presented.

Lemma 4.1. Let the pair of vectors a and b be jointly Gaussian, i.e. with

x=[a b]’ 39)

my = [my mb]T (40)
_ Paa Pab

P = [Pba Pbb] @D

respectively, then b is conditionally Gaussian on a with mean and covariance

Mpjq = My + Pba(Pua)_l(a - ma) (42)

Ppia = Pipy — Ppa(Pua) ™ Pup (43)

A heuristic proof of Lemma 4-1 can be found in Anderson and Moore (1979. P.25).
It can be seen from Equation (42) that my,, is the function of a, so in the following,
My, 1s replaced with my (@), the transformed mean m,, is as

my = E(y) = [ﬁz(a)p(a)da (44)
with

Ji2a) = fi(@) + fa(@mpja(a) (45)

As Equation (44) can be explained as calculating the mean of the transformed variable
y from the variable a through function fi,(a) expressed as Equation (45), the
traditional UT can be applied, similar to Equation (31)—(32), sigma points «; are
calculated based on P,,, then

Yi =f12((1,), l=07 1725“'52Na (46)
2N,

I/l’ly ~ Z WiY; (47)
i=0

The covariance of y is
Py, = j[(le(a) — my)(f12(a) — my)" + fo(@)Pya( (@) Ipla)da+ Q  (48)
and can be approximated as
2N,
Py Y wil(y — my)(y; — my)" + fala) Poa( fa(@))) + O (49)
i=0
The cross covariance of X and y is

Py = j ([ ¢ } - m) (/12(a) = my)" p(a)da + J [ Pza ](fz(a))Tp(a)da (50)

mblu(a)
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and can be approximated as

N, a T 0
o™ §‘Vf<<[mb|a(ai>} o ]) 6D

Equations (46), (47), (49) and (51) make up the main procedure of MUT, with which
replacing the UT in UKF gives the MUKF.

In standard UT, the decomposition of an N, X N, matrix P, should be carried out
to generate the 2NV, + 1 sigma points. In MUT the decomposition of an N, X N, matrix
P, should be carried out to generate the 2N, + 1 sigma points {e;}, and also in MUT
the inversion of P,, and some matrix multiplications should be carried out as shown in
Equation (42) to generate my(a;) for every a;. The computational complexity of UT
and MUT in the sigma-point-generate stage can be approximately equivalent.
However in the sigma-point-propagating stage, there are only 2N,+1 function
evaluations in MUT while 2N, +1 in UT, moreover, in the propagated sigma point
referencing stage only 2N, + 1 samples are used to calculate the transformed mean and
covariance, so there may be considerable computation savings using MUT compared
to UT; the bigger N, is, the more computation savings can be achieved.

4.4. Implementation of MUKF in INSIGPS integration. In this contribution,
as stated previously, the linear state space model can be addressed in the same way as
that in the KF, and the nonlinear observation model is addressed by MUKF instead
of UKF.

The linear state Equation (12) and nonlinear observation Equation (24) represent
the state space dynamic model to be filtered. Note that the state vector is rearranged in
order as

x:[¢N ¢ ¢p Op O & &y & ovy  Ovg Ay Ay AZ]T (52)

Accordingly, Equations (12) and (24) should be rearranged appropriately. The state
space vector in Equation (52) is partitioned into two parts with the first eight entities as
a and the remaining as b. So Equation (24) is adjusted to

Yk = h(x) + ng = hy(a) + ha(a)b + ng = hyz(a) + ny (53)

The main algorithm is presented in Algorithm 2.

ALGORITHM 2

A. Initialization. Assume X and Py which are independent with the process and
observation noises at any instance;

B.  Prediction. Get the a priori mean and covariance at instance k X, and Pj
from %;_, and P;_, as in Equation (27);

C. Correction. Calculate the conditional covariance as in Equation (43) to
get Pb|w

Similar to Equations (31)—(32), sigma points ¢; are calculated based on P,,, and are
propagated through Equation (53) to get y;, calculate m,, P,,, and P, as in Equations
(47), (49) and (51), update the mean and covariance as in Equations (29) and (30);

D. Recursion. 1If it does not terminate, k < k+1, and go to B.

5. SIMULATION STUDY. In this section, a simulation study was carried
out based on the models constructed in Sections 2 and 3, using UKF and MUKF in
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Figure 1. True, INS, and filtered trajectories in Case 1.

the correction stage. Parameters of the craft’s true dynamics are artificially set, the INS
errors are generated according to Equation (12) and then the INS errors are estimated
by UKF and MUKEF respectively. The parameters of the inertial sensors are set as
follows:

e=0-01°/h, ARW = 0-0001°/+/h, 4 = 0-1mg, VRW = 0-001m/s/+h

The time interval between INS error propagations is 0-1 second, and that
between GPS integrations is ten minutes (Case 1) and one minute (Case 2). The
simulation time span is 18 hours, and GPS information is available from the
second hour. A motion in the local plan is assumed with the constant forward speed
being five m/s.

To improve the observability of the attitude errors and inertial sensor biases,
clockwise and counter clockwise rotation manoeuvres about the downward axis are
intentionally introduced to the vehicle on which the INS and GPS are mounted,
1.e. the true trajectory is in an “8” shape, see Figures 1 and 7 (Wu et al., 2012).
Specifically, from the fourth to the sixth hour, the craft experienced a counter
clockwise (from above) circular trajectory, with a successive clockwise trajectory from
the sixth to the eighth hour.

For Case 1, the true, INS and filtered (using UKF or MUKF) trajectories are
shown in Figure 1. The INS errors and the INS errors estimated by UKF and MUKF
are shown in Figures 2-4, the true inertial sensor biases and the estimated ones are
shown in Figures 5 and 6. Similarly the results of Case 2 are shown in Figures 7-12.

It is clear in Figures 1 and 7 that the positioning errors of INS grow over a long
period of time, and that the time-dependent INS errors are effectively restrained in the
INS/GPS integrated systems in both cases. From Figures 2-4 and Figures 8§10, it can
be concluded that the INS errors are characterized by three oscillations with distinct
frequencies. The first is the Schuler oscillation, with frequency ws = +/g/R, or period
T, = 2n/R/g ~ 84-4min , named after Professor Max Schuler. This oscillation can
be found in every error in Figures 2—4 and Figures 8-10. The second is the Foucault
oscillation, with frequency wyr=w,, sing, named after the French physicist Foucault.
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Figure 2. INS attitude errors and their corresponding estimates by UKF and MUKEF in Case 1.
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Figure 3. INS velocity errors and their corresponding estimates by UKF and MUKF in Case 1.
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Figure 4. INS position errors and their corresponding estimates by UKF and MUKF in Case 1.

This oscillation, maintaining itself as a modulation of the Schuler oscillation,
can be found in the horizontal angle errors and horizontal velocity errors in
Figures 2 and 8 (the top and middle subplots) and in Figures 3 and 9. The third
is earth oscillation with its frequency being the frequency of earth rotation w,.
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Figure 6. True and estimated biases of accelerometers in Case 1.

This oscillation, with superimposed Schuler oscillation, can be found mainly in
latitude and heading errors in Figures 2 and 8 (the bottom subplot), and Figures 4
and 10 (the top subplot). Besides these oscillations, there is also a ramp error
with superimposed Schuler oscillation in the longitude error in Figures 4 and 10
(the bottom subplot). The accumulating character in INS errors is mainly due to this
ramp error.

From Figures 24 it can be concluded that all the INS errors can be effectively
estimated in the integrated INS/GPS system by both the hybrid EKF/UKF and EKF/
MUKE. Specifically, from Figures 3 and 4, velocity and position errors estimated by
both the filters see their convergences immediately after the GPS information is
available. However from Figure 2, complete convergences of the attitude error
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Figure 8. INS attitude errors and their corresponding estimates by UKF and MUKEF in Case 2.

estimations can only be achieved after the whole manoeuvre That is not surprising
because the velocity and position are directly observed by GPS, however the attitude
cannot be observed so directly.

From Figures 5 and 6, inertial sensor biases can also be effectively estimated except
for the third accelerometer bias. Also, similar to attitude errors, the convergences of
these bias estimations can only be achieved after the whole manoeuvre. The
unobservability of the bias of the third accelerometer is due to the exclusion of the
vertical channel of INS.

From all the graphs in Figures 1-6, by comparing the plots of UKF and MUKEF, it
can be concluded that MUKF can achieve comparable performance to UKF and
MUKEF can achieve smoother estimates than UKF. Both UKF and MUKF cannot
estimate the third bias of the accelerometer.
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Figure 9. INS velocity errors and their corresponding estimates by UKF and MUKEF in Case 2.

10
= |NS —— UKF —— MUKF
g 5t 1
8
g ° ]
-5 . . .
o 2 4 6 20
tlme(h)
8
T 6r ]
B 2| i
[ m—INS =—— UKF —— MUKF]
% "z 4 & 8 10 12 14 16 18 20

time (h)

Figure 10. INS position errors and their corresponding estimates by UKF and MUKEF in Case 2.

By comparing the results in Cases 1 and 2, conclusions similar to the above analysis
can be made, and all the errors and parameters can be estimated more accurately in
Case 2 than in Case 1 mainly due to the more frequent corrections provided by GPS.
In Figures 9 and 10, the velocity and position errors estimated by UKF and MUKF in
Case 2 are almost superposed with each other. As in the bottom subplot of Figure 6,
from the bottom of Figure 12, the bias of the third accelerometer can not be effectively
estimated either even given the more frequent GPS information due to its inherent
unobservable nature.

6. CONCLUSION. To fuse the two complementary navigation systems, INS
and GPS, loosely coupled INS/GPS considering a constant lever arm effect has been
studied in this paper. The linear or linearized INS error function is derived together
with the sensor bias models to construct the state space equation based on which the
prediction stage of the KF is carried out. The nonlinear observation equation of GPS
considering constant lever arm effect is established with the velocity equation
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Figure 11. True and estimated biases of gyros in Case 2.
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Figure 12. True and estimated biases of accelerometers in Case 2.

expressed in the navigation frame and the position equation in the earth-centred
and earth-fixed frame respectively and can be addressed by the standard UKF scheme.
The special structure of the nonlinear observation equation implies that the
five-element observation vector is a nonlinear function of only eight elements of the
13-element state vector and is conditionally a linear function of the remaining
five elements. This special structure, also known as the conditionally linear
substructure, is exploited in this contribution by a refined form of UKF named as
marginalized UKF, i.e. MUKF, where only 17 sigma points are generated and
propagated rather than the 27 sigma points used in the standard UKF. Thus MUKF
is adopted instead of UKF to address the INS/GPS integration and the computational
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expense is effectively reduced while retaining high accuracy and applicability. In the
simulation experiment, the craft is assumed to experience two consecutive rotation
manoeuvres, making the true trajectory in an “8” shape, to improve the observability
of the INS errors and inertial sensor biases. Simulation results show that whether the
GPS velocities and positions are available every one minute or every ten minutes, the
navigation errors and inertial sensor biases can be effectively estimated by both the
UKF and MUKEF but at different computational cost. Specifically, in both cases with
both filter schemes, the velocity and position of INS are reset immediately after GPS is
available, while the convergence of the estimation of INS attitude errors and inertial
sensor biases can only be achieved after the whole manoeuvre of the craft and the
biases of the third accelerometer cannot be estimated due to the exclusion of the
vertical channel in the INS error modelling.
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