
LOQO: AN INTERIOR POINT CODE FOR QU ADRATIC PROGRAMMING

ROBERT J. VANDERBEI

Statistics and Operations Research
Princeton University

SOR-94-15

Revised: October 6, 1998

ABSTRACT. This paper describes a software package, calledLOQO, which implements a primal-
dual interior-point method for general nonlinear programming. We focus in this paper mainly on
the algorithm as it applies to linear and quadratic programming with only brief mention of the
extensions to convex and general nonlinear programming, since a detailed paper describing these
extensions were published recently elsewhere. In particular, we emphasize the importance of estab-
lishing and maintaining symmetric quasidefiniteness of the reduced KKT system. We show that the
industry standardMPS format can be nicely formulated in such a way to provide quasidefiniteness.
Computational results are included for a variety of linear and quadratic programming problems.

1. INTRODUCTION

LOQO is a software package for solving general (smooth) nonlinear optimization problems. It
implements an infeasible-primal-dual path-following method. For linear programming, such methods
were first proposed independently by Lustig [12] and Tanabe [26]. The method as applied to LP was
subsequently studied empirically by Lustig et.al. [13]. Global convergence was proved by Kojima
et.al [11] while Zhang [38] established polynomiality of a long-step infeasible path-following method.
Finally, superlinearly convergent variants were given by Potra [23] and Wright [?]. Detailed discussion
of the computational aspects for infeasible-interior-point methods for linear programming were given
by Lustig et.al. [15] and by Andersen et.al. [1]. Comprehensive modern treatments of interior-point
methods for linear programming can be found in [37] and [33].

The first extension of primal-dual path-following methods to convex optimization was given by
Monteiro and Adler [20] with superlinear convergence being established somewhat later by Monteiro

Research supported by AFOSR through grant AFOSR-91-0359, the NSF through grant CCR-9403789, and the
ONR through grant N00014-98-1-0036.

1

2 ROBERT J. VANDERBEI

and Zhang [21]. Preliminary computational studies were done by Breitfeld and Shanno [3] and Shanno
and Simantiraki [25].

The software packageLOQO has undergone many developmental phases since the first version was
released in 1991. From the start, we recognized that quasidefinite matrices (introduced and studied in
[32]) are important for obtaining efficient algorithms for convex quadratic programming. The original
incarnation ofLOQO (version 1.xx) is described in [34]. In these early versions, quasidefiniteness
was not present in the reduced KKT system itself but rather was introduced during the process of
matrix factorization by an appropriate choice of initial pivots. In 1994, we discovered techniques
guaranteeing quasidefiniteness in the reduced KKT system itself. This greatly freed up the choice
of pivot elements in the factorization process. The technical report [31] documenting these changes
was never published. This paper is derived directly from that technical report. In preparing this
paper, we updated the text to reflect developments taking place since 1994 and we completely redid
all computational experiments using the most current version ofLOQO (3.10).

The most significant development between 1994 and the present is thatLOQO can now solve general
nonlinear optimization problems (having smoothly defined objective and constraints). The changes to
the algorithm that makes this possible are described in detail in [36]. In this paper, we describe them
only briefly.

Before proceeding with a detailed treatment, we present in the following subsection on overview of
the main feature that distinguishesLOQO for other LP and QP solvers, namely, having a quasidefinite
reduced KKT matrix regardless of problem formulation.

1.1. Quasidefinite Reduced KKT Systems.Most software packages for solving linear program-
ming problems using interior point technology take as input a linear program in the industry standard
MPS format. This is a flexible format that allows variables to be free or bounded (on one side or both
sides) and allows constraints to be either inequalities or equalities with the inequalities even allowed
to be two-sided. Yet, these packages invariably map the given problem to a standard form in which all
constraints are equalities and all variables are either free, nonnegative, or bounded between zero and a
finite upper bound. The algorithm then involves solving a system of equations involving the following
reduced KKT matrix: [−D AT

A 0

]
.

Here, A is the constraint matrix andD is a diagonal matrix having nonnegative values. The diagonal
elements ofD are positive finite numbers with the following exceptions:
• Free variables produce zero diagonal elements.
• Variables having zero upper bound (i.e. fixed variables in the originalMPS file) produce infin-

itely large diagonal elements.
Hence, free variables and fixed variables pose a serious challenge to the usual approach.

It is easy to remedy the situation regarding fixed variables. The infinite diagonal element is a
consequence of initializing the primal variablex j and its slackt j to the upper boundu j so that the

LOQO: AN INTERIOR POINT CODE FOR QUADRATIC PROGRAMMING 3

slack’s definitional constraint is satisfied:

x j + t j = u j .

Whenu j = 0, this constraint forces bothx j and t j to vanish, which is how an infinity ends up ap-
pearing in the corresponding location onD. However, Lustig [12] (and independently Tanabe [26])
showed that interior-point methods could and should be viewed as infeasible methods and that the
obvious algorithm will work toward feasibility at the same time that it works toward optimality. Once,
infeasible interior-point methods became popular with the appearance of Lustig, et.al.’s, computation-
ally oriented paper [13], it became natural to relax the above constraint and initializex j and t j to a
positive value even when the upper bound is zero. This remedy for the fixed variable problem was
discovered independently by Lustig et.al. [12] and by Vanderbei [28]. Of course, as the algorithm
progresses, the fixed variablesx j and the correspondingt j will get small and this will force the cor-
responding diagonal element ofD to grow very large. But it is well-known that even without fixed
variables, every element ofD approaches either infinity or zero. Hence, this remedy for fixed variables
makes them behave no worse than any other variables.

However, free variables have remained a problem and remedies suggested to date (such as splitting
each one into the difference between its positive and negative parts) have been less than satisfactory.
In this paper, we will give a new way to handle free variables that is analogous to the treatment of fixed
variables described above. In particular, this new treatment produces positive entries onD. Hence,
combining the fixed variable remedy with this new free variable remedy we arrive at an algorithm in
which D has all strictly positive (and finite) entries.

Of course, the zero matrix in the lower right-hand block of the reduced KKT matrix is also unde-
sirable. Because of this zero matrix, most existing implementations first choose their pivots from the
upper left block and thereby reduce the system to the so-called normal equations which involves a
matrix of the following form:

AD−1 AT .

Many papers have discussed the pros and cons of working with the normal equations. The obvious
advantage is that the matrix is positive semidefinite. But a disadvantage appears whenA has dense
columns. In this case, the positive semidefinite matrix is dense even ifA is mostly very sparse. A re-
lated disadvantage appears when one wishes to generalize the algorithm from solving linear programs
to one that can solve quadratic programming problems.

The zero on the lower right-hand block appears because of the conversion of every problem to
equality form. If one had derived the algorithm to act on problems in inequality form (even allowing
two sided inequalities), then this lower right-hand block becomes a diagonal matrix with all strictly
negative elements. But then one must address how to handle equality constraints, if in fact the original
problem has them (as they almost always do). The obvious approach is to represent each equality

4 ROBERT J. VANDERBEI

constraint as a two sided inequality with the two sides agreeing:

b ≤ aT x ≤ b.

If one does this and relaxes the appropriate slack definitional constraints, one obtains a method for
treating equality constraints that produces strictly negative entries in the lower right-hand block. Note
that this technique is quite analogous to the technique we described above for handling fixed variables.

Employing the techniques described above, the reduced KKT matrix becomes a symmetric quasi-
definite matrix: [−D AT

A E

]
.

Here, D and E are positivedefinitediagonal matrices. We showed in [32] that one can factor any
symmetric permutation of a symmetric quasi-definite matrix. Hence, using this approach it is quite
natural to solve the reduced KKT system directly instead of reducing it to the system of normal
equations.

1.2. Outline. In this paper, we describe in detail the algorithm as outlined above. We also describe
a software package, calledLOQO, which implements this method. In Section 2, we describe one
iteration of the symmetrically formulated primal-dual path-following method. Section 3, describes
the starting point selection and termination criteria as implemented inLOQO. Then, in Section 4,
some more specific implementation details are presented that further define the algorithm. Section 5
discusses the extension of the algorithm to handle pure inequalities (i.e. infinite ranges) and infinite
upper and/or lower bounds on the variables. Finally, computational results can be found in Section 6.

2. ALGORITHM

The algorithm implemented inLOQO is a infeasible-primal-dual path-following method. As imple-
mented, it operates directly on QP problems presented in the following general form, which for LP’s
corresponds directly to the industry standardMPS format:

minimize f + cT x + 1
2x T Hx

subject to b ≤ Ax ≤ b + r
l ≤ x ≤ u.

(2.1)

Here, A is them × n matrix of coefficients,b is called theright-hand side(even though it appears
on the left),r is the vector ofrangeson the constraints, andu andl are the vectors ofupper bounds
and lower bounds, respectively, on the variables. Each elementbi of b is assumed to be a finite real

LOQO: AN INTERIOR POINT CODE FOR QUADRATIC PROGRAMMING 5

number. However, the elements of the other vectors are permitted to take values in the extended reals
subject to the following limitations:

0≤ ri ≤∞
−∞ ≤ l j <∞
−∞ < u j ≤ ∞.

Infinities require special treatment. They shall be discussed in Section 5.

The objective function,f + cT x + 1
2x T Hx , is a quadratic function. For historical reasons, the

constant termf is called thefixed adjustment. The matrix H appearing in the quadratic term is
assumed to be positive semidefinite so that the objective function is convex.

Derivations of the infeasible-primal-dual path-following method for problems presented in simpler
forms can be found, for example, in [5, 13, 14, 34, 30, 35]. Hence, we proceed directly to the derivation
in the present general context.

2.1. Add Slacks. The first step in the derivation is to introduce slack variables as appropriate to
replace all inequality constraints with simple nonnegativity constraints. Hence, we rewrite the primal
problem (2.1) as follows:

minimize f + cT x + 1
2x T Hx

subject to Ax −w = b
x − g = l
x + t = u
w + p = r

g, w, t, p ≥ 0
x free.

(2.2)

The dual of (2.2) is:

maximize f + bT y − 1
2x T Hx + lT z − uT s − rT q

subject to AT y + z − s − Hx = c
y + q − v = 0

z, v, s, q ≥ 0
y free.

(2.3)

6 ROBERT J. VANDERBEI

2.2. Central Path. The next step in the derivation is to introduce the primal-dualcentral path(in-
troduced by Megiddo [17]—see also [33]). We parametrize this path by a positive real parameter
µ. Indeed, for eachµ > 0, we define the associated central-path point in primal-dual space as the
unique point that simultaneously satisfies the conditions of primal feasibility, dual feasibility, and
µ-complementarity. Ignoring nonnegativity (which is enforced separately), these conditions are:

Ax −w = b
x − g = l
x + t = u
w + p = r

AT y + z − s − Hx = c
y + q − v = 0

G Ze = µe
V We = µe
ST e = µe

P Qe = µe.

(2.4)

The last four equations are theµ-complementarity conditions. As usual, each upper case letter that
appears on the left in these equations denotes the diagonal matrix having the components of the corre-
sponding lower-case vector on its diagonal. This is a nonlinear system of 5n+5m equations in 5n+5m
unknowns. It has a unique solution in the strict interior of the appropriate orthant in primal-dual space:

{(x, g, w, t, p, y, z, v, s, q) : g, w, t, p, z, v, s, q ≥ 0}.(2.5)

This fact can be seen by noting that these equations are the first order optimality conditions for an
associated strictly convex barrier problem (see, e.g. [35]).

As µ tends to zero, the central path converges to an optimal solution to both the primal and dual
problems. Aprimal-dual path-following algorithmis defined as any iterative process that starts from
a point in the strict interior of (2.5) and at each iteration estimates a value ofµ representing a point
on the central path that is in some sense closer to the optimal solution than the current point and then
attempts to step toward this central-path point making sure that the new point remains in the strict
interior of the appropriate orthant.

Suppose for the moment that we have already decided on the target value forµ. Let (x, . . . , q)
denote the current point in the orthant and let(x +1x, . . . , q +1q) denote the point on the central
path corresponding to the target value ofµ. The defining equations for the point on the central path

LOQO: AN INTERIOR POINT CODE FOR QUADRATIC PROGRAMMING 7

can be written as

A1x −1w = b − Ax +w =: ρ

1x −1g = l − x + g =: ν

1x +1t = u − x − t =: τ

1w +1p = r − w − p =: α

AT1y +1z −1s − H1x = c − AT y − z + s + Hx =: σ

−1y −1q +1v = y + q − v =: β

G−1Z1g +1z = µG−1e − z − G−11G1z =: γz

V−1W1v +1w = µV−1e −w − V−11V1w =: γw
ST−11t +1s = µT−1e − s − T−11T1s =: γs

P−1Q1p+1q = µP−1e − q − P−11P1q =: γq,

(2.6)

where we have introduced notationsρ, . . . , γq as shorthands for the right-hand side expressions. This
is almost a linear system for the direction vectors(1x, . . . ,1q). The only nonlinearities appear on
the right-hand sides of the complementarity equations (i.e., inγz, . . . , γq).

2.3. Predictor-Corrector. LOQO implements apredictor-corrector[18] approach to finding a good
approximate solution to equations (2.6). Thepredictor stepconsists of dropping both theµ terms and
the “delta” terms that appear on the right-hand side (i.e.,γz = −z, etc.) and solving the resulting
linear system for the “delta” variables. Then an estimate of an appropriate target value forµ is made
and theµ and “delta” terms are reinstated on the right-hand side using the current estimates and the
resulting system is again solved for the “delta” variables. This second calculation is refered to as the
corrector stepand the resulting step directions are used to move to a new point in primal-dual space.

2.4. Solving the Indefinite System.Clearly the main computational burden is to solve system (2.6)
twice in each iteration. It is important to note that this is a large, sparse, indefinite, linear system. It is,
however, symmetric if one negates certain rows and rearranges rows and columns appropriately:

−ST−1 −I
−G−1Z −I

−P−1Q −I
−I −I I

−H AT I −I
−I A

−I −I
−I I

−I −I
I V−1W





1t
1g
1p
1w

1x
1y
1q
1z
1s
1v


=



−γs

−γz
−γq

β

σ

ρ

−α
ν

−τ
γw


.

As we shall see shortly, the symmetry of this system suggests a systematic process of elimination.
In other works (such as [13, 14]) the analogous system is not written in a symmetric form and the
elimination process, in the early stages, is often performed inad hocways until ultimately arriving

8 ROBERT J. VANDERBEI

at a symmetric positive semidefinite system (involving a matrix with the symbolic structure of either
AAT or AT A and just one of the delta variables – either1y or 1x). These other works then assert
that this new system can be solved robustly and hence that the reduction yields a more numerically
stable procedure. However, this argument ignores the fact that, once the reduced system has been
solved, its solution must then be used to “back substitute” to get all of the other delta variables that
were eliminated and that these extra calculations represent predetermined pivots in the original system
that might reintroduce the numerical instability that one had hoped to avoid. Hence, in the end, we
are still faced with solving a large, indefinite, linear system and it is this system that we should study
carefully. By employing a systematic elimination process from the beginning, one hopes to obtain a
more robust procedure for the original large system.

The most numerically robust technique for solving large, perhaps nonsymmetric, systems is to em-
ploy a full-pivoting solver. Unfortunately, such an approach yields a code that is significantly slower
than ones based on a predetermined reduction. Also, experience shows that these predetermined
reductions (which amount to pivoting without regard for the size of the pivot element) can yield re-
markably robust codes (this phenomenon is only partially understood – see, e.g., [32]). Hence, to be
competitive,LOQO uses a predetermined reduction, which we now describe.

Now we describe the systematic elimination process. First, we use the pivot elements−ST−1,
−G−1Z ,−P−1Q, andV−1W to solve for1t,1g,1p, and1v, respectively,

1t = S−1T (γs −1s)

1g = G Z−1(γz −1z)

1p = P Q−1(γq −1q)

1v = V W−1(γw −1w),

which we then eliminate from the remaining equations to obtain
−V W−1 −I −I

−H AT I −I
−I A
−I P Q−1

I G Z−1

−I S−1T




1w

1x
1y
1q
1z
1s

 =


β − V W−1γw =: β̂

σ

ρ

−α + P Q−1γq =: −α̂
ν + G Z−1γz =: ν̂

−τ + S−1Tγs =: −τ̂

 ,

where once again we have introduced abbreviated notations for some of the right-hand side expres-
sions. Next, we use the pivot elementsP Q−1, G Z−1, and S−1T to solve for1q, 1z, and1s,
respectively,

1q = P−1Q(1w − α̂)
1z = G−1Z(ν̂ −1x)

1s = ST−1(1x − τ̂).

LOQO: AN INTERIOR POINT CODE FOR QUADRATIC PROGRAMMING 9

Eliminating these variables from the remaining equations, we get −E−1 −I
−(H + D) AT

−I A

 1w

1x
1y

 =
 β̂ − P−1Qα̂
σ − G−1Z ν̂ − ST−1τ̂

ρ

 ,
where

E = (V W−1 + P−1Q
)−1

and

D = G−1Z + ST−1(2.7)

are positive-definite diagonal matrices. Finally, we use the pivot element−E−1 to solve for1w,

1w = −E(β̂ − P−1Qα̂ +1y),

which brings us to the so-calledreduced KKTequations:[−(H + D) AT

A E

][
1x
1y

]
=
[
σ − G−1Z ν̂ − ST−1τ̂

ρ − E(β̂ − P−1Qα̂)

]
.(2.8)

2.5. Solving the Symmetric Quasidefinite System.Up to this point, none of the eliminations have
produced off-diagonal fill-in in the remaining system. However, proceeding further will definitely
introduce such fill-in. For example, if we were to use the first equation in (2.8) to solve for1x and
then eliminate it from the second equation, the resulting system for1y would involve the matrix

A(D + H)−1 AT

(this is thenormal-equationsapproach used inOB1 [13, 14],CPLEX-barrier, and other codes). Sim-
ilarly, if we were to solve the second equation for1y and then eliminate this variable from the first
equation, the resulting system for1x would involve the matrix

AT E−1 A

(this is the approach advocated by the optimization group at the National Institute of Standards and
Technology [2, 24]). Both of these will generally entail fill-in, which in some cases can be consider-
able. For example, if the HessianH is not a diagonal matrix or if the matrixA has a dense column,
the first form can suffer “catastrophic fill-in” (see [19] for analysis of non-diagonalH). On the other
hand, if A has a dense row, the second form will be very bad. IfA has both dense columns and dense
rows, then both of these forms will suffer unnecessarily large amounts of fill-in and one would prefer,
in that case, to work with the larger system to find a pivot order that does not generate so much fill-in.
This idea was first suggested by Turner [27] and has been adopted by Saunders et.al. [10, 9, 8] and
Mehrotra [5]. All three use a Bunch-Parlet factorization of the indefinite system. Solving the larger
system is also the approach adopted inLOQO, butLOQO does not employ a Bunch-Parlet factorization.
Instead,LOQO uses a modified Cholesky factorization code that has been altered to solvesymmetric
quasidefinite systems(see [32]). Equation (2.8) is an example of such a system. The matrices defining
these systems share with symmetric semidefinite matrices the nice property that the (diagonal) pivots

10 ROBERT J. VANDERBEI

can be selected based only on a fill-in minimizing heuristic; i.e., without regard for the numerical
values, which may only be known later.

There are two types of fill-in minimizing heuristics: myopic heuristics, such asminimum-degree[7],
which sequentially minimize the fill-in produced in each subsequent stage of elimination and global
heuristics, such asnested-dissection[22], which analyze the overall structure to find good orderings.
In the symmetric quasidefinite system (2.8), there is an obvious global structure that one can exploit.
For example, the lower-right block is a diagonal matrix (as is the upper-left block wheneverH is
diagonal or absent). Hence, initial pivots selected from the lower-right block can only produce fill-in in
the upper-left block. It is potentially advantageous to exploit this structure. To test this hypothesis, we
compared two ordering schemes. The first is just a straight minimum-degree heuristic implemented as
described in [29]. The second can be described as a priority minimum-degree method. Each diagonal
element is assigned a small integer representing an elimination priority. At first, pivots are selected
only from the elements assigned priority zero. Within this priority class, pivots are selected according
to the usual minimum degree heuristic. Only after all priority zero pivots have been eliminated do
we proceed to the priority one elements. Again, within this priority class, the elimination order is
determined using the minimum-degree heuristic. This process is continued through each priority class
until all elements are eliminated.

The priority classes are determined as follows. First a simple estimate is made of the number of
nonzeros inAAT and of the number of nonzeros inAT A. If these estimates indicate thatAAT will
have less fill-in thanAT A, then the pivot elements from the upper-left block are assigned priority zero
and the lower-right block elements are given priority one. Otherwise, the reverse priority is assigned.
Next, the priority zero pivots are scanned to see if any of them have high degree (relative to the other
elements). Such elements are then reassigned to priority one so that these elements (which correspond
to dense columns/rows ofA) are eliminated last.

Let K denote the symmetric quasidefinite matrix in (2.8). The ordering heuristic computes a per-
mutation matrixP which is applied to both the rows and the columns ofK and the resulting matrix
is factored into the product of a unit lower triangular matrixL times a diagonal matrixD times the
transpose of the lower triangular matrix:

P K PT = L DLT .

While we often refer to fill-in produced by some ordering heuristic, a better gauge of the quality of the
ordering is to count the number of arithmetic operations, narth, required to compute the factorization.
There is a simple formula for this:

narth=
k∑

j=0

nonz(L j)
2+ 3 nonz(L)+ k.

Here,k denotes the number of rows/columns ofK , nonz(·) denotes the number of nonzeros andL j

denotes thej-th column ofL.
Table 1 shows the results of our comparison. It is clear that there can be a substantial difference

between the two methods. However, on the average they are about the same. To justify this claim, let
Ri denote the ratio of the number of arithmetic operations using the ordinary minimum-degree method

LOQO: AN INTERIOR POINT CODE FOR QUADRATIC PROGRAMMING 11

to the number obtained using the priority method for thei-th problem. Since a ratio of 2 and a ratio of
1/2 should be counted equally, we use the geometric mean to summarize the overall average behavior:

R̄ = exp(
1

N

N∑
i=1

log Ri).

For the data in Table 1,̄R = 0.964, which indicates that the ordinary minimum-degree heuristic was
on the average 3.6% better. But, at the 95% confidence level, we must reject the hypothesis that the
ordinary minimum-degree heuristic is better since the standard deviation of the logarithm of theRi ’s
divided by the square root of one less than the sample size is 0.037 indicating that the 3.6% deviation
is only about one standard deviation away from the mean. Hence, we have no evidence to say that
one method produces a better ordering than the other. However, there is a significant difference from
the point of view of numerical stability. The priority-minimum-degree method tends to arrange the
computations so that all additions (to positive diagonal elements) are taken first and the subtractions
come last. This enhances the numerical stability greatly. Indeed, using the priority method,LOQO

solves essentially all of theNETLIB problems listed in Table 1 (exceptdfl001) whereas the ordinary
minimum-degree heuristic has trouble on 31 out of the 92 problems. For this reason,LOQO uses the
priority method.

3. OPENINGS AND ENDGAMES.

To start the algorithm we need to provide initial values for all the variables. Variablesx andy are
unrestricted whereas all the others must be positive. A simple heuristic would be to set the unrestricted
variables to zero and the positive variables to one. However, it is better to try to arrange things to more
closely satisfy at least some of the equations.LOQO initializes the variables as follows. First,x andy
are found as solutions to the following system:[−(H + I) AT

A I

][
x
y

]
=
[

c
b

]
.

Then the other variables are set as follows:

g = max(abs(x − l),100)

z = max(abs(x),100)

t = max(abs(u − x),100)

s = max(abs(x),100)

v = max(abs(y),100)

w = max(abs(y),100)

p = max(abs(r − w),100)

q = max(abs(y),100),

where max() and abs() denote componentwise maximum and absolute value, respectively.

12 ROBERT J. VANDERBEI

Arithmetic Operations Arithmetic Operations
Problem Priority Problem Priority

Min. Degree Min. Degree Min. Degree Min. Degree
25fv47 2539174 3565306 nesm 1748429 1431903
80bau3b 2748509 2748509 perold 2191541 2876285
adlittle 7133 5663 pilot4 1010846 555014
afiro 1061 845 pilot87 207214909 228516729
agg 196979 196979 pilotja 7592614 6558376
agg2 657690 1396978 pilotnov 5674027 6147413
agg3 657758 1666364 pilots 51224067 39909677
bandm 128171 143375 pilotwe 2391227 1107375
beaconfd 153089 163825 recipe 19867 31217
blend 22927 15907 sc105 5612 5758
bnl1 532244 579218 sc205 12704 11202
bnl2 14193875 14745741 sc50a 2162 1974
boeing1 210267 218625 sc50b 2430 1634
boeing2 76349 51049 scagr25 36423 21369
bore3d 91596 58960 scagr7 9189 5395
brandy 144779 210973 scfxm1 132963 127613
capri 258242 138934 scfxm2 276270 276642
cycle 6698386 5167144 scfxm3 420143 421377
czprob 181634 180058 scorpion 34786 22472
d2q06c 31944530 35309876 scrs8 203087 127471
d6cube 10731175 10821267 scsd1 46301 46301
degen2 1105538 1404352 scsd6 79279 79279
degen3 16180237 18245339 scsd8 154037 154037
dfl001 1528765265 1407015715 sctap1 47050 40934
e226 127213 208535 sctap2 638534 606684
etamacro 1187084 1219956 sctap3 685536 655744
fffff800 948102 1410548 seba 59443 59443
finnis 148455 122893 share1b 35160 30858
fit1d 224438 224438 share2b 22051 21849
fit1p 147998 147998 shell 89763 100237
fit2d 2031079 2031079 ship04l 112860 112048
fit2p 649721 649721 ship04s 80664 78364
forplan 200002 173956 ship08l 229591 229319
ganges 1267748 650708 ship08s 133199 128809
gfrdpnc 23646 23260 ship12l 285088 282560
greenbea 5753313 15706417 ship12s 148952 139800
greenbeb 5628409 15706417 sierra 362479 377549
grow15 235265 318707 stair 1399843 456177
grow22 347986 461336 standata 77818 67076
grow7 106441 160009 standmps 143212 120888
israel 110400 110400 stocfor1 14206 12014
kb2 10854 7928 stocfor2 693398 437664
lotfi 42453 31707 tuff 430930 388346
maros-r7 768194856 752106384 vtpbase 64143 29011
maros 1717571 2604431 wood1p 3738076 5835322
modszk1 117585 100731 woodw 3415693 3532285

TABLE 1. Number of arithmetic operations required to factor the symmetric indefinite
system using (a) the minimum-degree heuristic and (b) the priority minimum-degree
heuristic.

LOQO: AN INTERIOR POINT CODE FOR QUADRATIC PROGRAMMING 13

The default stopping rule inLOQO is to stop when the primal and dual are both feasible and their
objective functions agree to eight significant figures. The level of primal infeasibility is measured by
computing

primal infeasibility=
√
‖ρ‖2 + ‖τ‖2+ ‖α‖2+ ‖ν‖2

‖b‖ + 1
.

Similarly, dual infeasibility is measured using

dual infeasibility=
√
‖σ‖2 + ‖β‖2
‖c‖ + 1

.

By default, a solution is primal/dual feasible if these measures are less than 10−6. The significant
figures of agreement between the primal objective function value and the dual is computed as follows:

sigfig= max

(
− log10

|primal obj− dual obj|
|primal obj| + 1

, 0

)
.

In addition to identifying optimal solutions, it is also important to identify infeasible and unbounded
problems. This identification is based on the observation (see, e.g., [35]) that the primal infeasibility
and the dual infeasibility decrease monotonically. If the primal problem is infeasible, then the primal
infeasibility will stall (and in fact start to increase) before getting close to zero. If the primal problem
is unbounded, then the dual infeasibility’s reduction will stall.LOQO tests for stalling and, if detected,
terminates with an appropriate message.

4. MIDGAME STRATEGIES.

Two midgame strategies need to be mentioned. The first is the computation of step lengths. At
the end of each iteration, the current solution is updated to a new solution according to the following
formulas:

x ← x + 1x/αp

g ← g + 1g/αp

w ← w + 1w/αp

t ← t + 1t/αp

p ← p + 1p/αp

y ← y + 1y/αd

z ← z + 1z/αd

v ← v + 1v/αd

s ← s + 1s/αd

q ← q + 1q/αd .

The normalizationsαp andαd should be one (since the step directions were derived based on this as-
sumption), but they may need to be shortened to maintain strict positivity of the nonnegative variables.

14 ROBERT J. VANDERBEI

Hence they are calculated as follows:

αp = max
(

max
(
−1g j

g j
,−1wi

wi
,−1t j

t j
,−1pi

pi

)
/0.95, 1

)
αd = max

(
max

(
−1z j

z j
,−1vi

vi
,−1s j

s j
,−1qi

qi

)
/0.95, 1

)
.

Here, the inner maximizations are over allj = 1,2, . . . , n or all i = 1,2, . . . ,m as appropriate for
each of the four terms in the argument list. If the problem is a pure linear programming problem, then
the step lengths are as given. If it is a quadratic program, then a common normalization is used:

αp ← max(αp, αd)

αd ← max(αp, αd).

The second midgame strategy is the computation of the parameterµ. To understand the heuristic
used to come up with a value forµ, first consider a point on the central path. From (2.4), we see that

zT g = µn, vTw = µm, sT t = µn, and pT q = µm.

Hence, one way to recoverµ from a given point on the central path is to compute

µ = zT g + vTw + sT t + pT q

2m + 2n
.

We use this expression to assign apar valueforµ even when the current point is not on the central path.
Since we wish to step from the current point toward a point on the central path that is “closer” to the
optimal solution it is desirable to use a value ofµ that is some fraction of the par value. Simply setting
this fraction to one tenth works most of the time, but it turns out to be better to assign it dynamically
based on how much one must shorten the predictor step direction to preserve strict positivity of the
nonnegative variables. Hence,LOQO calculates values forαp andαd as described above using the
predictor directions and then multiplies the par value ofµ by the following fraction:(

αpd − 1

αpd + 10

)2

,

where
αpd = max(αp, αd).

This fraction tends to be close to zero whenαpd is close to 1 but gets close to one asαpd becomes
large.

5. HANDLING INFINITIES.

In this section, we discuss the absense of bounds on variables and ranges on constraints.
Our basic problem formulation (2.1) shows variables having two-sided bounds (above and below).

But real-world problems contain a mix of bound types: some variables may have two-sided bounds,
while others have only one-sided bounds (either upper or lower) and yet others have no bounds what-
soever (so-calledfree variables). Missing bounds are easy to handle. We simply omit the slack
variable associated with the missing bound. For example, ifx j is a variable having no upper bound,

LOQO: AN INTERIOR POINT CODE FOR QUADRATIC PROGRAMMING 15

then the primal problem (2.2) will have no upper-bound slack variablet j and the associated dual (2.3)
will be missing the corresponding variables j . Similarly, if a lower bound is missing, then ag j and
z j are dropped. This causes no difficulties except for the fact that each free variable will produce a
zero on the diagonal matrixD given by (2.7). Hence, free variables must be handled separately in
the factorization of the symmetric quasidefinite matrix appearing in (2.8). InLOQO versions 2.16 and
earlier, free variables are treated exactly this way. The diagonal entries of the symmetric quasidefinite
matrix associated with these free variables are assigned to priority class two thereby ensuring that they
are eliminated last (by which time the diagonals should be nonzero). InLOQO versions 2.17 and later,
free variables are handled in a different manner – one in which the none of the diagonals are ever zero.
This produces a more robust code. The details are discussed below.

If the i-th constraint has infinite range, i.e. a pure inequality constraint, then we leave out the slack
variablepi associated with this constraint and also the corresponding dual variableqi .

5.1. A New Technique for Free Variables.Let us consider a modification of our original problem
(2.1) in which all variables are free:

minimize f + cT x + 1
2x T Hx

subject to b ≤ Ax ≤ b + r.
(5.1)

Instead of thinking of a free variable as a variable without an upper or lower bound, we should think
of it as a variable having an infinite upper and lower bound. More precisely, let us initially assume
that there is a very large upper bound,R, and a very small lower bound,−R. Then, (2.2) becomes:

minimize f + cT x + 1
2x T Hx

subject to Ax −w = b
x − g = −R
x + t = R
w + p = r

g, w, t, p ≥ 0
x free.

(5.2)

If we let R go to infinity in (5.2), we end up with a problem that has variables that must be infinite.
But, let’s take a closer look at the constraints involvingR. By adding and subtracting, we see that the
equations

x − g = −R

x + t = R

are equivalent to

2x − g + t = 0

g + t = 2R.

The first set of equations is important but the second set just forcesg and/ort to go to infinity. If we
keep the first set (dropping the factor of 2 multiplyingx) and drop the second set we get the following

16 ROBERT J. VANDERBEI

primal problem:

minimize f + cT x + 1
2x T Hx

subject to Ax −w = b
x − g + t = 0
w + p = r

g, w, t, p ≥ 0
x free,

(5.3)

which is clearly equivalent to (5.1). The dual of (5.3) is:

maximize f + bT y − 1
2x T Hx − rT q

subject to AT y + z − Hx = c
z + s = 0

y + q − v = 0

z, v, s, q ≥ 0
y free.

(5.4)

(Note the high degree of symmetry between this primal/dual pair.) The equations defining the central
path for this pair of problems closely parallels those we had before in (2.4):

Ax − w = b
x − g + t = 0
w + p = r

AT y + z − Hx = c
z + s = 0

y + q − v = 0

G Ze = µe
V We = µe
ST e = µe
P Qe = µe.

(5.5)

LOQO: AN INTERIOR POINT CODE FOR QUADRATIC PROGRAMMING 17

Continuing with the usual algorithm derivation process, the equations for the step directions now
become:

A1x −1w = b − Ax +w =: ρ

1x −1g +1t = −x + g − t =: ν

1w +1p = r −w − p =: α

AT1y +1z − H1x = c − AT y − z + Hx =: σ

1z +1s = −z − s =: τ

−1y −1q +1v = y + q − v =: β

G−1Z1g +1z = µG−1e − z − G−11G1z =: γz

V−1W1v +1w = µV −1e − w − V−11V1w =: γw
ST−11t +1s = µT−1e − s − T−11T1s =: γs

P−1Q1p+1q = µP−1e − q − P−11P1q =: γq ,

(5.6)

By appropriately arranging the variables and equations, this system can be written in a symmetric
form: 

I I
−G−1Z −I

−P−1Q −I
−I −I I

−H AT I
−I A

−I −I
I −I I
I S−1T

I V−1W





1t
1g
1p
1w

1x
1y
1q
1z
1s
1v


=



τ

−γz

−γq

β

σ

ρ

−α
ν

S−1Tγs

γw


.

Using the pivot elements−G−1Z , −P−1Q, S−1T , andV−1W to solve for1g, 1p, 1s, and1v,
respectively, we get

1g = G Z−1(γz −1z)

1p = P Q−1(γq −1q)

1s = γs − ST−11t

1v = V W−1(γw −1w),
which we then eliminate from the remaining equations to obtain

−ST−1 I
−V W−1 −I −I

−H AT I
−I A
−I P Q−1

I I G Z−1




1t
1w

1x
1y
1q
1z

 =


τ − γs =: τ̂
β − V W−1γw =: β̂

σ

ρ

−α + P Q−1γq =:−α̂
ν + G Z−1γz =: ν̂

 .

18 ROBERT J. VANDERBEI

Next, we use the pivot elementsP Q−1 andG Z−1 to solve for1q and1z, respectively, we get

1q = P−1Q(1w − α̂)
1z = G−1Z(ν̂ −1x −1t).

Eliminating these variables from the remaining equations, we get


−(ST−1+ G−1Z) −G−1Z

−(V W−1 + P−1Q) −I
−G−1Z −(H + G−1Z) AT

−I A



1t
1w

1x
1y

 =

τ̂ − G−1Z ν̂
β̂ − P−1Qα̂
σ − G−1Z ν̂

ρ

 .
(5.7)

Finally, we use the pivot elements−(ST−1 + G−1Z) and−(V W−1 + P−1Q) to solve for1t and
1w:

1t = −DS−1T
(
G Z−1τ̂ − ν̂ +1x

)
1w = −E

(
β̂ − P−1Qα̂ +1y

)
,

where
E = (V W−1 + P−1Q

)−1

and

D = (S−1T + G Z−1)−1
.(5.8)

Eliminating1t and1w from (5.7), we arrive at last at the reduced KKT system:[−(H + D) AT

A E

][
1x
1y

]
=
[
σ − D(ν̂ + S−1T τ̂)
ρ − E(β̂ − P−1Qα̂)

]
.(5.9)

Note that, sinceD andE are bothpositive definite, this reduced KKT system is quasidefinite.

6. COMPUTATIONAL RESULTS.

In this section, we attempt to characterize the performance ofLOQO. Our experiments were per-
formed on a Silicon Graphics Indigo R4600 workstation having a 133 MHz clock, 160 MBytes of real
memory, and running the IRIX 5.3 operating system.

We tested version 3.10 ofLOQO which is written in ANSI C and was compiled using the-O
optimization flag. Version 3.10 is the first version ofLOQO that incorporates special techniques for
general nonlinear programming. Namely, it uses a merit function to help choose an appropriate step
length and it uses diagonal perturbation of the Hessian to guarantee a descent direction when problems
are nonconvex. Associated with these new features are new parameters and new defaults for some old
parameters. It turns out that some of these parameters need to be set differently if the problem is linear
or convex quadratic as opposed to if it is a general nonlinear problem. An attempt was made to detect
if a problem is linear and to set the defaults correctly in that case. It is a little harder to detect that a
problem is convex quadratic and so in this version ofLOQO these problems get the same default values
as general nonlinear optimization problems. Consequently, when a problem is known to be convex

LOQO: AN INTERIOR POINT CODE FOR QUADRATIC PROGRAMMING 19

quadratic, some parameters need to be changed from their defaults. The specific parameters and
their values are given below. Future releases ofLOQO will automatically set the affected parameters
correctly.

6.1. Linear Programming Problems. For linear programming problems, most parameters get the
correct default values automatically but we forgot to disable diagonal perturbation for these prob-
lems. When the solution gets nearly optimal numerical issues often arise that makes the problem look
slightly nonconvex andLOQO then tries diagonal perturbation. This behaviour needs to be disabled.
It is done so by including the assertive parameterconvex in the list of parameters. In aUNIX csh
environment, this can be accomplished at the shell prompt by writing

setenv loqo options "convex"
Our first set of test problems is taken from the standardNETLIB [6] test suite of linear programming

problems. There are currently two collections ofNETLIB problems. One contains problems that have
optimal solutions and the other contains problems that are infeasible. Tables 2 and 3 show results for
the collection having optimal solutions. All the problems except fordfl001 andforplan were
solved to an acceptable level of infeasibility and with eight figures of agreement between the primal
and dual solution.
Dfl001 is a badly scaled problem: the coefficients in the objective function range from about0.1

to about1.0e+8. The preprocessing phase ofLOQO does not attempt to scale the problem, hence
there is no correction for this gross scale discrepancy. As a result,LOQO has numerical trouble with
dfl001 from the start. However, simply dividing the objective function by1.0e+6 corrects this
defect andLOQO is then able to solve the problem in 44 iterations. It took 5201.02 seconds to get this
solution.

On iteration 30,forplan had 8 digits of agreement between primal and dual objective functions,
relative primal infeasibility of1.89e-11, and dual infeasibility of9.17e-04 before numerical
troubles set in which on the 36th iteration ledLOQO to conclude that the problem is dual infeasible. It
should be emphasized that infeasibilities are measured in a relative sense and sometimes the relativizer
might itself be of an inappropriate magnitude. This might have been the case for bothforplan since
the initial relative infeasibility was greater that1.00e+03, which is rather large.

Table 4 shows the number of iterations needed to detect infeasibility for the collection of infeasible
problems. There are two ways in which infeasibility and unboundedness are detected. The first, as
mentioned earlier, is if the primal or dual infeasibility increases from one iteration to the next. The
other is if some iteration produces a step direction that points in an unbounded direction away from
a feasible solution for either the primal or the dual. For several problems, infeasibility was detected
in preprocessing. Two problems,cplex2 andgosh ran 200 iterations and stopped at the iteration
limit. Problemcplex2 is interesting. It is so close to being feasible that it satisfiesLOQO’s test for
feasibility (in both the primal and the dual), but runs into numerical trouble after achieving only five
significant figures.

6.2. Quadratic Programming Problems. As mentioned at the beginning of this section, inLOQO

version 3.10, parameter values have different defaults depending on whether a problem is linear or
nonlinear. Consequently, quadratic programming problems are treated as general nonlinear problems

20 ROBERT J. VANDERBEI

Solution Statistics Performance Stats
Problem Objective Primal Dual Significant

Value Infeas. Infeas. Figures Iterations Time
25fv47 5.5018459e+03 5.5018459e+03 3.27e-13 2.53e-11 28 20.71
80bau3b 9.8722419e+05 9.8722419e+05 3.66e-14 3.58e-12 33 43.14
adlittle 2.2549496e+05 2.2549496e+05 5.71e-11 2.42e-16 16 0.18
afiro -4.6475314e+02 -4.6475314e+02 4.25e-13 8.01e-11 13 0.06
agg -3.5991767e+07 -3.5991767e+07 3.10e-12 6.93e-11 23 1.08
agg2 -2.0239252e+07 -2.0239252e+07 8.32e-15 1.72e-07 33 8.81
agg3 1.0312116e+07 1.0312116e+07 1.13e-15 7.89e-07 37 9.96
bandm -1.5862802e+02 -1.5862802e+02 5.57e-12 2.52e-11 20 1.52
beaconfd 3.3592486e+04 3.3592485e+04 4.00e-11 8.61e-09 15 0.68
blend -3.0812150e+01 -3.0812150e+01 7.17e-13 3.65e-12 17 0.29
bnl1 1.9776296e+03 1.9776295e+03 2.59e-11 6.22e-12 28 6.40
bnl2 1.8112365e+03 1.8112365e+03 1.69e-12 4.60e-13 35 83.66
boeing1 -3.3521357e+02 -3.3521357e+02 3.35e-12 4.99e-12 26 2.42
boeing2 -3.1501873e+02 -3.1501873e+02 1.65e-13 1.18e-11 19 0.55
bore3d 1.3730804e+03 1.3730804e+03 5.81e-11 4.25e-12 21 0.62
brandy 1.5185099e+03 1.5185099e+03 5.27e-11 1.93e-09 20 1.09
capri 2.6900129e+03 2.6900129e+03 6.50e-13 1.07e-10 27 1.91
cycle -5.2263930e+00 -5.2263930e+00 8.26e-09 1.22e-12 31 38.24
czprob 2.1851967e+06 2.1851967e+06 8.14e-11 7.76e-14 35 10.63
d2q06c 1.2278421e+05 1.2278421e+05 1.91e-10 4.23e-10 34 166.05
d6cube 3.1549167e+02 3.1549167e+02 4.33e-13 3.96e-14 28 84.35
degen2 -1.4351780e+03 -1.4351780e+03 2.59e-10 3.88e-15 18 5.24
degen3 -9.8729398e+02 -9.8729400e+02 1.18e-08 1.90e-09 23 89.36
dfl001* 1.1266396e+01 1.1266396e+01 1.69e-10 2.25e-11 44 5201.02
e226 -1.8751929e+01 -1.8751929e+01 1.20e-14 2.52e-12 25 1.90
etamacro -7.5571522e+02 -7.5571524e+02 5.12e-13 2.86e-14 29 4.84
fffff800 5.5567957e+05 5.5567956e+05 8.59e-15 2.22e-07 43 10.16
finnis 1.7279107e+05 1.7279106e+05 2.50e-11 4.17e-12 27 2.29
fit1d -9.1463780e+03 -9.1463783e+03 6.91e-08 5.12e-13 18 4.99
fit1p 9.1463782e+03 9.1463781e+03 1.06e-11 4.05e-11 18 4.70
fit2d -6.8464293e+04 -6.8464294e+04 1.71e-09 6.18e-14 25 185.01
fit2p 6.8464294e+04 6.8464292e+04 5.88e-12 1.62e-10 20 42.01
forplan* -1.8207020e+02 -1.4821157e+10 3.14e-12 1.73e+06 39 4.63
ganges -1.0958574e+05 -1.0958574e+05 1.17e-12 2.24e-11 34 17.94
gfrdpnc 6.9022360e+06 6.9022360e+06 8.88e-11 2.23e-13 33 4.00
greenbea -7.2555247e+07 -7.2555248e+07 2.03e-07 2.72e-10 66 73.18
greenbeb -4.3022602e+06 -4.3022603e+06 9.95e-11 9.18e-11 39 39.1
grow15 -1.0687094e+08 -1.0687094e+08 2.37e-08 1.41e-09 22 3.82
grow22 -1.6083434e+08 -1.6083434e+08 9.99e-07 1.86e-09 22 5.76
grow7 -4.7787812e+07 -4.7787812e+07 3.33e-07 1.32e-09 21 1.72
israel -8.9664465e+05 -8.9664463e+05 2.02e-11 3.01e-10 33 1.54
kb2 -1.7499001e+03 -1.7499001e+03 2.52e-08 1.48e-10 18 0.16
lotfi -2.5264702e+01 -2.5264703e+01 9.38e-13 7.03e-11 21 0.80
maros-r7 1.4971852e+06 1.4971852e+06 6.33e-14 3.90e-09 19 2370.61
maros -5.8063744e+04 -5.8063744e+04 1.58e-10 3.05e-11 45 16.13
modszk1 3.2061973e+02 3.2061973e+02 1.36e-13 6.61e-15 36 6.88

TABLE 2. Solution and performance statistics for theNETLIB problems having opti-
mal solutions (25fv47–modszk1).

LOQO: AN INTERIOR POINT CODE FOR QUADRATIC PROGRAMMING 21

Solution Statistics Performance Stats
Problem Objective Primal Dual Significant

Value Infeas. Infeas. Figures Iterations Time
nesm 1.4076037e+07 1.4076036e+07 6.80e-11 2.95e-11 38 20.40
perold -9.3807553e+03 -9.3807554e+03 1.38e-15 2.03e-10 49 26.15
pilot4 -2.5811392e+03 -2.5811393e+03 1.08e-12 6.71e-11 43 11.12
pilot87 3.0171035e+02 3.0171035e+02 2.29e-13 7.04e-12 47 1764.57
pilotja -6.1131364e+03 -6.1131365e+03 4.50e-15 7.32e-11 52 65.06
pilotnov -4.4972762e+03 -4.4972763e+03 1.41e-14 4.15e-10 29 38.99
pilots -5.5748971e+02 -5.5748973e+02 1.57e-12 4.05e-10 40 313.60
pilotwe -2.7201075e+06 -2.7201076e+06 1.26e-08 1.33e-13 47 19.03
recipe -2.6661600e+02 -2.6661600e+02 4.45e-10 1.45e-10 14 0.32
sc105 -5.2202060e+01 -5.2202061e+01 1.95e-12 1.83e-11 15 0.21
sc205 -5.2202061e+01 -5.2202061e+01 7.53e-14 3.97e-11 17 0.51
sc50a -6.4575077e+01 -6.4575077e+01 2.55e-13 9.35e-14 15 0.11
sc50b -7.0000000e+01 -7.0000001e+01 3.13e-13 6.36e-14 13 0.10
scagr25 -1.4753433e+07 -1.4753433e+07 5.30e-12 5.46e-10 25 1.80
scagr7 -2.3313898e+06 -2.3313898e+06 2.25e-09 2.19e-09 18 0.34
scfxm1 1.8416759e+04 1.8416759e+04 1.64e-12 1.30e-09 26 2.19
scfxm2 3.6660262e+04 3.6660261e+04 2.32e-11 3.12e-10 26 4.48
scfxm3 5.4901255e+04 5.4901254e+04 2.27e-11 5.39e-10 26 6.95
scorpion 1.8781248e+03 1.8781248e+03 5.38e-10 1.90e-15 17 0.92
scrs8 9.0429696e+02 9.0429695e+02 3.64e-12 2.15e-15 23 3.20
scsd1 8.6666668e+00 8.6666667e+00 5.19e-12 3.08e-15 15 1.07
scsd6 5.0500000e+01 5.0500000e+01 4.36e-12 4.18e-15 17 2.17
scsd8 9.0500002e+02 9.0499999e+02 8.24e-11 4.48e-15 15 4.04
sctap1 1.4122500e+03 1.4122500e+03 3.60e-12 1.04e-15 22 1.39
sctap2 1.7248071e+03 1.7248071e+03 3.77e-12 1.25e-15 20 5.81
sctap3 1.4240000e+03 1.4240000e+03 5.74e-12 2.40e-12 21 8.48
seba 1.5711600e+04 1.5711600e+04 4.22e-11 1.50e-12 23 2.91
share1b -7.6589318e+04 -7.6589319e+04 3.27e-11 9.12e-12 40 1.26
share2b -4.1573224e+02 -4.1573224e+02 1.71e-11 2.03e-11 16 0.30
shell 1.2088253e+09 1.2088253e+09 1.41e-11 3.72e-10 37 5.71
ship04l 1.7933245e+06 1.7933245e+06 8.96e-09 9.01e-16 27 5.10
ship04s 1.7987147e+06 1.7987147e+06 6.21e-08 8.58e-16 26 3.28
ship08l 1.9090552e+06 1.9090552e+06 2.04e-09 1.29e-15 40 12.52
ship08s 1.9200982e+06 1.9200981e+06 3.31e-09 1.51e-15 33 5.25
ship12l 1.4701879e+06 1.4701879e+06 8.01e-10 1.46e-15 32 13.24
ship12s 1.4892361e+06 1.4892361e+06 3.08e-09 1.15e-15 29 5.64
sierra 1.5394356e+07 1.5394356e+07 6.21e-10 3.21e-10 26 9.20
stair -2.5126695e+02 -2.5126695e+02 3.98e-12 9.24e-10 20 6.55
standata 1.2576995e+03 1.2576995e+03 1.12e-13 4.81e-12 19 2.17
standmps 1.4060175e+03 1.4060175e+03 3.51e-14 3.58e-12 28 3.94
stocfor1 -4.1131976e+04 -4.1131976e+04 1.03e-09 3.73e-12 19 0.32
stocfor2 -3.9024408e+04 -3.9024409e+04 5.65e-10 1.21e-10 27 12.59
tuff 2.9214778e-01 2.9214776e-01 5.41e-13 1.61e-12 24 3.75
vtpbase 1.2983146e+05 1.2983146e+05 1.77e-11 4.32e-09 24 0.35
wood1p 1.4429025e+00 1.4429024e+00 1.63e-11 8.84e-13 25 29.09
woodw 1.3044764e+00 1.3044763e+00 4.37e-11 4.29e-10 31 35.08

TABLE 3. Solution and performance statistics for theNETLIB problems having opti-
mal solutions (nesm–woodw).

22 ROBERT J. VANDERBEI

Problem Iterations Problem Iterations Problem Iterations
bgdbg1 0 ex73a 89 klein3 50
bgetam 52 forest6 15 mondou2 40
bgindy 83 galenet 0 pang 46
bgprtr 10 gosh 200 pilot4i 0
box1 64 gran 122 qual 93
ceria3d 0 greenbea 0 reactor 0
chemcom 10 itest2 0 refinery 70
cplex1 60 itest6 0 vol1 79
cplex2 200 klein1 48 woodinfe 0
ex72a 85 klein2 40

TABLE 4. Iterations to detect infeasibility for the infeasibleNETLIB problems. Note,
0 indicates that infeasibility was detected in preprocessing, whereas 200 indicates that
the iteration limit was reached without detecting infeasibility.

even though the appropriate default values for linear programming work much better on these prob-
lems. Therefore, the runs documented in this section were all performed with the following nondefault
parameter settings:
• convex: ensures that none of the special code for nonconvex nonlinear programming is called.
• bndpush=100: ensures that initial values are sufficiently far removed from their bounds.
• honor bnds=0: allows variables to violate their bounds initially.
• pred corr=1: enables the predictor-corrector method.
• mufactor=0: sets the predictor direction to the primal-dual affine-scaling direction.

Future releases ofLOQO will ensure that these are the defaults for convex quadratic programming
problems (as was the case in earlier releases).

We used the repository of convex quadratic programming problems collected by Maros and M´eszáros
[16]. It should be noted that the problems stored in this repository are stored in an extended form,
called QPS, of the industry standard MPS format. In MPS and QPS format, a constant term for the
objective function is stored in the right-hand side section of the file. Unfortunately,LOQO does not
pick this constant out from this section and so the objective function values reported below don’t
match those given in [16]. Spot checks verified that this is the sole source of discrepancy between our
values and those reported in [16].

Some of the problems in the repository are quadratic variants of problems from theNETLIB collec-
tion. Results for these problems are shown in Table 5. Of the 46 problems in this test set only two
(forplan andpivotnov) failed to achieve the conditions for the stopping rule (which is relative
primal and dual infeasibilities less that1.0e-6 and 8 digits of agreement between primal and dual
objective functions). On iteration 30,forplan had 8 digits of agreement between primal and dual
objective functions, relative primal infeasibility of1.89e-11, and dual infeasibility of9.17e-04
before numerical troubles set in which on the 36th iteration ledLOQO to conclude that the problem is
dual infeasible. Similarly on iteration 48,pilotnov had 6 figures of agreement, primal infeasibil-
ity of 1.43e-08, and dual infeasibility of1.46e-02, after which numerical difficulties set in and
LOQO was never able to find a dual feasible solution. As we saw with the linear programming version

LOQO: AN INTERIOR POINT CODE FOR QUADRATIC PROGRAMMING 23

of forplan, normalizer used in the relativization might be of the wrong magnitude. This might have
been the case for bothforplan andpilotnov since the initial relative infeasibility was in both
cases greater that1.00e+03.

Another collection of problems in the repository come from theCUTE set of problems [4]. Results
for these problems are shown in Tables 6 and 7. All 76 problems in this set solve to optimality.

24 ROBERT J. VANDERBEI

Solution Statistics Performance Stats
Problem Primal Dual Primal Dual

Objective Objective Infeas. Infeas. Iters. Time
25fv47 1.3744448e+07 1.3744447e+07 3.35e-09 7.49e-08 42 166.03
adlittle 4.8031886e+05 4.8031886e+05 2.31e-10 4.14e-11 17 0.22
afiro -1.5907818e+00 -1.5907818e+00 3.92e-15 1.20e-10 16 0.08
bandm 1.6352342e+04 1.6352342e+04 5.37e-10 7.53e-10 23 2.24
beaconfd 1.6471207e+05 1.6471207e+05 3.67e-09 6.17e-08 14 1.06
bore3d 3.1002009e+03 3.1002008e+03 3.02e-07 3.52e-10 23 1.21
brandy 2.8375115e+04 2.8375115e+04 1.62e-09 8.47e-08 20 1.47
capri 6.6793293e+07 6.6793293e+07 3.62e-12 2.36e-07 81 7.12
e226 2.0554043e+02 2.0554043e+02 2.89e-12 7.40e-12 23 2.22
etamacro 8.6760369e+04 8.6760369e+04 3.18e-12 3.00e-10 44 52.42
fffff800 8.7314749e+05 8.7314751e+05 7.32e-12 5.89e-07 39 17.89
forplan* 7.4934651e+09 3.2478707e+09 2.71e-12 4.92e+05 36 4.33
gfrd-pnc 1.0079058e+11 1.0079058e+11 3.88e-07 6.66e-09 38 4.78
grow15 -1.0169364e+08 -1.0169364e+08 2.37e-07 1.10e-09 26 4.44
grow22 -1.4962895e+08 -1.4962896e+08 4.09e-07 1.55e-09 29 7.69
grow7 -4.2798714e+07 -4.2798714e+07 2.14e-07 1.46e-09 26 2.13
israel 2.5347838e+07 2.5347838e+07 4.49e-13 1.86e-10 56 2.87
pilotnov* 4.7285893e+06 4.7285752e+06 2.48e-07 2.23e+03 200 294.00
recipe -2.6661600e+02 -2.6661600e+02 4.99e-12 1.75e-11 17 0.46
sc205 -5.8139535e-03 -5.8139535e-03 5.87e-16 5.33e-07 56 1.82
scagr25 2.0173794e+08 2.0173794e+08 1.89e-10 3.49e-09 27 1.91
scagr7 2.6865949e+07 2.6865949e+07 2.24e-10 4.44e-09 24 0.43
scfxm1 1.6882691e+07 1.6882691e+07 5.66e-09 6.11e-07 36 3.27
scfxm2 2.7776161e+07 2.7776160e+07 6.53e-09 7.02e-07 41 7.60
scfxm3 3.0816353e+07 3.0816353e+07 8.42e-09 9.01e-07 42 11.81
scorpion 1.8805096e+03 1.8805095e+03 1.27e-09 2.76e-12 18 1.03
scrs8 9.0456001e+02 9.0456001e+02 4.09e-12 1.79e-13 25 3.54
scsd1 8.6666668e+00 8.6666667e+00 3.99e-12 8.93e-14 16 1.38
scsd6 5.0808214e+01 5.0808214e+01 2.48e-12 3.59e-13 19 3.07
scsd8 9.4076358e+02 9.4076357e+02 4.15e-11 3.59e-12 16 5.30
sctap1 1.4158611e+03 1.4158611e+03 3.77e-11 6.69e-12 21 1.33
sctap2 1.7350265e+03 1.7350265e+03 2.37e-11 2.33e-12 20 7.08
sctap3 1.4387547e+03 1.4387547e+03 2.66e-11 2.20e-12 21 10.35
seba 8.1481799e+07 8.1481800e+07 6.62e-08 2.04e-09 40 5.65
share1b 7.2007834e+05 7.2007833e+05 2.07e-10 3.54e-09 46 1.45
share2b 1.1703692e+04 1.1703692e+04 1.26e-09 1.13e-08 24 0.39
shell 1.5726368e+12 1.5726368e+12 9.26e-08 2.79e-07 57 90.00
ship04l 2.4200155e+06 2.4200155e+06 1.46e-08 6.26e-11 30 6.28
ship04s 2.4249936e+06 2.4249937e+06 1.87e-08 8.33e-11 29 4.32
ship08l 2.3760406e+06 2.3760406e+06 4.52e-09 1.26e-11 33 140.80
ship08s 2.3857286e+06 2.3857287e+06 1.38e-07 3.78e-10 31 21.60
ship12l 3.0188763e+06 3.0188764e+06 1.90e-07 4.70e-10 36 240.48
ship12s 3.0569622e+06 3.0569622e+06 2.13e-08 5.23e-11 35 25.56
sierra 2.3750458e+07 2.3750458e+07 5.54e-11 2.49e-11 33 11.77
stair 7.9854527e+06 7.9854528e+06 3.41e-09 1.45e-07 35 5.56
standata 6.4118384e+03 6.4118384e+03 2.23e-12 2.44e-11 21 2.63

TABLE 5. Performance statistics for quadratic variants of the feasibleNETLIB problems.

LOQO: AN INTERIOR POINT CODE FOR QUADRATIC PROGRAMMING 25

Solution Statistics Performance Stats
Problem Primal Dual Primal Dual

Objective Objective Infeas. Infeas. Iters. Time
aug2d 1.6775117e+06 1.6775118e+06 1.72e-08 1.74e-08 10 57.29
aug2dc 1.8082680e+06 1.8082681e+06 1.81e-08 1.82e-08 10 57.13
aug2dcqp 6.4880347e+06 6.4880347e+06 1.61e-08 6.12e-09 16 87.40
aug2dqp 6.2271119e+06 6.2271119e+06 4.30e-08 1.65e-08 16 87.27
aug3d -7.8243228e+02 -7.8243227e+02 1.87e-07 2.28e-07 8 7.93
aug3dc -1.1652376e+03 -1.1652376e+03 1.87e-07 1.91e-07 8 7.93
aug3dcqp -9.4313784e+02 -9.4313786e+02 1.02e-12 3.52e-13 17 15.61
aug3dqp -6.6126233e+02 -6.6126233e+02 3.17e-15 1.79e-14 19 17.33
cvxqp1 l 1.0870480e+08 1.0870480e+08 5.09e-11 7.74e-07 63 30660.00
cvxqp1 m 1.0875115e+06 1.0875115e+06 1.15e-08 7.98e-09 32 64.64
cvxqp1 s 1.1590718e+04 1.1590718e+04 1.31e-09 6.08e-11 13 0.27
cvxqp2 l 8.1842458e+07 8.1842458e+07 4.12e-09 7.49e-07 25 7508.00
cvxqp2 m 8.2015543e+05 8.2015543e+05 3.31e-09 1.28e-09 16 20.79
cvxqp2 s 8.1209405e+03 8.1209403e+03 1.96e-09 1.25e-09 11 0.20
cvxqp3 l 1.1571110e+08 1.1571110e+08 1.15e-10 7.22e-07 47 26200.00
cvxqp3 m 1.3628287e+06 1.3628287e+06 3.22e-09 1.36e-07 48 111.60
cvxqp3 s 1.1943432e+04 1.1943432e+04 4.38e-10 5.82e-09 13 0.30
dtoc3 2.3526248e+02 2.3526248e+02 1.10e-08 1.36e-08 11 25.51
dual1 3.5012967e-02 3.5012965e-02 7.34e-14 2.19e-14 18 0.97
dual2 3.3733677e-02 3.3733672e-02 2.39e-13 3.10e-15 16 1.14
dual3 1.3575584e-01 1.3575583e-01 2.94e-13 6.07e-15 16 1.66
dual4 7.4609085e-01 7.4609082e-01 2.01e-13 6.02e-16 15 0.60
dualc1 6.1552508e+03 6.1552508e+03 3.06e-10 3.94e-15 36 0.94
dualc2 3.5513077e+03 3.5513077e+03 9.93e-11 3.31e-15 34 0.78
dualc5 4.2723233e+02 4.2723231e+02 1.40e-08 1.24e-11 15 0.49
dualc8 1.8309359e+04 1.8309359e+04 2.30e-09 1.51e-13 20 1.25
genhs28 9.2717369e-01 9.2717369e-01 1.29e-07 5.54e-07 8 0.02
gouldqp2 1.8427677e-04 1.8425871e-04 9.25e-13 5.28e-13 17 1.46
gouldqp3 -2.9647837e+04 -2.9647837e+04 5.72e-09 3.22e-13 12 1.27
hs118 6.6482045e+02 6.6482044e+02 3.79e-11 1.94e-10 15 0.05
hs21 4.0000001e-02 3.9999999e-02 2.66e-14 1.78e-13 13 0.03
hs268 -1.4463000e+04 -1.4463000e+04 5.71e-10 2.18e-12 10 0.03
hs35 -8.8888889e+00 -8.8888889e+00 1.04e-16 6.19e-17 12 0.03
hs35mod -8.7499999e+00 -8.7500001e+00 5.01e-14 1.33e-14 14 0.03
hs51 -6.0000000e+00 -6.0000000e+00 6.11e-08 5.42e-08 8 0.03
hs52 -6.7335244e-01 -6.7335244e-01 1.80e-08 3.19e-09 9 0.03
hs53 -1.9069767e+00 -1.9069768e+00 6.77e-11 2.92e-14 11 0.03
hs76 -4.6818182e+00 -4.6818182e+00 1.05e-16 5.76e-17 13 0.03

TABLE 6. Performance statistics for quadraticCUTE problems (aug2d to hs76).

REFERENCES

[1] E.D. Andersen, J. Gondzio, Cs. M´eszáros, and X. Xu. Implementation of interior-point methods for large scale
linear programming. In T. Terlaky, editor,Interior point methods of mathematical programming, pages 189–252.
Kluwer Academic Publishers, Dordrecht and Boston, 1996.

[2] P.T. Boggs, P.D. Domich, J.E. Rogers, and C. Witzgall. An interior-point method for linear and quadratic pro-
gramming problems. Technical Report NISTIR-4556, National Institute of Standards and Technology, 1991.

26 ROBERT J. VANDERBEI

Solution Statistics Performance Stats
Problem Primal Dual Primal Dual

Objective Objective Infeas. Infeas. Iters. Time
hues-mod 3.4824464e+07 3.4824464e+07 1.45e-12 3.22e-09 32 44.55
huestis 3.4824464e+11 3.4824464e+11 8.87e-11 2.22e-07 19 36.05
ksip 5.7579794e-01 5.7579794e-01 6.22e-14 4.18e-12 22 7.62
liswet1 -2.4892877e+03 -2.4892876e+03 1.23e-11 4.83e-11 46 75.94
liswet10 -2.4764642e+03 -2.4764642e+03 7.69e-11 4.17e-11 57 97.47
liswet11 -2.4762261e+03 -2.4762260e+03 1.87e-11 1.09e-11 44 71.08
liswet12 -7.8882259e+02 -7.8882257e+02 2.18e-10 2.45e-10 80 148.86
liswet2 -1.6669919e+03 -1.6669919e+03 6.92e-10 2.93e-11 14 19.77
liswet3 -1.0002588e+03 -1.0002588e+03 1.84e-10 9.76e-12 16 22.55
liswet4 -7.1451587e+02 -7.1451589e+02 3.62e-10 2.25e-11 16 22.52
liswet5 -1.5976166e+04 -1.5976166e+04 5.06e-09 6.94e-11 13 18.35
liswet6 -2.1622242e+03 -2.1622243e+03 1.35e-09 4.93e-11 14 19.77
liswet7 -2.0264192e+03 -2.0264191e+03 1.61e-11 3.38e-10 33 58.89
liswet8 -1.8107900e+03 -1.8107899e+03 3.29e-10 2.01e-10 69 131.86
liswet9 -5.6200874e+02 -5.6200874e+02 3.41e-10 2.06e-10 77 144.65
lotschd 2.3984159e+03 2.3984159e+03 1.97e-11 1.42e-09 11 0.03
mosarqp1 -9.5287544e+02 -9.5287545e+02 4.14e-16 2.40e-13 16 5.52
mosarqp2 -1.5974821e+03 -1.5974821e+03 4.38e-16 1.28e-12 14 3.80
powell20 5.2089583e+10 5.2089583e+10 3.22e-13 5.21e-07 92 155.34
primal1 -3.5012964e-02 -3.5012968e-02 1.50e-12 7.71e-16 21 3.02
primal2 -3.3733664e-02 -3.3733680e-02 1.48e-12 5.96e-15 19 4.11
primal3 -1.3575582e-01 -1.3575585e-01 1.08e-12 3.45e-15 19 9.66
primal4 -7.4609084e-01 -7.4609084e-01 1.71e-13 3.12e-15 17 6.37
primalc1 -6.1552508e+03 -6.1552508e+03 1.37e-15 3.61e-10 29 0.87
primalc2 -3.5513076e+03 -3.5513076e+03 3.64e-14 4.65e-09 27 0.68
primalc5 -4.2723233e+02 -4.2723233e+02 2.29e-13 2.71e-10 16 0.59
primalc8 -1.8309430e+04 -1.8309430e+04 3.49e-13 5.67e-09 19 1.39
qpcblend -7.8425371e-03 -7.8425507e-03 3.29e-15 6.08e-14 21 0.33
qpcboei1 1.1503914e+07 1.1503914e+07 1.53e-09 2.20e-08 31 3.71
qpcboei2 8.1719622e+06 8.1719622e+06 7.29e-13 1.80e-07 40 1.58
qpcstair 6.2043874e+06 6.2043874e+06 1.49e-08 6.36e-07 38 6.37
s268 -1.4463000e+04 -1.4463000e+04 5.71e-10 2.18e-12 10 0.03
stcqp1 1.5514355e+05 1.5514355e+05 1.06e-10 2.92e-11 12 33.19
stcqp2 2.2327313e+04 2.2327313e+04 5.38e-12 9.73e-12 13 76.20
tame 0.0000000e+00 -2.0360249e-08 5.94e-11 6.37e-11 11 0.02
ubh1 1.1160008e+00 1.1160008e+00 4.78e-09 3.80e-12 33 85.48
yao -7.5420744e+01 -7.5420744e+01 3.49e-12 2.95e-11 47 14.52
zecevic2 -4.1250000e+00 -4.1250001e+00 1.41e-11 9.99e-12 12 0.03

TABLE 7. Performance statistics for quadraticCUTE problems (hues-mod to zecevic2.

[3] M.G. Breitfeld and D.F. Shanno. Preliminary computational experience with modified log-barrier functions for
large-scale nonlinear programming. In W.W. Hager, D.W. Hearn, and P.M. Pardalos, editors,Large scale opti-
mization: state of the art, pages 45–66. Kluwer Academic Publishers, 1994.

[4] A.R. Conn, N. Gould, and Ph.L. Toint. Constrained and unconstrained testing environment. http://www.dci.clrc.ac.uk/Activity.asp?C
[5] R. Fourer and S. Mehrotra. Solving symmetric indefinite systems in an interior point method for linear program-

ming.Mathematical Programming, 62:15–40, 1991.

LOQO: AN INTERIOR POINT CODE FOR QUADRATIC PROGRAMMING 27

[6] D.M. Gay. Electronic mail distributionof linear programming test problems.Mathematical Programming Society
COAL Newslettter, 13:10–12, 1985.

[7] A. George and J.W.H. Liu. The evolution of the minimum degree ordering algorithm.SIAM Review, 31:1–19,
1989.

[8] P.E. Gill, W. Murray, D.B. Poncele´on, and M.A. Saunders. Primal-dual methods in linear programming. Techni-
cal Report SOL 91-3, Systems Optimization Laboratory, Stanford University, Stanford, CA, April 1991.

[9] P.E. Gill, W. Murray, D.B. Poncele´on, and M.A. Saunders. Solving reduced KKT systems in barrier methods
for linear and quadratic programming. Technical Report SOL 91-7, Systems Optimization Laboratory, Stanford
University, Stanford, CA, July 1991.

[10] P.E. Gill, W. Murray, D.B. Poncele´on, and M.A. Saunders. Preconditioners for indefinite systems arising in
optimization.SIAM Journal on Matrix Analysis and Applications, 13(1):292–311, 1992.

[11] M. Kojima, N. Megiddo, and S. Mizuno. A primal-dual infeasible-interior-point algorithm for linear program-
ming.Mathematical Programming, 61:263–400, 1993.

[12] I.J. Lustig. Feasibility issues in a primal-dual interior-point method for linear programming.Mathematical Pro-
gramming, 49(2):145–162, 1990.

[13] I.J. Lustig, R.E. Marsten, and D.F. Shanno. Computational experience with a primal-dual interior point method
for linear programming.Lin. Alg. and Appl., 152:191–222, 1991.

[14] I.J. Lustig, R.E. Marsten, and D.F. Shanno. On implementing Mehrotra’s predictor-corrector interior point
method for linear programming.SIAM Journal on Optimization, 2:435–449, 1992.

[15] I.J. Lustig, R.E. Marsten, and D.F. Shanno. Interior point methods for linear programming: computational state
of the art.ORSA J. on Computing, 6:1–14, 1994.

[16] I. Maros and Cs. M´eszáros. A repository of convex quadratic programming problems. Technical Report DOC
97/6, Imperial College, London, UK, Department of Computing, Imperial College, London, UK, 1997.

[17] N. Megiddo. Pathways to the optimal set in linear programming. In N. Megiddo, editor,Progress in Mathematical
Programming, pages 131–158, New York, 1989. Springer-Verlag.

[18] S. Mehrotra. On the implementation of a (primal-dual) interior point method.SIAM Journal on Optimization,
2:575–601, 1992.

[19] Cs. Mészáros. On the sparsity issues of interior point methods for quadratic programming. Technical Report WP
98-4, Computer and Automation Institute, Hungarian Academy of Sciences, Budapest, 1998.

[20] R.D.C. Monteiro and I. Adler. Interior path following primal-dual algorithms. part ii: Convex quadratic program-
ming.Mathematical Programming, 44:43–66, 1989.

[21] R.D.C. Monteiro and F. Zhou. On superlinear convergence of infeasible-interior-point algorithms for linearly
constrained convex programs.Computational Optimization and Applications, 8:245–262, 1997.

[22] S. Pissanetzky.Sparse Matrix Technology. Academic Press, 1984.
[23] F.A. Potra. A quadratically convergent predictor-corrector method for solving linear programs from infeasible

starting points.Mathematical Programming, 67:383–406, 1994.
[24] J.E. Rogers, P.T. Boggs, and P.D. Domich. A predictor-corrector-O3D formulation for quadratic programming.

Technical report, National Institute of Standards and Technology, 1994.
[25] D.F. Shanno and E.M. Simantiraki. Interior-point methods for linear and nonlinear programming. In I.S. Duff

and G.A. Watson, editors,The State of the Art in Numerical Analysis, pages 339–362. Oxford University Press,
New York, 1997.

[26] K. Tanabe. Centered newton method for linear programming: exterior point method (in japanese). InProc. Inst.
Stat. Mathematics, volume 37, pages 146–148, 1989.

[27] K. Turner. Computing projections for the Karmarkar algorithm.Linear Algebra and Its Applications, 152:141–
154, 1991.

[28] R.J. Vanderbei. Affine scaling and linear programs with free variables.Mathematical Programming, 39:31–44,
1989.

28 ROBERT J. VANDERBEI

[29] R.J. Vanderbei. An implementation of the minimum-degree algorithm using simple data structures. Technical
report, AT&T Bell Laboratories, 1990.

[30] R.J. Vanderbei. Interior-point methods: algorithms and formulations.ORSA J. on Computing, 6:32–34, 1994.
[31] R.J. Vanderbei. LOQO: An interior point code for quadratic programming. Technical Report SOR 94-15, Prince-

ton University, 1994.
[32] R.J. Vanderbei. Symmetric quasi-definite matrices.SIAM Journal on Optimization, 5(1):100–113, 1995.
[33] R.J. Vanderbei.Linear Programming: Foundations and Extensions. Kluwer Academic Publishers, 1996.
[34] R.J. Vanderbei and T.J. Carpenter. Symmetric indefinite systems for interior-point methods.Mathematical Pro-

gramming, 58:1–32, 1993.
[35] R.J. Vanderbei, A. Duarte, and B. Yang. An algorithmic and numerical comparison of several interior-point

methods. Technical Report SOR 94-05, Princeton University, 1994.
[36] R.J. Vanderbei and D.F. Shanno. An interior-point algorithm for nonconvex nonlinear programming. Technical

Report SOR-97-21, Statistics and Operations Research, Princeton University, 1997.
[37] S.J. Wright.Primal-Dual Interior-Point Methods. SIAM, Philadelphia, USA, 1996.
[38] Y. Zhang. On the convergence of a class of infeasible-interior-point methods for the horizontal linear comple-

mentarity problem.SIAM J. on Optimization, 4:208–227, 1994.

ROBERT J. VANDERBEI, PROGRAM IN STATISTICS AND OPERATIONS RESEARCH, PRINCETON UNIVERSITY,
PRINCETON, NJ 08544

E-mail address: rvdb@princeton.edu

