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Abstract

The Synthetic Minority Oversampling TEchnique (SMOTE) is widely-used for the analysis 

of imbalanced datasets. It is known that SMOTE frequently over-generalizes the minor-

ity class, leading to misclassifications for the majority class, and effecting the overall bal-

ance of the model. In this article, we present an approach that overcomes this limitation of 

SMOTE, employing Localized Random Affine Shadowsampling (LoRAS) to oversample 

from an approximated data manifold of the minority class. We benchmarked our algorithm 

with 14 publicly available imbalanced datasets using three different Machine Learning 

(ML) algorithms and compared the performance of LoRAS, SMOTE and several SMOTE 

extensions that share the concept of using convex combinations of minority class data 

points for oversampling with LoRAS. We observed that LoRAS, on average generates bet-

ter ML models in terms of F1-Score and Balanced accuracy. Another key observation is 

that while most of the extensions of SMOTE we have tested, improve the F1-Score with 

respect to SMOTE on an average, they compromise on the Balanced accuracy of a classifi-

cation model. LoRAS on the contrary, improves both F1 Score and the Balanced accuracy 

thus produces better classification models. Moreover, to explain the success of the algo-

rithm, we have constructed a mathematical framework to prove that LoRAS oversampling 

technique provides a better estimate for the mean of the underlying local data distribution 

of the minority class data space.
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1 Introduction

Imbalanced datasets are frequent occurrences in a large spectrum of fields, where Machine 

Learning (ML) has found its applications, including business, finance and banking as well 

as bio-medical science. Oversampling approaches are a popular choice to deal with imbal-

anced datasets (Chawla et al. 2002; Han et al. 2005; Haibo et al. 2008; Bunkhumpornpat 

et al. 2009; Barua et al. 2014). We here present Localized Randomized Affine Shadowsam-

pling (LoRAS), which produces better ML models for imbalanced datasets, compared to 

state-of-the art oversampling techniques such as SMOTE and several of its extensions. We 

use computational analyses and a mathematical proof to demonstrate that drawing samples 

from a locally approximated data manifold of the minority class can produce balanced clas-

sification ML models. We validated the approach with 12 publicly available imbalanced 

datasets, comparing the performances of several state-of-the-art convex-combination based 

oversampling techniques with LoRAS. The average performance of LoRAS on all these 

datasets is better than other oversampling techniques that we investigated. In addition, we 

have constructed a mathematical framework to prove that LoRAS is a more effective over-

sampling technique since it provides a better estimate for local mean of the underlying data 

distribution, in some neighbourhood of the minority class data space.

For imbalanced datasets, the number of instances in one (or more) class(es) is very high 

(or very low) compared to the other class(es). A class having a large number of instances 

is called a majority class and one having far fewer instances is called a minority class. This 

makes it difficult to learn from such datasets using standard ML approaches. Oversampling 

approaches are often used to counter this problem by generating synthetic samples for the 

minority class to balance the number of data points for each class. SMOTE is a widely used 

oversampling technique, which has received various extensions since it was published by 

Chawla et al. (2002). The key idea behind SMOTE is to randomly sample artificial minor-

ity class data points along line segments joining the minority class data points among k of 

the minority class nearest neighbors of some arbitrary minority class data point. In other 

words, SMOTE produces oversamples by generating random convex combinations of two 

close enough data points.

The SMOTE algorithm, however has several limitations for example: it does not con-

sider the distribution of minority classes and latent noise in a data set (Hu et al. 2009). It 

is known that SMOTE frequently over-generalizes the minority class, leading to misclas-

sifications for the majority class, and effecting the overall balance of the model (Puntu-

mapon and Waiyamai 2012). Several other limitations of SMOTE are mentioned in Blagus 

and Lusa (2013). To overcome such limitations, several algorithms have been proposed as 

extensions of SMOTE. Some are focusing on improving the generation of synthetic data 

by combining SMOTE with other oversampling techniques, including the combination of 

SMOTE with Tomek-links (Elhassan et al. 2016), particle swarm optimization (Gao et al. 

2011; Wang et al. 2014), rough set theory (Ramentol et al. 2012), kernel based approaches 

(Mathew et al. 2015), Boosting (Chawla et al. 2003), and Bagging (Hanifah et al. 2015). 

Other approaches choose subsets of the minority class data to generate SMOTE sam-

ples or cleverly limit the number of synthetic data generated (Santoso et al. 2017). Some 

examples are Borderline1/2 SMOTE (Han et al. 2005), ADAptive SYNthetic (ADASYN) 

(Haibo et al. 2008), Safe Level SMOTE (Bunkhumpornpat et al. 2009), Majority Weighted 

Minority Oversampling TEchnique (MWMOTE) (Barua et  al. 2014), Modified SMOTE 

(MSMOTE), and Support Vector Machine-SMOTE (SVM-SMOTE) (Suh et al. 2017) (see 

Table 1) (Hu et al. 2009). Another recent method, G-SMOTE, generates synthetic samples 



281Machine Learning (2021) 110:279–301 

1 3

in a geometric region of the input space, around each selected minority instance (Douzas 

and Bacao 2019). Voronoi diagrams have also been used in recent research for improv-

ing classification tasks for imbalanced datasets. Because of properties inherent to Voronoi 

diagrams, a newly proposed algorithm V-synth identifies exclusive regions of feature space 

where it is ideal to create synthetic minority samples (Young et  al. 2015; Carvalho and 

Prati 2018).

Related research and novelty A more recent trend in the research on imbalanced datasets 

is to generate synthetic samples, aiming to approximate the latent data manifold of the minor-

ity class data space. In Bellinger et al. (2018), a general framework for manifold-based over-

sampling, especially for high dimensional datasets, is proposed for synthetic oversampling. 

The method has been successfully applied in Bellinger et al. (2016) to deal with gamma-ray 

spectra classification. It produces a synthetic set S of n instances in the manifold-space by 

randomly sampling n instances from the PCA-transformed reduced data space. In order to 

produce unique samples on the manifold, they apply i.i.d. additive Gaussian noise to each 

sampled instance prior to adding it to the synthetic set S, controlling the distribution of the 

noise through the Gaussian distribution parameters. The synthetic Gaussian instances are then 

mapped back to the feature space to produce the final synthetic samples (Bellinger et al. 2018). 

Another scheme, using auto-encoders to oversample from an approximated manifold, has also 

been discussed in Bellinger et al. (2018). This approach selects random minority class samples 

by adding Gaussian noise to them, and using the auto-encoder framework first maps them 

non-orthogonally off the manifold and then maps them back orthogonally on the manifold 

(Bellinger et  al. 2018). It remains unclear from this research how the approach would per-

form in terms of improving F1-Scores of imbalanced classification models as it focuses on 

relative improvement in the Area Under the (ROC) Curve (AUC) as a performance measure. 

According to Saito and Rehmsmeier (2015), AUC of the Receiver Operating Characteristic 

Curve (ROC) curve might not be informative enough for imbalanced datasets. This issue has 

also been addressed in Davis and Goadrich (2006). Unlike the work of Bellinger et al. (2018) 

LoRAS relies on locally approximating the manifold by generating random convex combi-

nation of noisy minority class data points. Our oversampling strategy LoRAS, rather aims 

at improving the precision-recall balance (F1-Score) and class wise average accuracy (Bal-

anced accuracy) of the ML models used. The F1-Score can measure how well the classifica-

tion model handled the minority class classification, whereas Balanced accuracy provides us 

with a measure of how both majority and minority classes were handled by the classification 

Table 1  Popular algorithms built on SMOTE

Extension Description

Borderline1/2 SMOTE (Han et al. 2005) Identifies borderline samples and applies SMOTE on 

them

ADASYN (Haibo et al. 2008) Adaptively changes the weights of different minority 

samples

SVM-SMOTE (Suh et al. 2017) Generates new minority samples near borderlines with 

SVM

Safe-level-SMOTE (Bunkhumpornpat et al. 2009) Generates data in areas that are completely safe

MWMOTE (Barua et al. 2014) Identifies and weighs ambiguous minority class 

samples
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model. Thus, these two measures together can give us a holistic understanding of a classifier 

performance on a dataset.

Notably, in the pre-SMOTE era of research, related to oversampling there has been works 

aiming to enrich minority classes of imbalanced datasets by adding Gaussian noise (Lee 2000) 

and using the noisy data itself, as oversampled data. The strategy of generating oversamples 

with convex combinations of minority class samples is also well known, SMOTE itself being 

an example of such a strategy. Our oversampling strategy LoRAS leverages from a combina-

tion of these two strategies. Unlike Lee (2000), we generate Gaussian noise in small neigh-

bourhoods around the minority class samples and create our final synthetic data with convex 

combinations of multiple noisy data points (shadowsamples) as opposed to SMOTE based 

strategies, that consider combination of only two minority class data points. Adding the shad-

owsamples allows LoRAS to produce a better estimate for local mean of the latent minority 

class data distribution.

We also provide a mathematical framework to show that convex combinations of multi-

ple shadowsamples can provide a proper estimate for the local mean of a neighbourhood in 

the minority class data space. To be specific, an LoRAS oversample is an unbiased estima-

tor of the mean of the underlying local probability distribution, followed by a minority class 

sample (assuming that it is some random variable) such that the variance of this estimator 

is significantly less than that of a SMOTE generated oversample, which is also an unbiased 

estimator of the mean of the underlying local probability distribution, followed by a minority 

class sample. In addition to this, LoRAS provides an option of choosing the neighbourhood 

of a minority class data point by performing prior manifold learning over the minority class 

using t-Stochastic Neighbourhood Embedding (t-SNE) (van der Maaten and Hinton 2008). 

t-SNE is a state-of the art algorithm used for dimension reduction maintaining the underlying 

manifold structure in a sense that, in a lower dimension t-SNE can cluster points, that are close 

enough in the latent high dimensional manifold. It uses a symmetric version of the cost func-

tion used for it’s predecessor technique Stochastic Neighbourhood Embedding (SNE) and uses 

a Student-t distribution rather than a Gaussian to compute the similarity between two points in 

the low-dimensional space. t-SNE employs a heavy-tailed distribution in the low-dimensional 

space to alleviate both the crowding problem and the optimization problems of SNE (van der 

Maaten and Hinton 2008; Hinton and Roweis 2003).

Till date there are at least eighty five extension models built on SMOTE (Kovács 2019). 

Considering a large number of benchmark datasets explored in our study, it was necessary to 

shortlist certain oversampling algorithms for a comparative study. We found quite a few stud-

ies that have applied or explored SMOTE and extension of SMOTE such as Borderline1/2 

SMOTE models, ADASYN, and SVM-SMOTE (Suh et  al. 2017; Ah-Pine and Soriano-

Morales 2016; Adiwijaya and Saonard 2017; Chiamanusorn and Sinapiromsaran 2017; Wang 

et al. 2014; Le et al. 2019). Moreover all these oversampling strategies are focused on over-

sampling from the convex hull of small neighbourhoods in the minority class data space, a 

similarity that they share with our proposed approach. Considering these factors, we choose 

to focus on these five oversampling strategies for a comparative study with our oversampling 

technique LoRAS.



283Machine Learning (2021) 110:279–301 

1 3

2  LoRAS: localized randomized a�ne shadowsampling

In this section we discuss our strategy to approximate the data manifold, given a dataset. 

A typical dataset for a supervised ML problem consists of a set of features F = {f1, f2,…} , 

that are used to characterize patterns in the data and a set of labels or ground truth. Ideally, 

the number of instances or samples should be significantly greater than the number of fea-

tures. In order to maintain the mathematical rigor of our strategy we propose the following 

definition for a small dataset.

De�nition 1 Consider a class or the whole dataset with n samples and |F| features. If 

log10(
n

|F|
) < 1 , then we call the dataset, a small dataset.

The LoRAS algorithm is designed to learn from a dataset by approximating the underly-

ing data manifold. Assuming that F is the best possible set of features to represent the data 

and all features are equally important, we can think of a data oversampling model to be a 

function g ∶

∏l

i=1
R�F�

→ R�F� , that is, g uses l parent data points (each with |F| features) to 

produce an oversampled data point in R|F|.

De�nition 2 We define a random affine combination of some arbitrary vectors as the aff-

ine linear combination of those vectors, such that the coefficients of the linear combination 

are chosen randomly. Formally, a vector v, v = �
1
u

1
+⋯ + �

n
u

m
 , is a random affine com-

bination of vectors u1,… , u
m
 , ( uj ∈ R|F| ) if �

1
+⋯ + �

m
= 1 , �j ∈ R+ and �1,… , �

m
 are the 

coefficients of the affine combination chosen randomly from a Dirichlet distribution.

The simplest way of augmenting a data point would be to take the average (or random 

affine combination with positive coefficients as defined in Definition 2) of two data points 

as an augmented data point. But, when we have |F| features, we can assume that the hypo-

thetical manifold on which our data lies is |F|-dimensional. An |F|-dimensional manifold 

can be locally approximated by a collection of (|F| − 1)-dimensional planes.

Given |F| sample points we could exactly derive the equation of an unique (|F| − 1)

-dimensional plane containing these |F| sample points. Note that, a small neighbourhood of 

a dataset can itself be considered as a small dataset. A small neighbourhood of k points 

around a data point in a dataset, given sufficiently small k, satisfies Definition 1, that is k 

and |F| satisfies, log10(
k

|F|
) < 1 . Thus, considering k to be sufficiently small we can assume 

that this small neighbourhood is a small dataset. To enrich this small dataset, we create 

shadow data points or shadowsamples from our k parent data points in the minority class 

data point neighbourhood. Each shadow data point is generated by adding noise from a 

normal distribution, N(0, h(�f )) for all features f ∈ F , where h(�f ) is some function of the 

sample variance �f  for the feature f. For each of the k data points we can generate m shadow 

data points such that, k × m ≫ |F| . Now it is possible for us to choose |F| shadow data 

points from the k × m shadow data points even if k < |F| . We choose |F| shadow data points 

as follows: we first choose a random parent data point p and then restrict the domain of 

choice to the shadowsamples generated by the parent data points in N
p

k
.

For high dimensional datasets, choosing k-nearest neighbours of data point using simple 

Euclidean, Manhattan or general Minkowski distance measures can be misleading in terms 

of approximating the latent data manifold. To avoid this, we propose to adopt a manifold 

learning based strategy. Before choosing the k-nearest neighbours of a data point, we per-

form a dimension reduction on the data points of the minority class using the well-known 
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dimension reduction and manifold learning technique t-SNE (van der Maaten and Hinton 

2008). Once we have a two dimensional t-embedding of the minority class data, we choose 

the k-nearest neighbours of a particular data point consistent to its k-nearest neighbours 

(measured as per usual distance metrics) in the 2-dimensional t-SNE embedding of the 

minority class.

Once we choose our neighbourhood and generate the shadowsamples, we take a random 

affine combination with positive co-efficients (Convex combination) of the |F| chosen shad-

owsamples to create one augmented Localized Random Affine Shadowsample or a LoRAS 

sample as defined in Definition 2. Considering the arbitrary low variance that we can 

choose for the Normal distribution from which we draw our shadowsamples, we assume 

that our shadowsamples lie in the latent data manifold itself. It is a practical assumption, 

considering the stochastic factors leading to small measurement errors. Now, there exists 

an unique (|F| − 1)-dimensional plane, that contains the |F| shadowsamples, which we 

assume to be an approximation of the latent data manifold in that small neighbourhood. 

Thus, a LoRAS sample is an artificially generated sample drawn from an (|F| − 1)-dimen-

sional plane, which locally approximates the underlying hypothetical |F|-dimensional data 

manifold. It is worth mentioning here, that the effective number of features in a dataset is 

often less than |F|. In high dimensional data there are often correlated features or features 

with low variance. Thus, for practical use of LoRAS one might consider generating convex 

combinations of effective number of features which might be less than |F|. 



285Machine Learning (2021) 110:279–301 

1 3

In this article, all imbalanced classification problems that we deal with are binary classi-

fication problems. For such a problem, there is a minority class C
min

 containing a relatively 

less number of samples compared to a majority class Cmaj . We can thus consider the minor-

ity class as a small dataset and use the LoRAS algorithm to oversample. For every data 

point p we can denote a set of shadowsamples generated from p as Sp . In practice, one can 

also choose 2 ≤ N
aff

≤ |F| shadowsamples for an affine combination and choose a desired 

number of oversampled points N
gen

 to be generated using the algorithm. We can look at 

LoRAS as an oversampling algorithm as described in Algorithm 1.

The LoRAS algorithm thus described, can be used for oversampling of minority classes 

in case of highly imbalanced datasets. Note that the input variables for our algorithm are: 

number of nearest neighbors per sample � , number of generated shadow points per par-

ent data point |�
p
| , list of standard deviations for normal distributions for adding noise to 

every feature and thus generating the shadowsamples �
�
 , number of shadowsamples to be 

chosen for affine combinations �
aff

 , number of generated points for each nearest neigh-

bors group �
gen

 and embedding strategy ��������� . There is a conditional input variable 

���������� which takes a positive numerical value if one chooses a t-embedding. The 
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perplexity parameter of the t-SNE algorithm is quite crucial. The perplexity parameter can 

influence the t-Embedding calculated by the t-SNE algorithm. There have been several 

studies that address the issue on finding a right perplexity parameter for a given problem 

(Kobak and Berens 2019). That is why, we recommend careful choice of this parameter in 

order to leverage more from our algorithm. Another important parameter of our algorithm 

is the �
aff

 . For this parameters an ideal choice would be the number of effective features 

in a dataset since this number would be a reasonable approximation to the dimension of 

the underlying data manifold. One could employ a feature selection technique to find out 

a good estimate for this. A simple random grid search is also very helpful to get reason-

ably good estimates of these parameters. We have mentioned all the default values of the 

LoRAS parameters in Algorithm 1, showing the pseudocode for the LoRAS algorithm. As 

an output, our algorithm generates a LoRAS dataset for the oversampled minority class, 

which can be subsequently used to train a ML model (Fig. 1). 

3  Case studies

For testing the potential of LoRAS as an oversampling approach, we designed bench-

marking experiments with a total of 14 datasets which are either highly imbalanced, high 

dimensional or with a small number of data points. With this number of diverse case stud-

ies we should have a comprehensive idea of the advantages of LoRAS over the other over-

sampling algorithms of our interest.

3.1  Datasets used for validation

Here we provide a brief description of the datasets and the sources that we have used for 

our studies.

Scikit-learn imbalanced benchmark datasets The imblearn.datasets package is 

complementing the sklearn.datasets package. It provides 27 pre-processed datasets, 

which are imbalanced. The datasets span a large range of real-world problems from several 

fields such as business, computer science, biology, medicine, and technology. This collec-

tion of datasets was proposed in the imblearn.datasets python library by Lemaître 

et  al. (2017) and benchmarked by Ding (2011). Many of these datasets have been used 

in various research articles on oversampling approaches (Ding 2011; Saez et al. 2016). A 

statistically reliable benchmarking analysis of all 27 datasets in a stratified cross validation 

framework involves a lot of computational effort. We thus choose 11 datasets out of these 

two depending on two criteria:

• Highly imbalanced We choose datasets with imbalance ratio more than 25:1. This cat-

egory includes abalone_19, letter_image, mammography, ozone_level, webpage, wine_

quality, yeast_me2 datasets.

• High dimensional We choose the datasets with more than 100 features. This category 

includes arrhythmia, isolet, scene, webpage and yeast_ml8.

Note that the ������� dataset is common in both the criteria, giving us a total of 11 data-

sets. We choose these two categories because they are of special interest in research related 

to imbalanced datasets and have received extensive attention in this research area (Anand 

et al. 2010; Hooda et al. 2018; Jing et al. 2019; Blagus and Lusa 2013).
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Credit card fraud detection dataset We obtain the description of this dataset from the 

website. https ://www.kaggl e.com/mlg-ulb/credi tcard fraud . “The dataset contains transac-

tions made by credit cards in September 2013 by European cardholders. This dataset pre-

sents transactions that occurred in two days, where there are 492 frauds out of 284,807 

transactions. The dataset is highly unbalanced, the positive class (frauds) account for 

0.00172 percent of all transactions. The dataset contains only numerical input variables, 

which are the result of a PCA transformation. Feature variables f1,… , f28 are the prin-

cipal components obtained with PCA, the only features that have not been transformed 

with PCA are the ‘Time’ and ‘Amount’. The feature ‘Time’ contains the seconds elapsed 

(a) (b)

(c) (d)

Fig. 1  Visualization of the workflow demonstrating a step-by-step explanation for LoRAS oversampling. a 

Here, we show the parent data points of the minority class points C
min

 . For a data point p we choose three 

of the closest neighbors (using knn) to build a neighborhood of p, depicted as the box, b extracting the four 

data points in the closest neighborhood of p (including p), c drawing shadow points from a normal distribu-

tion, centered at these parent data point n, d we randomly choose three shadow points at a time to obtain a 

random affine combination of them (spanning a triangle). We finally generate a novel LoRAS sample point 

from the neighborhood of a single data point p 

https://www.kaggle.com/mlg-ulb/creditcardfraud
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between each transaction and the first transaction in the dataset. The feature ‘Amount’ con-

sists of the transaction amount. The labels are encoded in the ‘Class’ variable, which is the 

response variable and takes value 1 in case of fraud and 0 otherwise” (Pozzolo et al. 2017).

Small datasets We were also interested to check the performance of LoRAS on small 

datasets. We obtained two such datasets: ar1, ar3. Both of these datasets have very few data 

points and less than 10 points in the minority class.

Thus, in total we benchmark our oversampling algorithms against the existing algo-

rithms on a total of 14 datasets. We provide relevant statistics on these datasets in Table 2

3.2  Methodology

For every dataset we have analyzed, we used a consistent workflow. Given a dataset, for 

every machine learning model, we judge the model performances based on a 5 × 10-fold 

stratified cross validation framework. However, for the two small datasets ar1 and ar3 we 

use a 5 × 3-fold stratified cross validation framework, since there are less than 10 samples 

in the minority class. First we randomly scuffle the dataset. For a given dataset, we first 

split the dataset into tenfolds, each one distinct from the other maintaining the imbalance 

ratio for every fold. We then train the machine learning models on the dataset without any 

oversampling with tenfold cross validation. This means that we train and test the model 

10 times, each time considering a fold as a test fold and rest ninefolds as training folds. 

However, while training the ML models with oversampled data, we oversample only on the 

training folds and leave the test fold as they are for each training session. For each dataset 

we repeat the whole process five times to avoid the stochastic effects as much as possible.

For the oversampling algorithms, for a given dataset, we chose the same neighbourhood 

size for every oversampling model. If there were less than 100 data points in the minority 

class the neighbourhood size was chosen to be 5. Otherwise we chose a neighbourhood 

Table 2  Table showing some 

statistics for the datasets we 

study in this article

For each dataset, we mark in bold the feature of the dataset that led us 

to its choice for our study

Dataset Imbalance ratio Number of samples Number of 

features

Abalone_19 130:1 4177 10

Arrythmia 17:1 452 278

Isolet 12:1 7797 617

Letter-img 26:1 20,000 16

Mammography 42:1 11183 6

Scene 13:1 2407 294

Ozone_level 34:1 2536 72

Webpage 33:1 34,780 300

Wine-quality 26:1 4898 11

Yeast-me2 28:1 1484 8

Yeast-ml8 13:1 2417 103

Credit fraud 577:1 284,807 28

ar1 12.44:1 121 30

ar3 6.8:1 63 30
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size of 30. Given a large number of datasets we are analyzing, we did not customize this 

for every dataset and rather chose to stick to the above mentioned general rule. For LoRAS 

oversampling however, we performed a preliminary study to find out customized param-

eter values for every dataset, since the LoRAS algorithm is highly parametrized in nature. 

We tried several combinations of parameters �
aff

 , ��������� and ���������� employing 

random grid search. For our initial study involving the parameter optimization of LoRAS, 

given a dataset, we performed a simple train-test split of the dataset (1:1 train-test split 

ratio), and then applied LoRAS with parameter grids on the training data to oversample 

and test the classifier performances on the test data. The training set is kept relatively 

small, so that the classifier does not gain much experience on the data while parameter 

estimation and gets prone to overfitting. This study was kept completely independent from 

our main cross-validation based results so that the samples from the test sets of our cross 

validation have minimum effect on parameter tuning. For parameter �
aff

 the grid interval is 

[2, |F|], |F| being the number of features. We choose five numbers while forming a search 

grid from this interval. Three of them are randomly chosen and the numbers 2 and |F| are 

always included in this set of 5 numbers. For parameter ��������� we the grid values are 

the two possible entries that the parameter adopts. For the ���������� parameter, we used 

grid values [0.01, 0.1, 1, 10, 30, 100].

We emphasize here, that for all the algorithms including LoRAS, for a given dataset, 

we keep the neighbourhood size for every oversampling model fixed. For every oversam-

pling model that we considered, the neighbourhood size for the oversampling model is the 

parameter that the model is highly sensitive to, since it contributes the most in determin-

ing the distribution of the oversampled minority class. For LoRAS, there are three (out 

of seven parameters in total) parameters designed to better model/approximate the minor-

ity class data manifold (for example: the ones involving the t-SNE on the minority class), 

which are tuned to show the applicability of manifold approximation to improve convex 

combination based oversampling. However, as suggested, we keep all parameters related 

to the original distribution of the minority class, for all oversampling models fixed for all 

comparisons.

However, considering the philosophy of LoRAS and a comparatively large number of 

parameters it use, we take liberty to tune the other parameters for LoRAS, since the other 

parameters are the key to a proper approximation or modelling of the minority class data 

manifold, which we argue to be the key factor behind the success of LoRAS.

For LoRAS oversampling every dataset we use an unique value for �aff
 as presented in 

Table  3. For individual ML models we use different settings for the LoRAS parameters 

��������� and ���������� which we mention explicitly in our supplementary materials 

while presenting the results for each ML model for each dataset. To ensure fairness of com-

parison, we oversampled such that the total number of augmented samples generated from 

the minority class was as close as possible to the number of samples in the majority class 

as allowed by each oversampling algorithm. Speaking of other parameters of the LoRAS 

algorithm, for �
�
 , we chose a list consisting of a constant value of .005 for each dataset and 

for the parameter �
gen

 we chose the value as: 
|Cmaj|−|Cmin|

|Cmin|
 . We provide a detailed list of 

parameter settings used by us for the oversampling algorithms in Table 3.

To choose ML models for our study we first did a pilot study with ML classifiers 

such as k-nearest neighbors (knn), Support Vector Machine (svm) (linear kernel), Logis-

tic regression (lr), Random forest (rf), and Adaboost (ab). As inferred in Blagus and 

Lusa (2013) we found that knn was quite effective for the datasets we used. We also 

noticed that lr and svm performed better compared to rf and ab in most cases. We thus 



290 Machine Learning (2021) 110:279–301

1 3

chose knn, svm and lr for our final studies. We used lbfgs solver for our logistic regres-

sion model and a linear kernel for our svm models. For our knn models, we choose 10 

nearest neighbours for our prediction if there are less than 100 samples in the minor-

ity class and 30 nearest neighbours otherwise. For ‘arrhythmia’, ‘abalone-19’, ‘ar1’ and 

‘ar3’ however we use only 5 nearest neighbours for the knn model since it has only 

25, 32, 9 and 8 minority class samples respectively. We choose this parameter to be 

consistent to the neighbourhood size of the oversampling models, since the neighbour-

hood size directly influences the distribution of the training data and hence the model 

performance.

In our analysis we take special notice of the credit card fraud detection dataset. This 

dataset is not included in the imblearn.datasets Python library. However, the main 

reason why we want to pay a special attention to this dataset is that, it is by far the most 

imbalanced publicly available dataset that we have come across. The extreme imbalance 

ratio of 577:1 is incomparable to any of the datasets in imblearn.datasets. Also, this 

dataset has received special attention of researchers attempting to use ML in Credit fraud 

detection (Varmedja et al. 2019). In this article we see that lr and rf have good prediction 

accuracies on the dataset. Thus we chose these two ML models for the credit fraud dataset. 

Varmedja et al. (2019) has also not provided cross validated analysis of their models, while 

our models have been trained and tested with the usual tenfold cross validation framework 

as discussed before. Also, for two small datasets with a critically small minority class, we 

used only knn and lr classifiers, with parameter settings as specified before. The reason 

is, for all the 12 other datasets, svm did not stand out to be the best performer in terms of 

F1-Score in any of them.

For computational coding, we used the scikit-learn (V 0.21.2), numpy (V 

1.16.4),  pandas (V 0.24.2), and matplotlib (V 3.1.0) libraries in 

Python (V 3.7.4).

Table 3  In this table we present 

the details of parameter settings 

for the oversampling algorithms 

used by us for our experiment

The second column is the size of the oversampling neighbourhood and 

we have chosen the same size for all the oversampling models for each 

dataset in our analysis

The last three columns are specific to LoRAS parameters

Dataset Minority 

samples

Oversampling 

nbd

LoRAS �
aff

Abalone19 32 5 10

Arrythmia 25 5 100

Isolet 600 30 179

Letter-img 734 30 16

Mammography 260 30 6

Scene 177 30 2

Ozone_level 73 5 10

Webpage 981 30 94

Wine-quality 183 30 2

Yeast-me2 51 5 2

Yeast-ml8 178 30 3

Credit fraud 492 30 30

ar1 9 3 30

ar3 8 3 10
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4  Results

For imbalanced datasets there are more meaningful performance measures than Accuracy, 

including Sensitivity or Recall, Precision, and F1-Score (F-Measure), and Balanced accu-

racy that can all be derived from the Confusion Matrix, generated while testing the model. 

For a given class, the different combinations of recall and precision have the following 

meanings:

• High Precision & High Recall: The model handled the classification task properly

• High Precision & Low Recall: The model cannot classify the data points of the particu-

lar class properly, but is highly reliable when it does so

• Low Precision & High Recall: The model classifies the data points of the particular 

class well, but misclassifies high number of data points from other classes as the class 

in consideration

• Low Precision & Low Recall: The model handled the classification task poorly

F1-Score, calculated as the harmonic mean of precision and recall and, therefore, bal-

ances a model in terms of precision and recall. These measures have been defined and 

discussed thoroughly by Elrahman and Abraham (2013). Balanced accuracy is the mean 

of the individual class accuracies and in this context, it is more informative than the usual 

accuracy score. High Balanced accuracy ensures that the ML algorithm learns adequately 

for each individual class.

In our experiments we have noticed an interesting behaviour of oversampling models 

in terms of their average F1-Score and Balanced accuracy. Once we present our experi-

ment results, we will discuss why considering F1-Score and Balanced accuracy can give 

us a clearer idea about model performances. We will use the above mentioned performance 

measures wherever applicable in this article.

Selected model performances for all datasets We provide the detailed results of our 

experiments for all machine learning models as supplementary material. To be precise, 

for every combination of datasets, ML models and oversampling strategies we provide the 

mean and variance of the tenfold cross validation process over 5 repetitions. For judging 

the performance of the oversampling models we follow the following scheme:

• First, for a given dataset, we choose the ML model trained on that dataset that provides 

the highest average F1-Score over all the oversampling models and training without 

oversampling. The F1-Score reflects the balance between precision and recall and con-

sidered as a reliable metric for imbalanced classification task.

• We then consider the Balanced accuracy and F1- score of the chosen model as an evalu-

ation of how well the oversampling model performs on the considered dataset. Follow-

ing this evaluation scheme we present our results in Table 4.

Calculating average performances over all datasets, LoRAS has the best Balanced accu-

racy and F1-Score. As expected, SMOTE improved Balanced accuracy compared to model 

training without any oversampling. Surprisingly, it lags behind in F1-Score, for quite a few 

datasets with high baseline F1-Score such as letter_image, isolet, mammography, webpage 

and credit fraud. Interestingly, the oversampling approaches SVM-SMOTE and Border-

line1 SMOTE also improved the average F1-Score compared to SMOTE, but compromised 
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for a lower Balanced accuracy. On the other hand, applying ADASYN increased the Bal-

anced accuracy compared to SMOTE, but again compromises on the F1-Score. In contrast, 

our LoRAS approach produces the best Balanced accuracy on average by maintaining the 

highest average F1-Score among all oversampling techniques. We want to emphasize that, 

even considering stochastic factors, LoRAS can improve both the Balanced accuracy and 

F1-Score of ML models significantly compared to SMOTE, which makes it unique.

Datasets with high imbalance ratio To verify the performance of LoRAS on highly 

imbalanced datasets we present average of the selected model performances for the data-

sets with highest imbalance ratios (among the ones we have tested) in Table 5.

From our results we observe that LoRAS oversampling can significantly improve model 

performances for highly imbalanced datasets. LoRAS provides the highest F1-Score 

and Balanced accuracy among all the oversampling models. The results here show simi-

lar properties for SMOTE, Borderline-1 SMOTE, SVM SMOTE, ADASYN and LoRAS 

Table 4  Table showing balanced accuracy/F1-score for several oversampling strategies (Baseline, SMOTE, 

SVM-SMOTE, Borderline1 SMOTE, Borderline2 SMOTE, ADASYN and LoRAS column-wise respec-

tively) for all 14 datasets of interest for ML learning models producing best average F1 score over all over-

sampling strategies and baseline training for respective datasets

The bold values in the table denote the oversampling model that leads to the best classifier performance for 

each dataset

Dataset ML Baseline SMOTE Bl-1 Bl-2 SVM ADASYN LoRAS

Abalone19 knn .534/.000 .644/.054 .552/.044 .552/.044 .556/.045 .571/.055 .675/.059

Arrythmia lr .679/.37 .666/.345 .672/.352 .709/.307 .679/.350 .667/.362 .694/.380

Isolet lr .900/.826 .898/.806 .899/.802 .906/.693 .911/.799 .898/.806 .904/.809

Letter-img knn .927/.915 .988/.781 .984/.768 .977/.687 .986/.724 .985/.732 .989/.833

Mammography knn .703/.549 .911/.413 .909/.414 .899/.326 .909/.467 .905/.353 .896/.511

Scene lr .551/.168 .616/.222 .619/.230 .620/.223 .616/.235 .620/.224 .616/.226

Ozone_level lr .517/.062 .800/.190 .777/.212 .781/.183 .738/.215 .803/.192 .809/.207

Webpage knn .805/.711 .906/.267 .901/.274 .903/.287 .904/.267 .903/.264 .923/.613

Wine-quality lr .517/.067 .718/.179 .715/.182 .711/.171 .712/.216 .721/.180 .734/.197

Yeast-ml8 knn .500/.000 .558/.152 .561/.153 .563/.153 .572/.158 .558/.151 .559/.152

Yeast-me2 knn .523/.074 .834/.331 .797/.373 .79/.304 .785/.388 .825/.315 .842/.354

Credit fraud rf .669/.775 .922/.359 .919/.645 .919/.556 .913/.741 ..923/.350 .904/.820

ar1 knn .340/.071 .561/.306 .549/.298 .594/.338 .550/.324 .583/.320 .563/.349

ar3 rf .634/.259 .810/.531 .809/.584 .819/.582 .755/.479 781/.457 .823/.563

Average – .636/.338 .775/.352 .764/.380 .771/.346 .759/.386 .777/.340 .783/.433

Average rank – 6.53/4.64 3.57/4.75 4.35/3.46 3.39/5.10 4.07/3.17 3.5/4.71 2.57/2.14

Table 5  Table showing the average balanced accuracy/F1-score of the selected models for datasets with the 

highest imbalance ratios and high dimensional datasets separately

The bold values in the table denote the oversampling model that leads to the best classifier performance for 

each dataset

Average Baseline SMOTE Bl-1 Bl-2 SVM ADASYN LoRAS

Highly imbalanced 

datasets

.662/.381 .840/.321 .819/.364 .817/.319 .814/.382 .841/.305 .846/.449

High dimensional datasets .687/.415 .728/.358 .730/.362 .740/.332 .736/.361 .729/.361 .739/.436
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as discussed before. Note that, for the credit fraud dataset, which is the most imbalanced 

among all, LoRAS has significant success over the other oversampling models in terms of 

Balanced accuracy. For the webpage dataset as well it improves the Balanced accuracy sig-

nificantly, compromising minimally on the baseline F1-Score. The same trend follows for 

the letter_image dataset. Notably, these three datasets have the highest number of overall 

samples as well, implying that with more data LoRAS can significantly outperform com-

pared convex combination based oversampling models.

High dimensional datasets It is also of interest to us to check how LoRAS performs on 

high dimensional datasets. We therefore select five datasets with highest number of fea-

tures among our tested datasets and present the performances of the selected ML methods 

in Table 5 From our results for high dimensional datasets, we observe that LoRAS produces 

the best F1-Score and second best Balanced accuracy on average among all oversampling 

models as Borderline-2 SMOTE beats LoRAS marginally. SMOTE improves both Balanced 

accuracy with respect to the baseline score here. Borderline-1 SMOTE and SVM SMOTE 

further increases SMOTE’s performance both in terms of F1-Score and Balanced accuracy. 

Borderline-2 SMOTE, although improves the Balanced accuracy of SMOTE compromises 

on the F1-Score. Note that, even excluding the webpage dataset, where LoRAS has an over-

whelming success, LoRAS still has the best average F1-Score and third highest Balanced 

accuracy marginally behind SVM-SMOTE and Borederline-2 SMOTE. We thus conclude, 

that for high dimensional datasets LoRAS can outperform the compared oversampling mod-

els in terms of F1-Score, while compromising marginally for Balanced accuracy.

Small datasets For the two small datasets (with less than 10 samples in minority class) 

we have explored, we observed that LoRAS performs reasonably well. For the ‘ar1’, 

LoRAS produces the best F1-Score and third best Balanced accuracy.For the ‘ar2’ data-

set LoRAS produces the best Balanced accuracy and the third best F1-Score. Note that 

LoRAS performs quite well for the ‘abalone’ and ‘arrhythmia’ datasets, which also have a 

small number of data points in the minority class.

Statistical analysis Following Tarawneh et al. (2020), we use the Wilcoxon’s signed rank 

test to compare LoRAS against the other convex-combination based oversampling algo-

rithms, in terms of both the performance measures we have used: F1-Score and Balanced 

accuracy. Tarawneh et al. (2020) chose this test for comparative studies since it is safer than 

parametric tests as it refrains from assuming homogeneity or normal distribution of data. 

Therefore, it can be applied to any classifier evaluation measure. Tarawneh et al. (2020) fur-

ther confirms: ‘The Wilcoxon test aims to find if a null hypothesis is true or not. The null 

hypothesis H0
 assumes that there is no significant difference between the classification results 

(observations) obtained from two different methods. We assume that the null hypothesis is 

rejected if the p-value of the Wilcoxon test is less than � = 0.05’(Tarawneh et al. 2020).

From Table  6 we observe that the p-values for all the paired tests are less than 0.05 

for the F1-Score, and therefore, the H
0
 is rejected for all the paired tests in case of the 

F1-Score. Thus, the F1-Scores LoRAS produce have a big enough difference compared 

Table 6  Table showing p-values for comparison of LoRAS against the other oversampling algorithms, in 

terms of both the performance measures we have used: F1-score and balanced accuracy

Measure Baseline SMOTE Bl-1 Bl-2 SVM ADASYN

F1-Score 0.0303 0.0009 0.0479 0.0035 0.0479 0.0009

Balanced accuracy 0.0009 0.0354 0.0258 0.5095 0.0382 0.1670
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to the other compared algorithms, to be statistically significant. For Balanced accuracy, 

the algorithms Borderline-2 SMOTE and ADASYN do not show significant statistical dif-

ference to LoRAS. However, since F1-Score is a more reliable and widely used metric for 

imbalanced datasets, we conclude that overall results generated by LoRAS are significantly 

different from the compared oversampling algorithms.

Tarawneh et al. (2020) also remarks that the p-value alone is informative enough and 

does not provide information about the relationship strength between variables. The p-val-

ues do not reveal whether the results are significantly different in favour of LoRAS or 

against LoRAS. For that following Tarawneh et al. (2020) we use the metrics W
+
 , W

−

 and 

R. These are calculated using the following steps:

• For each data pair (involving LoRAS and some other oversampling algorithm) of 

model predictions , the difference between both predictions is calculated and stored in a 

vector D, excluding the zero difference values.

• The signs of the difference is recorded in a sign vector S.

• The entries in |D| are ranked, forming a vector R
′ . In case of tied ranks, an average 

ranking scheme is adopted. This means, after ranking the entries of |D| are ranked using 

integers and then, in case of tied entries the average of the integer ranks are considered 

as the average rank for all the respective tied entries with a specific tied value.

• Component-wise product of S and R
′ provides us with the vector W, the vector of 

the signed ranks. The sum of absolute values of the positive entries in W is W
+
 and 

the sum of absolute values of the negative entries in W is W
−

 . After this we define, 

W
R
= min{W+, W−}

• Then the test statistic Z is calculated by the equation 

 where n is the number of components in D and t is the number of times some i-th entry 

occurs in R′ , summed over all such repeated instances.

• Finally R is calculated using R =
�Z�√

N

 , where N is the total number of datasets com-

pared, which is 14 in our case.

Note that a higher value W
+
 for LoRAS indicates towards a superior performance of 

LoRAS and the value of R indicates towards how superior(with a higher W
+
 )/ inferior(with 

a higher W
−

 ) the performance of LoRAS is, compared to the other oversampling model for 

the tested datasets. Tarawneh et al. (2020) have considered ranges of R ≤ 0.1 , 0.1 < R ≤ 0.5 

and R > 0.5 to be indicators for small, medium and high degree of change (improvement or 

deterioration) in the predictive performance respectively.

From Table 7 we note that, LoRAS has a higher W
+
 value for both F1 Score and Bal-

anced accuracy in comparison to each of the other convex combination based oversam-

pling methods in consideration. Moreover for the F1 Score measure, the R value is also 

more than 0.5, indicating a high degree of improvement in F1-Score for LoRAS, over the 

considered oversampling models. Similarly, for Balanced accuracy, we find high degree of 

improvement for LoRAS, over all considered oversampling models except the Borderline-2 

SMOTE, for which there is a medium degree of improvement. Overall, we thus conclude 

(1)Z =
W

R
−

n(n+1)

4
√

n(n+1)(2n+1)

24
−

Σt3−Σt

48
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that LoRAS provides a significant improvement in performance over the compared convex 

combination based oversampling methods.

5  Discussion

We have constructed a mathematical framework to prove that LoRAS is a more effective 

oversampling technique since it provides a better estimate for the mean of the underly-

ing local data distribution of the minority class data space. Let X = (X1,… , X|F|) ∈ Cmin 

be an arbitrary minority class sample. Let NX

k
 be the set of the k-nearest neighbors of X, 

which will consider the neighborhood of X. Both SMOTE and LoRAS focus on generat-

ing augmented samples within the neighborhood N
X

k
 at a time. We assume that a ran-

dom variable X ∈ N
X

k
 follows a shifted t-distribution with k degrees of freedom, location 

parameter � , and scaling parameter � . Note that here � is not referring to the standard 

deviation but sets the overall scaling of the distribution (Simon 2009), which we choose 

to be the sample variance in the neighborhood of X. A shifted t-distribution is used to 

estimate population parameters, if there are less number of samples (usually, ≤ 30) and/

or the population variance is unknown. Since in SMOTE or LoRAS we generate sam-

ples from a small neighborhood, we can argue in favour of our assumption that locally, 

a minority class sample X as a random variable, follows a t-distribution. Following Bla-

gus and Lusa (2013), we assume that if X, X
�
∈ N

X

k
 then X and X′ are independent. For 

X, X
�
∈ N

X

k
 , we also assume:

where, �[X] and Var[X] denote the expectation and variance of the random variable X 

respectively. However, the mean has to be estimated by an estimator statistic (i.e. a function 

of the samples). Both SMOTE and LoRAS can be considered as an estimator statistic for 

the mean of the t-distribution that X ∈ C
min

 follows locally.

Theorem 1 Both SMOTE and LoRAS are unbiased estimators of the mean � of the t-dis-

tribution that X follows locally. However, the variance of the LoRAS estimator is less than 

the variance of SMOTE given that |F| > 2.

Proof A shadowsample S is a random variable S = X + B where X ∈ N
X

k
 , the neighbor-

hood of some arbitrary X ∈ C
min

 and B follows N(0, �
B
).

(2)

�[X] = �[X�]

= � = (�1,… ,�|F|)

Var[X] = Var[X�]

= �
2

(
k

k − 2

)

= �
�2 = (��2

1
,… , �

�2

|F|)

Table 7  Table showing W
+
/W

−

 /R for comparison of LoRAS against the other oversampling algorithms, in 

terms of both the performance measures we have used: F1-score and balanced accuracy

Measure Baseline SMOTE Bl-1 Bl-2 SVM ADASYN

F1-score 95/10/.713 105/0/.880 90/15/.629 102/3/.830 80/15/.629 105/0/.880

Balanced accuracy 105/0/.880 102/3/.830 95/10/.715 69/36/.286 95/10/.722 95/10/.837
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assuming S and B are independent. Now, a LoRAS sample L = �
1
S

1
+⋯ + �|F|S

|F| , where 

S
1,… , S

|F| are shadowsamples generated from the elements of the neighborhood of X, NX

k
 , 

such that �
1
+⋯ + �|F| = 1 . The affine combination coefficients �1,… , �|F| follow a Dir-

ichlet distribution with all concentration parameters assuming equal values of 1 (assuming 

all features to be equally important). For arbitrary i, j ∈ {1,… , |F|},

where Cov(A, B) denotes the covariance of two random variables A and B. Assuming � and 

S to be independent,

Thus L is an unbiased estimator of � . For j, k, l ∈ {1,… , |F|},

since �
k
�

l
 is independent of Sk

j
Sl

j
 . For an arbitrary j, j-th component of a LoRAS sample Lj

For LoRAS, we take an affine combination of |F| shadowsamples and SMOTE considers 

an affine combination of two minority class samples. Note, that since a SMOTE generated 

oversample can be interpreted as a random affine combination of two minority class sam-

ples, we can consider, |F| = 2 for SMOTE, independent of the number of features. Also, 

from Eq. 4, this implies that SMOTE is an unbiased estimator of the mean of the local data 

distribution. Thus, the variance of a SMOTE generated sample as an estimator of � would 

(3)

�[S] = �[X] + �[B]

= �

Var[S] = Var[X] + Var[B]

= �
�2 + �

2

B

�[�i] =
1

|F|

Var[�i] =
|F| − 1

|F|2(|F| + 1)

Cov(�i, �j) =
−1

|F|2(|F| + 1)

(4)�[L] = �[�
1
]�[S1] +⋯ + �[�|F|]�[S

|F|] = �

(5)

Cov[�kSk
j
, �lS

l
j
] = �[�kSk

j
�lS

l
j
] − �[�kSk

j
]�[�lS

l
j
]

= �[�k�l]�
2

j
−

�
2

j

|F|2

=

[
Cov(�k, �l) +

1

|F|2
]
�

2

j
−

�
2

j

|F|2
= �

2

j
Cov(�k, �l)

(6)

Var(Lj) = Var(�1S1

j
+⋯ + �|F|S

|F|

j
)

= Var(�1S1

j
) +⋯ + Var(�|F|S

|F|

j
) + Σ

|F|

k=1
Σ
|F|

l=1,l≠k
Cov(�kSk

j
, �lS

l
j
)

=
�

2

j
(|F| − 1) + 2(��2

j
+ �

2

Bj
)|F|

|F|(|F| + 1)
−

�
2

j
(|F| − 1)

|F|(|F| + 1)

=
2(��2

j
+ �

2

Bj
)

(|F| + 1)
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be 
2�

′2

3
 (since B = 0 for SMOTE). But for LoRAS as an estimator of � , when |F| > 2 , the 

variance would be less than that of SMOTE.   ◻

This implies that, locally, LoRAS can estimate the mean of the underlying t-distri-

bution better than SMOTE. To visualize the key aspects of LoRAS oversampling, we 

provide the PCA plots for oversampled data from the ozone_level dataset several over-

sampling methods we have studied in Fig. 2. From Fig. 2 we can observe that SMOTE 

and ADASYN oversamples highly on the neighbourhood of the outliers, depicted by a 

blue box in each subplot. While this is somewhat controlled in Borderline1-SMOTE 

and SVM SMOTE, they still generate some synthetic samples in this neighbourhood. 

LoRAS on the other hand refrains, leveraging on its strategy to produce a better esti-

mate for local mean of the underlying local data distribution. This enables LoRAS to 

ignore the outliers and to oversample more uniformly resulting in a better approxima-

tion of the data manifold. Note that, the average F1-Scores of the oversampling models 

as presented in Table 4 has a direct correlation to how the oversampling strategy over-

samples in this neighbourhood. SMOTE and ADASYN generates the lowest F1-Scores 

and show a tendency of oversampling excessively from this neighbourhood. Borderline-

SMOTE and SVM improves the F1-Score compared to SMOTE and ADASYN, again, 

Fig. 2  Figure showing for principal component analysis plot of ozone dataset for baseline data and over-

sampled data with several oversampling strategies for the ozone_level dataset. The boxed region in each 

subplot shows a neighbourhood of outliers and how each oversampling stategy generates synthetic samples 

in that neighbourhood
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consistent to their behaviour of oversampling lesser in this neighbourhood. LoRAS, has 

the highest average F1-Score and oversampling very sparsely from this neighbourhood.

6  Conclusions

Oversampling with LoRAS produces comparatively balanced ML model performances 

on average, in terms of Balanced Accuracy and F1-Score among the compared convex-

combination strategy based oversampling techniques. This is due to the fact that, in most 

cases LoRAS produces lesser misclassifications on the majority class with a reasonably 

small compromise for misclassifications on the minority class. From our study we infer 

that for tabular high dimensional and highly imbalanced datasets our LoRAS oversampling 

approach can better estimate the mean of the underlying local distribution for a minority 

class sample (considering it a random variable) and can improve Balanced accuracy and 

F1-Score of ML classification models. However, the scope of such convex combination 

based strategies including LoRAS, might be limited for heterogeneous image based imbal-

anced datasets.

The distribution of both the minority and majority class data points is considered in 

the oversampling techniques such as Borderline1 SMOTE, Borderline2 SMOTE, SVM-

SMOTE, and ADASYN (Gosain and Sardana 2017). SMOTE and LoRAS are the only two 

techniques, among the oversampling techniques we explored, that deal with the problem of 

imbalance just by generating new data points, independent of the distribution of the major-

ity class data points. Thus, comparing LoRAS and SMOTE gives a fair impression about 

the performance of our novel LoRAS algorithm as an oversampling technique, without 

considering any aspect of the distributions of the minority and majority class data points 

and relying just on resampling. Other extensions of SMOTE such as Borderline1 SMOTE, 

Borderline2 SMOTE, SVM-SMOTE, and ADASYN can also be built on the principle of 

LoRAS oversampling strategy. According to our analyses LoRAS already reveals great 

potential on a broad variety of applications and evolves as a true alternative to SMOTE, 

while processing highly unbalanced datasets.
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