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Abstract—Nowadays, the flexible localization solution for
various devices for workplace safety is one of the most
demanding research questions. Notably, it is expected to
provide an acceptable level of precision in different types
of environments empowered by wearable technology and
Internet-of-Things (loT) devices. Existing leading localization
technologies are adapted for certain conditions, for exam-
ple, Wi-Fi, Bluetooth low energy (BLE), and ultra-wideband
(UWB) are used for indoor areas and various global nav-
igation satellite system (GNSS)-based ones for outdoors.
This work focuses on investigating the long-range wide-area
network (LoRaWAN) (868-MHz band) as a potential candi-
date to bridge this gap, being one of the most reliable and
recognized communication technologies for the Industrial
loT (lloT). In the past, the research community had a lot
of critics with respect to the applicability of LoRaWAN for
localization, while the vision is facing tremendous change
over the past two years. The purpose of this work is to assess
the feasibility of LoRaWAN as a localization solution for work
safety applications in the industrial scenario from different
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angles. The work is based on two measurement campaigns conducted at the Brno University of Technology (BUT),
Brno, Czech Republic, and the University Politechnica of Bucharest (UPB), Bucharest, Romania. The campaigns cover
both indoor and outdoor scenarios and provide the practical limitations of the positioning in standalone and k-nearest
neighbors (k-NN) powered localization systems. According to the results, LoRaWAN-based localization with relatively
dense gateways (GWs) deployment allows for achieving a meter-level accuracy, which may be suitable for the localization

of workers.

Index Terms— Error analysis, Industrial Internet of Things (lloT), Industry 4.0, Internet of Things (loT), localization,
long-range wide-area network (LoRaWAN), measurement error, position measurement, wearables.

|. INTRODUCTION
OWADAYS, improving the localization accuracy ensured

by various Internet-of-Things (IoT) devices remains one
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of the top research questions when talking about industries,
especially hazardous and hard-to-reach worksites with het-
erogeneous environment [1], [2]. Existing flagship solutions
applied for both indoor [e.g., Wi-Fi, Bluetooth low energy
(BLE), ultra-wideband (UWB)], and outdoor [e.g., Global
Navigation Satellite System (GNSS)] localization are not
flexible enough for such cases since they are focused primarily
on one environment [3], [4].

At the same time, numerous life scenarios that demand
both indoor and outdoor location detection, for example,
construction and logistics worksites [5], [6], [7], are interested
in a flexible solution to reduce the deployment and compati-
bility costs. Thus, a hybrid localization technology meeting
the requirements of wearable devices (power consumption,
dimensions, computational complexity, etc.) and at the same
time handling different types of environments is an active
research area.

Long-range wide-area network (LoRaWAN) technology,
a verified communication solution for the IoT world and
widely deployed in many industrial scenarios, could be
a potential candidate to fulfill this research gap [8], [9].
Naturally, it has several characteristics that are attractive for
the flexible, outdoor—indoor, localization of wearable devices.

For more information, see https://creativecommons.org/licenses/by/4.0/
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Sub-GHz band: LoRaWAN technology under consideration
operates on a lower frequency than current leaders in indoor
localization, such as Wi-Fi, BLE, and UWB. First of all,
it decreases the probability of interference (compared to
technologies operating in the 2.4-GHz band), and, second,
it defines better penetration ability, that is, higher resilience
to the scatter-rich indoor environment [10], [11]. The better
penetration ability plays an important role in the localization
in the underground/hazardous environment. LoRa modulation:
Chirp Spread Spectrum (CSS) modulation entails a higher
resistance to multipath propagation [12]. In conjunction with
better penetration ability, LoORaWAN technology is more stable
in the indoor environment. Low energy consumption: when
talking about wearable devices, energy consumption is one of
the most crucial points. LoRaWAN technology is a low-power
solution developed specifically for IoT devices, while one of
the most popular solutions in outdoor/indoor environments,
GNSS and Wi-Fi, respectively, are not the best choice for
wearable devices from this perspective.

Nonetheless, LoRaWAN technology is considered a cost-
effective solution: due to the low cost of the module, the
infrastructure can be easily scalable, which allows commu-
nication in the conditions of large worksites like construction.

More and more papers are now being published related
to the use of LoORaWAN as a leading communication tech-
nology for wearable applications that help keep workers
safe [13], [14]. Notably, the research community does not pos-
tulate that the localization system would work solely based on
LoRaWAN but rather be supplemented by it when necessary
as the state-of-the-art proves that the localization accuracy
obtained with LoRaWAN is quite low (to be discussed in
Section II). If it were possible to improve precision using
supplementary preprocessing of data and Machine Learning
(ML) algorithms, we would have a low-cost, low-power,
wide-range solution, ensuring high positioning accuracy for
the IIoT.

This work investigates the following questions.

RQI: What is the LoRaWAN localization accuracy for
outdoor/indoor above-ground/underground scenarios?

RQ2: Which localization approach is more suitable for
estimating the LoRaWAN-based accuracy?

RQO3: How does LoRaWAN-based localization accuracy
depend on the number of gateways (GWs) used?

RQ4: Is it possible to use LoRaWAN for localization
performed by industrial wearables?

One of the core contributions of this work is two
open-access datasets collected during two measurement cam-
paigns conducted in Brno, Czech Republic, and Bucharest,
Romania, to address the above questions [15]. Presenting
LoRaWAN datasets for different environments, calculating
localization accuracy, and reviewing their dependency on the
number of equipment and ML algorithms used, this article
does not aim at discussing the possibility to increase precision,
using the specifics of the LoORaWAN PHY Ilayer.

The rest of the article is organized as follows. Section II
highlights the current state of affairs in the field under
study and specifies the relevance of this work. Section III

reveals the measurement campaign procedure: equipment used,
order, characteristics, and possible complications. Section IV
describes the localization approach used to estimate the local-
ization accuracy in this work. Next, Sections V and VI provide
detailed results of measurement campaigns conducted in the
Brno University of Technology (BUT), Brno, Czech Republic,
and University Politechnica of Bucharest (UPB), Bucharest,
Romania, consequently: parameters, statistical analysis, and
mean errors. Furthermore, Section VII summarizes the depen-
dence of localization accuracy on the number of GW. Finally,
Section VIII is a discussion of the questions stated for this
article, which also contains the conclusion and future work.

Il. RELATED WORK

LoRaWAN technology is a proven communication solution
for the IoT world. It is being extensively utilized for smart
city applications [16], [17], smart homes [18], and different
monitoring tasks such as health, agriculture, traffic, wellbeing,
and so on [19]. Recently, LoRa was even named as a possible
solution for future lunar communications [20]. However, its
application as a localization solution is still in its infancy.
Currently, the literature is still lacking the discussion in this
research direction with only a few works [21], [22] or open
datasets encouraging researchers [23], [24].

One of the most well-known works by Aernouts et al. [23]
investigated the outdoor fingerprinting dataset collected using
LoRaWAN in Antwerp using 68 GWs. The mean error
achieved is 398.4 m using k-nearest neighbors (k-NN) with
k = 11. The thesis work [25] applied to this dataset
an approach based on Artificial Neural Networks (ANNs)
with Multilayer Perception (MLP) architecture. The obtained
results showed a mean error of 381.8 m. Published in the
same year, the paper [26] tested different types of finger-
printing methods on this dataset and improved this result by
41 m using a similar neural network approach. One of the
most recent works [27] presents a comprehensive review of
Received Signal Strength (RSS)-based localization approaches
that can be used in the case of LoRaWAN and compares
range-based localization and fingerprint-based localization for
the Aernouts dataset, reporting a mean error of 700 and 340 m,
respectively. Another recent work [28] achieved a mean error
of 322.6 m with the same dataset by using not just RSS, but
also timestamps to prepare the data before applying the k-NN
algorithm with Random Forest Regressor (RFR).

Moreover, some works performed measurement campaigns
to create fingerprinting datasets to estimate LoRaWAN-based
localization accuracy in relatively small outdoor regions [21],
[29]. Despite incremental improvements from article to article
in terms of precision, the reported accuracy remains low,
for example, one of the first works [30] explored TDOA
multilateration for the area 2 x 3 km with four GWs and
achieved an accuracy of around 100 m. Choi et al. [29]
conducted measurement in open 340 x 340 m outdoor area
using four GWs. They applied the fingerprinting approach to
the interpolated RSS Indicator (RSSI) maps and obtained the
smallest mean error of 24.1 m.
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TABLE |
STATE-OF-THE-ART: LoORaWAN-BASED LOCALIZATION
Dataset Approach Mean error, | Median |Ref. | Year
m error, m
Outdoor (NLoS), k-NN fingerprinting with k=11 398.4 273.0 |[23]]2018
Antwerp, 53 km?, ANN with MLP architecture 381.8 260.9 |[25]]|2019
68 GWs NN with MLP 357 206 [261] 2019
Range-based localization: E-min-max algorithm with Okumura-Hata model 700 528 [271] 2020
Weighted k-NN, Random Forest (RF) 340 N/A [27]1] 2020
k-NN with Random Forest Regressor (RFR) applied to the hybrid dataset 322.6 193.6 [[28]]2020
that contains RSS and TDOA values
Two-layer localization system with K-Means clustering of the area; 346 158.4 [[34]] 2021
determining of the most possible location area of the object; improvement
by spatial kernel-based fingerprinting and weighted regression
Outdoor (NLoS), Brno, k-NN fingerprinting with k=2 1280 N/A [35]| 2022
111 km?2, 22 GWs
Outdoor (NLoS), TDOA multilateration 100 N/A [30]| 2017
2km x 3km, 4 GWs
Outdoor (LoS), Fingerprinting algorithm applied to generated RSS maps, which were 24.1 N/A [29]1]| 2018
340m x 340m, 4 GWs interpolated using radial basis function (RBF) method
Outdoor (NLoS), k-NN fingerprinting with k=3 6.4 N/A [36]| 2022
8.5m x T0m, 7 GWs
Indoor (LoS), 1 MP, 3 GW RSSI trilateration 2.7 N/A [31]1|2018
Indoor (LoS), 28m line, RSSI fingerprinting 4.55 N/A [32]| 2019
1GW
Indoor (LoS/NLoS), Fingerprinting algorithm based on BAE that has been applied to the ERSS sub-10 N/A [33]| 2020
50m x 1000m, 3 GWs radio map
Indoor (LoS/NLoS), Collecting for each of 5 tags in the apartment 400 RSSI readings and LoS: 1.6 m N/A [12]| 2021
114.4 m?2, 3 GWs further trilateration using least square estimation (LSE) method NLoS: 3.1 m

The literature offers fewer published works when it comes
to the indoor environment. It could be explained by the
fact that one of the main advantages of LoRaWAN is long-
range coverage, which automatically associates it with the
outdoor environment. The initial idea behind the technol-
ogy was to use fewer GWs to cover large zones. At the
same time, to perform indoor localization, we need to
ignore this benefit and use several GWs for relatively small
areas.

However, some researchers see the potential for LoORaWAN-
based localization in the indoor environment and actively
explore this field, presenting promising results.

One of the most well-known papers [31] presents a compar-
ative study of several technologies, Wi-Fi, BLE, ZigBee, and
LoRaWAN, for indoor localization. The experiment included
three GWs and one measurement point (MP); trilateration
was chosen as a localization approach. LoORaWAN showed
a 2.7-m mean error for a 5-m distance between the GWs,
slightly less than other scenarios. However, the authors pointed
out other undeniable advantages of LoRaWAN, already men-
tioned here, long-range coverage and better penetration ability,
which can bring it forward in real scenarios. The work [32]
investigated LoRaWAN-based localization for both indoor
and outdoor environments, using RSSI fingerprinting (met-
ric: Euclidean distance). The best-reported accuracy for the
indoor environment is 4.55 m. Zhu et al. [33] presented
the mean localization error of sub-10 m for an open space
indoor area of 50 x 100 m by building a less vulnerable
fingerprinting map based on extreme RSSI (ERSSI) and
proposing Boundary Autocorrelation (BAE) for comparison
online data with the stored one. One of the most recent
works [12] reviews LoRaWAN for smart home localiza-
tion and declares a precision of 1.6 m in the case of the

Line-of-Sight (LoS) and a precision of 3.1 m in the case of
non-LoS (NLoS).

The promising results presented in Table I show that the
application of LoRaWAN technology as a localization solution
is a very hot topic for research activities. They give a good
basis for this work, which focuses more on the multienviron-
ment and the question of the possibility to perform seamless
localization using LoRaWAN. The current paper considers the
investigation of LoRaWAN-based localization for industrial
wearables for work safety that envisages a nonideal changing
scenario. The main contribution of this work lies in test-
ing the flexibility of technology to switch between different
types of environments: indoor, above-ground/underground, and
outdoor. In addition, this work explores the dependency of
localization accuracy on the number of GWs used in the
measurement campaign and attempts to set the optimal number
of GWs for particular scenarios.

[1l. MEASUREMENT CAMPAIGN
PROCEDURE AND LIMITATIONS
To address the questions stated in the introduction and
to have more consistent results, two similar measurement
campaigns were organized in BUT and UPB. Several scenarios
were explored to cover the most typical environments for
the localization task: indoor above-ground (iAG), outdoor,
and indoor underground (iUG). Data were collected using
different spreading factors (SFs). Considered scenarios and
their parameters are presented in Table II. We would like
to highlight that by “environment,” this article means indoor
aboveground, indoor underground, and outdoor. “Scenario”
corresponds to different parameters of the measurement cam-
paign with respect to GW setup, measurement place, and the
system of coordinates.
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TABLE Il
INVESTIGATED SCENARIOS

Campaign | Measurement area | Equipment location | MPs | Spacing, m SFs GWs | Environment
BUT Building Building 203 1 7,9,10,12| 7 iAG
BUT Parking Parking 147 2.5 7,12 6 iuG
UPB Building Building 155 1 7,12 9 iAG
UPB Alley Building 155 1 7,12 9 outdoor

In both campaigns, we used the following equipment.

LoRaWAN GW LG308: Guidance and configuration rules
could be found in [37]. Due to specific circumstances defined
by the environment and availability of the GWs, we used from
6 to 9 pieces in different scenarios. For ease of identification,
we assign to each of them odd serial numbers.

Routers: The routers enable connection of the GWs. Similar
to the number of GWs, routers vary from case to case.

Field test devices (FTDs): Two devices capable of trans-
mitting and receiving data using the LoRaWAN protocol
and equipped with a display that allows to instantly check
information and parameters [38].

The measurement procedure comprises two stages as
follows.

1. Offline: This stage includes all the required preparations
that are supposed to be done before the actual practical activity.
The first step is creating the measurement map. In both
cases, it was decided to establish a separate coordinate system
to exclude the problem of identifying real positions in an
indoor environment. Maps supposed to include the location
of the MPs and equipment (for localization methods based
on the locations of the GWs). During the phase of creating a
measurement map, questions related to the following should
be considered.

a) Spacing: A compromise between the labor and time
consumption, on the one hand, and localization accuracy,
on the other (the higher the signal map density, the
higher the accuracy can be expected).

b) Equipment: GWs utilized in these measurement cam-
paigns require a connection to the Internet. Conse-
quently, when planning the company, one needs to
consider the availability of the access points (APs) and
sockets near the proposed equipment deployment. Thus,
one should decide how many GWs to use (a compro-
mise between availability/installability and precision: the
more the GWs, the higher accuracy can be expected)
and their distribution (symmetry avoidance, possibilities
to plug in and to connect to the Internet, and remoteness
from the measurement area).

Furthermore, to ensure that the measurements are going to
be taken in the proper places defined in the measurement
map and ensure reproducibility, it is necessary to indicate
the location of the MPs on the floor/ground and placemarks.
Next comes the equipment setup (the guidance could be
found in [37]): after ensuring the connection of GWs to
the Internet, it is necessary to check out the connection of
the equipment (GWs and FTDs) to the server (The Things
Stack (TTS) [39]) and provide the transfer of the data to the
place where it can be stored. TTS supports many integrations
(e.g., Message Queuing Telemetry Transport (MQTT), storage

integration), allowing organizing the database to further infor-
mation storage. We stored the data in a unique request bin
using Webhooks integration.

2. Online: This stage comprises directly gathering the data:
at each point, a person conducting the measurement uses a
test device to send uplink (UL) messages to be received by
predeployed GWs. We sent three UL messages to have more
reliable results in all cases at each MP.

The preparation and implementation of the campaigns
described in this article were carried out in accordance with
the steps presented above. Depending on the environmental
conditions and the resource of time, the number of equipment
involved and the studied SFs may vary.

IV. LOCALIZATION APPROACHES

This section gives a brief review of the localization
approaches used in this work, namely, approaches based on
the locations of the GW [trilateration and Weighted Centroid
Algorithm (WCA)], and methods related to ML algorithms
[the k-NN algorithm with simple and weighted centroids,
Random Forest (RF), Linear Regression (LR), Support Vector
Regression (SVR), and Decision Trees Regression (DTR)].

A. Localization Methods Based on the GW Locations

Trilateration: It is a basic localization approach that envis-
ages finding the location based on the connection between
RSSI of the received signal and the distance d it passed
during propagation [31], [40], [41]. In addition to knowing
the coordinates of the GWSs, the use of this method is also
limited by their number—more than 2.

Weighted centroid algorithm: The essence of the algorithm
is to calculate the gravity center of the figure formed by the
GWs that received the uplink message, based on RSSI weights
that determine the significance of each GW. In this work, WCA
is applied according to formulas that can be found in [42].

B. Machine-Learning Algorithms

ML could be separated into classification and regression
task types. We classify our task as a regression task since
we are trying to predict a unique position using features,
that is, RSSI rows received by various GWs. To investigate
the possibility of increasing the accuracy of LoORaWAN-based
localization employing ML, based on the literature review,
we selected from the regression cluster the most common
algorithms for localization.

k-Nearest Neighbors Algorithm: k-NN is one of the simplest
ML classifiers that estimates the location of the MP based on
the coordinates of k closest points [23], [43], [44]. To estimate
the proximity of this work, use the Euclidean distance matrix.
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k-Nearest Neighbors Algorithm With Weighted Centroid
(k-NN-W): The closer the neighbor location to the estimated
point, the bigger is its’ weight [45].

Decision Tree Regression: Envisages splitting of a dataset
on several classes (target values) based on the different con-
ditions. When the target value is discrete, we are dealing
with a classification problem; when it is continuous—with a
regression [46], [44].

Random Forest Regression: It is based on the use of an
ensemble of decision trees built using randomly selected train-
ing samples (bagging). The result is determined by calculating
the mean value of all individual predictions [44], [47].

Linear Regression: It tries to find a linear function that could
describe the training data in the best way [9], [44], [47].

Support Vector Regression: It tries to find a tube that best
describes the training data while trying to balance model com-
plexity and prediction error [48]. It is considered a superior
approach to the LR since it can handle nonlinearity through
the different versions of kernel [47], [49], [50].

Estimation of the LoRaWAN-based localization accuracy
were carried using Python libraries sklearn, keras, and pandas.
By default, the data were divided into training and test samples
in the proportion of 80%-20%, respectively. For all cases,
the models for longitude and latitude were trained separately.
Before analysis, the data was preprocessed: outliners and
missing values were replaced with the value lower than the
receiver sensitivity (—140 dBm); to exclude overfitting due
to redundancy of the data caused by multiple messages sent
from each MP, several strategies were performed: selecting a
random reading out of three for each location and selecting
the reading with the highest average RSSI and averaging.

The localization accuracy for the different algorithms and
scenarios is compared based on the Root Mean Square
Error (RMSE)

>N ((xi - fi)z + (vi — 91‘)2)

RMSE = >
N

ey

where x and y are real coordinates, X and y are estimated
coordinates, and N is the number of MPs to be estimated.

V. MEASUREMENT CAMPAIGN IN BUT
The measurement campaign was conducted in two locations:
the fifth floor of the BUT; the parking in front of the same uni-
versity.! The environment for the first measurement campaign
is represented in Fig. 1. In all scenarios for this measurement
campaign, seven GWs have unique identifier: 7, 9, 11, 13, 15,
17, and 19.

A. Aboveground Indoor Localization in BUT

The first part of the first measurement campaign was con-
ducted on the fifth floor of the BUT building. The building
has seven floors with internal walls (150-mm thick) made
of concrete. The coordinate system created for this case is
depicted in Fig. 2. The MPs were placed in four corridors:
identical left and right (50 x 1.8 m), central (36 x 1.8 m), and

1Map is available online: https://en.mapy.cz/s/davubejanu
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Fig. 1. Measurement campaign in BUT: environment.

+ Measurement points X GWs

Fig. 2. MC in BUT, office: coordinate system.

horizontal (75 x 1.8/3.2 m). All corridors have iron benches
along the walls; the horizontal corridor contains stairs and
lifts (separated by doors). The total number of MPs is 203,
with 1 m between them. Using different SFs (7, 9, 10, and 12),
we sent three UL messages from each point received by seven
GWs distributed on the floor and placed close to the walls so
as not to obstruct the passage of people.

Summary information on the collected dataset is represented
in Table III. The total number of the sent UL packets for each
SF is 203 x 3 = 609. Consequently, the possible theoretical
number of packets that all GWs could receive for each SF is
609 x 7 = 4263. Technically, a larger SF means higher
sensitivity. Thus, with SF12, we should observe the largest
number of received packets, and with SF7, the least. However,
SF9 and SF10 are out of these consequences, which can be
explained by the fact that measurements using those SFs were
carried out during the mornings when there are more people
in the building than in the evening.
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TABLE Il
MC IN BUT, OFFICE: NUMBER OF UL PACKETS RECEIVED BY EACH GW

GW Received Packets
SF7 SF9 SF10 SF12 Total (2436)
7 538 562 548 526 2174 (89.2%)
9 575 579 576 561 2291 (94.0%)
11 598 587 591 601 2377 (97.6%)
13 598 584 585 598 2365 (97.1%)
15 599 595 596 607 2397 (98.4%)
17 585 577 595 595 2352 (96.6%)
19 528 512 515 543 2098 (86.1%)
Total (4263) |4021 (94.3%)|3996 (93.4%)|4006 (94.0%)|4031 (94.6%) [ Mean: 4014/2293 (94%)
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Fig. 3. Distribution of RSSI. (a) SF7. (b) SF9. (c) SF10. (d) SF10.

The possible number of packets that each GW could receive
for all SFs is 609 x 4 = 2436. Expectedly, the GWs located
at the ends of the corridors (GWs 7 and 9) received the
least packets, and GWs in the center (GWs 11-15) were the
largest.

The RSSI distributions for each SF are presented in Fig. 3.
The mean RSSI values for all SFs oscillate around —86 dBm.

The mean errors are presented in Table IV. Here and
further, the work presents results averaged for the different
SFs, that is, this work does not investigate the dependency
of the localization accuracy on the SF. In indoor condi-
tions with many obstacles, researchers use trilateration as
the simplest localization approach to estimate the accuracy
when the signal is refracted and reflected multiple times.
With the distance-power gradient 4 corresponding to the
environment under consideration, we obtained a mean error
of 32.3 m. WCA reduced the error to 26.7 m. Using different
ML algorithms, we obtained a minimum mean error of
2.49 and 2.43 for k = 2 using k-NN and k-NN-W.

In this work, we explored several ways to reduce redun-
dancy caused by the multiple uplink messages from the same
location to avoid overfitting the models: selection of the
random reading out of three, averaging, and selection of the
reading with the highest RSSI. For all methods, the best
strategy to eliminate redundancy of readings turned out to
be the last one, selecting the corresponding reading with the
highest mean RSSI for each location.

To conclude, localization methods based on the anchors
(trilateration and WCA) produce mean errors equal to tens of
meters, while the k-NN algorithm reduces it to the meter level.
Thus, future experiments exclude the first two algorithms from
the analysis. The best results were obtained for ML methods

TABLE IV
MC IN BUT, INDOOR: MEAN ERRORS

Localization approach Mean Error (m)
Trilateration 32.30
WCA 26.70
k-NN (k=2) 2.49
k-NN-W (k=2) 2.43
RFR 3.94
LR 5.24
SVR (kernel="poly’) 4.71
DTR (max_depth=5, min_samples leaf=3) 5.04

based on the highest average RSSI (approximately 1 m better
accuracy). Therefore, we will use this strategy to reduce extra
data from the dataset.

B. Underground Indoor Localization in BUT

The next part of the measurement campaign took place
in the parking lot in front of the BUT (see Fig. 1).
It has an above-ground floor and several underground floors,
which represent an analog of the underground environment
(see Fig. 4, where 1 illustrates the above-ground floor, 2 and
3—two underground floors). The mean errors are presented
in Table V.

In this case, the measurements were taken on the under-
ground 2 and 3 floors of the parking lot. The coordinate system
for this experiment is represented in Fig. 4. During the week,
the measurement campaign was carried out on two under-
ground parking levels at 2.8-m height during low workload
hours. The top underground floor (2 in Fig. 4) had approx-
imately 74% places busy, and the bottom floor (3)—10%.
There are 49 MPs in the center of each floor at a distance
of 2.5 m. We sent three messages from each MP as in the
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TABLE V
MC IN BUT, iUG: NuMBER OF UL PACKETS RECEIVED BY EACH GW

Received Packets

GW Top floor (2) Bottom floor (3)
SF7 SF12 Total (294) SF7 SF12 Total (294)
7 139 140 279 (94.9%) 128 122 250 (85.0%)
9 139 141 280 (95.2%) 117 125 242 (82.3%)
11 137 140 277 (94.2%) 134 141 275 (93.5%)
15 142 140 282 (95.9%) 136 141 277 (94.2%)
17 137 142 279(94.9%) 135 140 275 (93.5%)
19 141 142 283 (96.3%) 132 139 271 (92.2%)

Total (882) |835(96.7%)|842 (95.5%) | Mean: (95.2%) || 782 (88.7%) |808 (91.6%) | Mean: (90.1%)

Front view (cut)

1

Top view (cut)

— L] ew
— 19
100 ——— GW
7'
75 b * &
GW
“ : 1 1st and 3rd floors
+ Plugs
»s Gw || ~ow
LT = Router
0 1 [
0 5 10 15 20 25 30 35

Fig. 4. MC in BUT, parking lot (GWs in the office): coordinate system.

previous experiment. Six GWs were deployed on the almost
empty bottom floor to exclude interference with the parking
process.

The total number of UL packets sent for each SF for
each floor is 49 x 3 = 147. Consequently, the possible
number of packets that all GWs could receive for each SF is
147 x 6 = 882. The maximum number of packets each
GW could receive for all SFs is 147 x 2 = 294.

The RSSI distributions for each SF are presented in Fig. 5.
As expected, the difference in the average RSSI levels obtained
using SF7 and SF12 becomes less noticeable at shorter
distances.

The mean errors for the case when the GWs were installed
locally are shown in Table VI for both underground floors.
On average, the best results were obtained with SVR (5-7 m),
followed by k-NN, which turned out to be the best algorithm
for localization estimation in the previous case.

VI. MEASUREMENT CAMPAIGN IN UPB
A similar measurement campaign in UPB was planned
for outdoor and indoor environments to have more consis-

tent conclusions. The environment for this MC is shown in
Fig. 6. Building A has eight floors and Building B—4, and

TABLE VI
MC IN BUT, iUG (GWSs IN THE PARKING): ERRORS

Localization approach Mean Error (m)
Top floor (2) |Bottom floor (3)
k-NN 6.45 (k=3) 6.62(k=5)
k-NN-W 6.43 (k=3) 6.64 (k=5)
RFR 6.17 8.06
LR 9.07 7.67
SVR (kernel="poly’) 5.05 6.88
DTR (max_depth=5, 9.91 9.48
min_samples leaf=3)
TABLE VI

MC IN UPB: DISTRIBUTION OF THE GWSs

GW Location
1 Building B, 1st floor
3 Building B, 3rd floor
5 Indoor: Building A, ground floor;
Outdoor: Camin Leu D, 1 floor
7 Building B, ground floor
9 Passage between Building A and B, 1st floor
11 Building A, 1st floor
13 Building A, ground floor
17 Building A, 3rd floor
19 Building A, 3rd floor

the walls are made of concrete. For this MC, the number
of GWs was increased to 9 to explore the dependency of
the localization accuracy on the number of the GWs more
explicitly. The distribution of the GWs among the considered
area is presented in Fig. 6 and Table VII. The identification
numbers assigned to each GW are 1, 3, 5, 7, 9, 11, 13,
17, and 19. The placement of the GWs for both scenar-
ios, indoor and outdoor, is almost the same, excluding GW
5, which was located in another building during outdoor
measurements.

The coordinate systems for the indoor and outdoor scenarios
for this MC are the same (see Fig. 7). The measurement map
covers a rectangular area of 5 x 31 m and contains 155 MPs
separated by 1 m.

In addition, it was decided to make some changes in the
procedure of k-NN algorithms for this measurement campaign,
namely, when dividing the dataset into training and testing
subsets, and the boundary MPs (blue dots in Fig. 7) were
excluded from the testing set. This decision is because, in the
case of small datasets, the border MPs are experiencing large
errors since they have fewer neighbors, resulting in a distorted
picture of the level of the mean localization error. The data for
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MPs at the borders was taken separately from the MPs inside
the rectangular area (orange dots) for the subsequent ease of
dividing the data for k-NN.

A. Indoor (Localization in the Office, UPB)

The indoor measurements were collected on the ground
floor in the spacious hall without considerable obstacles except
for columns.
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Fig. 8. Distribution of RSSI. (MC in UPB, indoor.) (a) SF7. (b) SF12.

Summary information on the collected dataset is represented
in Table VIII. The total number of the sent UL packets for
each SF is 155 x 3 = 465. Consequently, the possible
number of packets that all GWs could receive for each SF is
465 x 9 = 4185. According to the statistical analysis results,
the average probability of receiving the message equals 92.6%,
comparable to the similar scenario conducted in BUT
(94%; see Table III).

The distributions of RSSI for each SF are presented in
Fig. 8. Regarding the RSSI levels, the results were similar
to those obtained for the indoor scenario in BUT
(see Fig. 5). Although the cases had different initial parameters
(see Table II), this gives us more rights to compare them.

Table IX contains the accuracy assessment for this case. The
obtained mean error turned out to be approximately 2.7 m,
confirming the results obtained for another indoor scenario in
the previous campaign in UPB (see Table IV). It should be
noted that despite such an accuracy representing promising
results in terms of LoRaWAN-based localization and could be
compared with the Wi-Fi performance, it remains relatively
low (compared, e.g., to UWB).

B. Outdoor (Localization in Front of the University, UPB)

The coordinate system for the outdoor scenario is the
same as in the case of the indoor scenario (contains
the same number and the same disposition of MPs, see
Fig. 7), but the considered area is located in front of the
university.

According to the results of statistical analysis, the proba-
bility of receiving the message, on average, equals 91% in
this case (see Table X). It is only 1.6% lower than in the case
of the indoor scenario. The distributions of RSSI for each
SF are presented in Fig. 9. Despite the mean level of RSSI
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TABLE VIII
MC IN UPB, INDOOR: NUMBER OF UL PACKETS RECEIVED BY EACH GW

GW Received Packets
SF7 SF12 Total (930)
1 459 351 810 (87.1%)
3 462 399 861 (92.6%)
5 465 449 914 (98.3%)
7 435 163 598 (64.3%)
9 464 461 925 (99.5%)
11 465 452 917 (98.6%)
13 465 462 927 (99.7%)
17 465 459 924 (99.4%)
19 463 413 876 (94.2%)

Total (4185) |4143 (99.0%)|3609 (86.2%) | Mean: 3876/861 (92.6%)

TABLE IX
MC IN UPB, INDOOR: MEAN ERRORS

Localization approach Mean Error (m)
k-NN (k=8) 2.83
k-NN-W (k=8) 2.79
RFR 3.35
LR 3.18
SVR (kernel="poly’) 3.26
DTR (max depth=5, min samples leaf=3) 4.15

Mean RSSI=-90.5396 dBm

Mean RSSI =
-92.5897 dBm —

003

Frequency
Frequency

‘”RSST; dBmw ‘r;RSanderﬁ
(@) (b)
Fig. 9. Distribution of RSSI. (MC in UPB, outdoor.) (a) SF7. (b) SF12.

remaining approximately the same (from —89 to —92 dB),
one can notice that the form of the distribution turned out to
be more normalized than in the previous case.

Table XI contains the mean localization errors for this case.
The best result for this case was achieved for k = 5 and equals
4.50 m, which is 1.7 times lower than that in the indoor
case. To the best of the authors’ knowledge, this accuracy
level is one of the highest achieved with LoRaWAN-based
technology for outdoor datasets so far. However, it remains
quite low compared to the levels that could be achieved
by GNSS (10 cm) [4]. At the same time, as stated before,
the target was not trying to reach the highest localization
accuracy in each environment separately using LoRaWAN but
to test whether it is possible to achieve accuracy that could be
considered suitable with this technology in the mixed type of
environment.

VII. INVESTIGATION OF THE OPTIMAL NUMBER OF GWSs

Besides estimating localization accuracy based on all the
collected data, it is valid to investigate its dependence on the
number of GWs used. Based on the datasets collected in UPB

and more reliable BUT scenarios (indoor localization in the
building, indoor underground localization with GWs deployed
locally), we conducted the experiment to identify the best
possible option to choose the GWs to obtain the least mean
localization error. The algorithm was as follows.

1) To try all possible combinations of three GWs.

2) To identify the best combination, that is, the one that

gives the least mean localization error.

3) Gradually increase the number of GWs adding at each

step the best option from the remaining set.

The results of the experiment are presented in
Tables XII and XIII. According to the best strategy of choo-
sing the GWs’ order, to achieve the lowest mean localization
error, there is no need to use all the available equipment: in
the majority of the cases, the optimum GW, (GWs opt) is
less than the available number of the GWs (GWs max). Note,
for both indoor datasets that showed similar results in terms
of accuracy, that the minimums of the mean localization
error were achieved with the same number of GWs
is 7.

The complete picture of the investigation of the accuracy
dependency on the number of GWs requires reviewing the
average expected results. Therefore, this article also studies
the mean localization accuracy error for the random choice of
the GW averaged over 10 in fifth power iterations. The results
for both experiments are presented in Fig. 10.

As expected, the localization accuracy diminishes with the
decrease in the number of GWs. The most dependent on the
number of GWs turned out to be the underground bottom floor
scenario: the average loss of each GW increases the mean
localization error by 16%. The curves for the rest scenarios
follow the same tendency: adding the first 2-3 GWs entails
an increase in accuracy at the average by 11.25% and then,
after the point approximately corresponding to GWs opt, the
growth slows down by an average of 5%—6%.

VIII. MAIN CHALLENGES AND DISCUSSION

This work investigates LoRaWAN as a localization technol-
ogy and its potential to be utilized in industrial worksites utiliz-
ing two measurement campaigns conducted in BUT and UPB.
The considered scenarios cover the most typical localization
cases, allowing general derivations.

Analyzing the measurement procedure, it should be noted
that the UG environment is more complex for planning a
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TABLE X

MC IN UPB, OuTDOOR: NUMBER OF UL PACKETS RECEIVED BY EACH GW

GW Received Packets
SF7 SF12 Total (798)
1 450 463 913 (98.2%)
3 443 459 902 (97.0%)
5 330 442 772 (83.0%)
7 450 465 915 (98.4%)
9 447 461 908 (97.6%)
11 451 463 914 (98.3%)
13 450 465 915 (98.4%)
17 197 460 657 (70.7%)
19 243 440 683 (73.4%)

Total (4185) |3461 (82.7%)|4118 (98.4%) | Mean: 3790/842 (91.0%)

—e— Outdoor, UPB, k=6 (best - B)

N —e—iAG, UPB, k=8 (B)
. —e—iUG, BUT, bottom floor, k=5 (B)
0F N —e—iUG, BUT, top, k=3 (B) I
' —e—IAG, BUT, k=5 (B)
ol \\ - - -Outdoor, UPB, k=6 (real - R)

. - - iAG, UPB, k=8 (R)
N - 0= +iUG, BUT, bottom floor, k=5 (R)
8r e - -~ iUG, BUT, top, k=3 (R) i

- 0=

“iAG, BUT, k=5 (R)

Mean Error, m

Number of GWs

Fig. 10. Investigation of the dependence of localization accuracy on the
number of GWs.

TABLE XI
MC IN UPB, OUTDOOR: MEAN ERRORS

Localization approach Mean Error (m)
k-NN (k=6) 5.13
k-NN-W (k=6) 5.22
RFR 4.73
LR 4.85
SVR (kernel="poly’) 4.03
DTR (max depth=5, min samples leaf=3) 5.57

measurement campaign. We used the underground parking lot
to represent the underground environment, which could be
considered an approximate analog of mines.

Summing up all aspects of the conducted measurement cam-
paigns, we can distinguish the following groups of limitations
and errors that are present in this work at the stage of data
collection and processing.

1) Limitations related to the equipment.

2) Errors that might occur during the transmission of the

data to the storage (e.g., outage of the RequestBin).

3) Errors related to the environment (e.g., the number

of available sockets, marking inaccuracies caused by
uneven ground, etc.).

4) Assumptions related to the approaches. The main
method considered in this work is k-NN fingerprinting,
which is applied to randomized readings. Thus, a differ-
ent run will cause a slightly different result. The results
are presented for this work’s same random sequence of
data.

5) Human errors (e.g., errors that might occur during the
direct gathering of the data or manual export of the data
from the RequestBin to Excel file, etc.).

Among the other limitations are limitations related to the
equipment, errors that might occur during the transmission of
the data to the storage (outage of the Requestbin), and errors
related to the environment.

The first question stated for this work is the average local-
ization accuracy of the LoORaWAN technology outdoor/indoor
above-ground/underground. The pivot data for all scenarios
considered are given in Table XIV.

Both scenarios for indoor above-ground localization in BUT
and UPB give almost the same accuracy, around 2.5-2.8 m
(k-NN and k-NN-W approaches). Taking into account the
various works claiming the accuracy up to 5-6 m for both
Wi-Fi [51], [52] and BLE [53], [54], which are currently
the most spread solutions for the localization in the indoor
environment, we can conclude that obtained results are quite
promising for LoRaWAN. For the underground scenario, the
mean localization errors are 5 and 6.6 m for the top and bottom
floors of the parking lot consequently. Finally, the LoORaWAN
application in an outdoor scenario gives 4 m of the mean
localization error (SVR, linear kernel).

The results of the measurement campaign revealed that the
approaches based on the location of the GWs (trilateration and
WCA) are not suitable for localization purposes, providing
tens of meters accuracy. At the same time, ML algorithms
help to reduce this level to meter-level order. A comparison
of the mean localization errors provided by the considered
ML algorithms for the main scenarios is presented in Fig. 11.
According to the results, in most cases, k-NN and k-NN-W
have the best overall performance algorithms. In contrast, the
lowest accuracy is shown by DTR, the most complex algorithm
considering the number of parameters to tune.

Initially, this work proceeds from the assumption that the
more GWs, the higher the accuracy. However, the strategy
of using many of GWs cannot be considered a typical one
since the initial idea of the technology is to use fewer GWs
to cover bigger territories. Depending on the features of the
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TABLE Xl
INVESTIGATED SCENARIOS

Place | Environment | MPs | Spacing, m | GW max | GW opt | k opt |Min mean error |Increase in accuracy
BUT iAG 203 1 7 7 2 2.34 6.5%
BUT | iUG (floor 2) | 147 2.5 6 3 3 3.75 12%
BUT | iUG (floor 3) | 147 2.5 6 5 5 4.45 33%
UPB iAG 155 1 9 7 8 2.18 23%
UPB | outdoor | 155 1 9 4 6 3.61 29.5%
TABLE XIII
SET OF GWs TO ACHIEVE THE MINIMAL MEAN LOCALIZATION ERROR
Place | Environment |best 3 GWs |GW4 |GW5 |GW6 |GW7 |GW8 | GW9
BUT iAG 15, 13,9 7 19 7 11 - -
BUT | iUG (floor 2) 15, 7, 17 9 19 11 - - -
BUT | iUG (floor 3) 15, 11, 7 19 17 9 - -
UPB iAG 11, 5,1 17 9 7 19 13 3
UPB outdoor 13,9, 17 11 5 7 3 1 19
TABLE XIV
INVESTIGATED SCENARIOS
Place | Measurement Equipment Spacing, m |GWs |Environment| Min mean error,m Method
area location
BUT Building Building 1 7 iAG 2.43 k-NN-W
BUT Parking Parking 2.5 6 iuG 5.05 (fl. 2); 6.62 (fl. 3)| SVR; k-NN
UPB Building Building 1 9 iAG 2.79 k-NN-W
UPB Alley Building 1 9 outdoor 4.03 SVR
10 The study of the second scenario, which reviews the
iAG, BUT i
| =: Ag’ UgB | expected accuracy for the different numbers of GWs averaged
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k-NN  k-NN-W SVR  RFR LR DTR
Fig. 11. Comparison of ML approaches.
environments under investigation, we operated from

6 to 9 GWs. To examine the dependency of interest, this work
investigates the average/best possible cases for different
numbers of GWs for the collected datasets.

In the study of the first scenario, it was found that in the
best case, the least mean localization error is reached when
the number of GWs is less than the maximum. The optimal
number of GWs depends on the environment: for the two
indoor datasets, it equals 7, and for the more noisy and fewer
LoS scenarios, it is generally less, 3—5 (see Table XII).

over 10 in fifth power iterations, confirms the assumption
that the more GWs, the higher the accuracy. However, from
some point on, the increase in accuracy reduces from 11.25%
to 5%—6% and ceases to be worthy of involvement in addi-
tional GWs. This point turned out to be equal to or close to
the optimal number of GWs identified in the previous step.

The collected datasets cover a small area, but the perimeter
formed by the GWs is usually several times larger than the
surveyed area (except for underground datasets). Thus, we can
expect the declared accuracy, given the particular number
of GWs, the similar density of the signal map, and the similar
type of environment, at least within this perimeter.

The collected datasets cover a small area, but the perimeter
formed by the GWs is usually several times larger than the
surveyed area (except for underground datasets). For exam-
ple, the areas formed by GWs for both indoor datasets are
approximately the same, approximately 4 500 m?, while the
area of the outdoor dataset by changing the position of one
GW was expanded to 12000 m?2. Thus, we can expect the
declared accuracy, given the similar density of the signal map,
at least within those perimeters.

IX. CONCLUSION
The results obtained during these campaigns state that the
LoRaWAN-based localization accuracy is comparable with
one of the most widespread solutions, Wi-Fi and BLE. How-
ever, it still significantly loses to indoor and outdoor local-
ization flagships. To be realistic, regardless of the algorithm
applied to increase the accuracy, LORaWAN technology, as it
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is currently available on the market, is less likely to overcome
the leading technologies in indoor or outdoor environments
separately. On the other hand, due to its flexibility, LoRaWAN
could be a good solution for the mixed environment, poten-
tially including some underground worksites and becoming
one more step toward solving the problem of seamless local-
ization.
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