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ABSTRACT

The properties of physical states in dual
resonance models under rotations in the little group
of the resonance momentum are studiled. I+ is shown
how at & critical number of space-time dimensions
thig group can be represented just on the space of
Niransverse” states constructed by Del Gludice, Di
Vecchia and Fubini (because these are then essential-
1y the only states which couple). Further, the
action of rotations in this group on the "photon!
operators "Aril" is used to produce, for any number
of dimensions, enough operators toc create all the
phyesical states both in the conventional model and

the model of Neveu and Schwarz.
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1. = INTRODUCTION

During the past few years a lot of progress has been made in the
understanding of the structure of the physical states in dual resonance
models (DRM) 1)_7), Recently it has finally been demonstrated that there
| 6),7) |

are no ghosts either in the conventional model
(Ns) 8) model | , provided that the dimension of space-time,. d, does not

or in the Neveu=-Schwarszs

exceed a critical value.

in essential feature of these proofs is that for a critical
number of dimensions of space—time (d = 26 for the conventional model,
d = 10 for NS), the set of "transverse states" generated by the photon
operators,.Ai, constructed by Del Giudice, D1 Vecchia and Fubini (DDF) 4)
is complefe in the sense that any on-mass shell physical state can then be
expressed as a sum of one of these iransverse states plus g decoupled null
state. We regard this fact as extremely impertant ; the transverse states
are the only cneg that admit a definite infinite momentum limit. ‘Thus it
geems that for this critical dimension the DRM can be reformulated starting
from gtates with a definite infinite momentum limit, or from states quantized

*)59)

on the light cone It 15 alsc probable that the theory is compatible

with unitarity only for the critical dimension (since then the dual Pomeron

becomes & pole) 6)’7)’10).

Now the definition of a transverse state 15 not Lorentz covariant :
given a physical state of momentum ™) , a Lorentz transformation in the

little group of W, can mix transverse and longitudinal components.

In faect, if EIli is the generator of the little group which

rotates in the i longitudinal plane, we shall find that [Eq. (3.11I]
1 .lA L
CEui, ALl = YA, + mAY
where

L1

Al = gf(aih o AL AL)

We are grateful to P. Di Vecchia for a discussion on this point.
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- *
and Am ), defined by this eguation, ig an operstor which commutes with the

gauges but generates states independent of the "iransverse! states. It is a
conseguence of the above eguation that the subspace of states generated by

Aﬂ, Al ig invariant under the little group. All of the algebraic properties

of the Am} Ai follow from this defining equaticn. It can be shown that

~

Am’ A; generate all the physical states, so we have the important result

thet one can obiain by commuting the "photon" opeorators with gemerators of

the little group of fthe meomentum Ty enough additional operators 1o gene-

rate all the physicsl states. When we commute the Mphoton" operator in the

Neveu-Schwarz model with genserators of the little group of Ty , we obtaln

not only the Aﬂ but also B;, which are transverse Fermicon aperators.

1, E ’ ﬁ ther
T n T

e
Commuting once morc we ohtain Br ; the operators A;, B
4

generate all the physical states in that model.

0f course, since at the critical dimension the transverse states
are complete, we must be able to represent the little group on this subspace.
As we shall show, this can be done since at that dimension, as Brower has
pointed out 6), the algebra of the f;ﬂ, Ai is isomorphic to that of the
&

n
Thig isomerphism asilows one to substitute An - §€n to obtain the repre-

s A; where afn is the conformal generator constructed out of the A;.

sentation of the 1ittle group on the transverse subspace. A1 the critical

dimengion of the Neveu-Schwarz model there is-a simlilar isomorphism between
i 4 i i :

s BLs By and & 5 4 G,

the realization of the little group on the "trazsverse'" subspace.

the algebras of Er’ A r B; which again allows

We have organized our paper as follows. TIn Secilion 2 we give a
new derivation of the "transverse™ physical states by an iterative construct-
ion which i& particulsrly suited for studying the infinite momentum limit.

In this 1limit we show how to construct the representations of the little group -
of T valid for the critical dimension. Although the considerations of
this section motivated the work described subsequently, especially Eq. (3.3),
Sections 3 and 4 are logically self-contalned, and the reader already fami-
liar with the DDF construetion may wish to skip Section 2 on a first reading.
Section 3 18 devoted to a study of the covariance of the physical states in
the conventional model. In Scctlon 4 we apply the methods of Section 3 to
obtain all the physical states of the Neveu-Schwarz model froxz the "photon”

operstors as a conseguence of Lorentzs covariance.

(+)

I

k3
) Phese operators are what Brower has called A and were first cons-—

B
tructed by him .



2. - GENEEATORS OF THE LITTLE GRCUF OF Py FOR THE CRITICAL DINENSION

Consider & physical state of momentum P, = ,\/2_7‘: ’ |w,n>, in

the conventiotnal model. This state therefore satisfies

L, ®y = (Cn ~ §2 ©-x) 1¥,m) = O (2.1)
where
Xy = LF:&:, xfh o= ol n=4,2,...,
o
o, = -—h
so that
[“asmr\] = mﬁ[‘v&n,-h
with
ve 14 22 A4, i1
_ﬂ = 3 % =.. —j i
and
o
L‘h = é' Z HEL SR ST
me -

It I'L}J,‘E> represents an on-mass—-shell state, then

(Lo~ D1 = (L +m*-D1F,7> = 0, (2.2)

It is convenient to choose a frame in which W{, has only one space compo-—
nent, say TCZ, all others being zero. For every Lorentz vector uj

we define u,_ = (ut:kuz) V2 and denote by u, the residual space components,

then T = (%, ®_, 0).

Naotice that for ®© boosts in the 2z direction W _ — +tw,

X - 0, =0 that the dominant term in the gauge equations is K _ o

+ +,0



The equations

B 1W0) = 0 N=d,2, ...
(2.3)
admit as solutions all the vectors belonging to the space 3 gpanned by the
. . + o ‘
transverse and + modes alone (notice that ]:o{+,n, X nd = 0)- SCD contains

a8 subspace J_s_he Hilbert space H n generated by the transverse creation ope-

+
rators ©f, _.
i,n

We would like to comstruct the solutions of Eq. {2.1) in such a

way that when K _ —~ +® they reduce to vectors belonging to SCD « TFor this

purpose we exploit the relation 2‘E+7t_ = Mz, M being the mass of the state,

and rewrite Eq. (2.1) as

—_— 2
(VZ - e + T + e@"ln-_oc-m]lu:,w = 0. o (2.8)

We then lock for solutions in the form of an expansion in decreasing

powers of K _

> = 2 ) (2.5)

¥ M

By inserting Eq. {2.5) into Egq. (2.4), we obtain the conditions

X (WD = 0. (2.6)

for the leading term, and

f\[?? D(+l“ 11’\]'> =- En hlb-‘f-l? - %3 DC-,,.‘IBJ‘.«;) =- l’@i"“> (2.7}

with h‘[)’__,I > = 0, for the next terms. BEguation (2.6) clearly admits as

solution any vector belonging to S@ .
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By using the algebra satisfied by the X and L operators,
it can be shown that Egs. (2.7) are compatible (see Appendix) ; still they

are ambiguous, because we can add to IQPj > any vector belonging to S(m .

We fix the ambiguity and solve the equations at the same time by
the following procedure. Let us multiply Bgs. (2.7) by —-(D(t n/nJQ-) and
s 1

sum over n. We obtain

' DC+ X VA
- il +,n . .y . L -y .
g e S \PRLOE DS o W5, (2.8)
where N, _ 18 the operator that counts the number of - modes.

Since the right-hand side of Eq. (2.8) contains terms with at

least one - mode, Egs. (2.8) and {2.7) can be solved by
: "t s ol | | (29)
[¥;7 = Nu. Z e Js‘h>' '
™

iIr. an Appendix, we shall prbve the following statements.

a) The series in j defined by Bg. (2.9) always terminates ; it follows
that its sun ['Lp', T > is a physical state which we associate with the
leading term |'\,FO . '

b) Vectors HS ;&% > associated with linearly independent leading term
f'}]ﬁo > are themselves linearly independent. By counting arguments,
it follows that the vectors [1,'5 sk > span the whole space of physical

gtates of momentum '?Ct. .

¢) If “l};O > ig an eigenvector of io’ its associated vector |¥,X>
is also an eigenvector of io’ with the same eigenvalue. It follows
that the on-mass-shell physical states can be obtained starting from

. : = 2
leading term solutions of (L _+ W°- 1)|'\FD > = 0.

d) If the maximum number of + modes present in the leading term !"\Uo >
. + . .
is &, then the nuiber of b{_,_ operators in the various terms of the
expansion of hb’ s X > nmnever exceeds f, and the norm of HJ’ R >

depends only on the first 24+ 1 terms of the expansion.



e) The physical vectors ]Qk_hg A > sseocisted with leading terms ]}ko tr‘>
H

belorging to d satisfy the equations

LT

Xeyn | Wee, Y = O, (2.10)

they are therefore the fraznsverse slatcs introdaccd by DUF 4), and cha-

racterized in Ref. 7) by the defining egquation k, | ﬂqm, K> = 0.
Tall '

We observe that becausec of d) the norm of [wt_r, N> eguals the norm

of its leading term.

We are ready now to study Lorentz covariance. Notlce that the
notion of a transverse state is not s covariant one. Tae transformations
STL of the little group of K may transform a transverse state into a
non-transverse one, i.e., into a state having 3 leading term [TUE > & H -
However, for = critical number of space-iime dimensiong on the wass-shell "
the transverse states form a complete set of physical states, in the =zense
that ary physical state can be rewriftten as s transverse state plug a decouplied
null state. Then, whatever be JM&, it is possivle to perform the following

decomposivion

M| P, T = NPT + 1D

f2.91)

. n _ . . . :
where [ﬂS e > 15 a decoupled state of zerc nerc. It follows that the linear

mapping
f S
[P B —> (Y, B = O Y% R
(2.12)
defines a unitary representation M oF the iittle group of ® . If we

project both sides of Eg. (2.12) ontc their leading tercs i%bb,tr >, we
define a representation of the same group within the Hilberlb space of the
transverse nmodes 3*1M, The form of this representatiorn is most casily
deduced by considering infinitesimal transformatiors

. . 1
m?)e = j.+ e EL\'. = i + LEE ZI Y [7C-O<+,-n - N+ M—,—h) Otf,n / y
n¥g v2-13)



Fiven Lhe expansion

[%ee, B = Vo) + 25 T 52 T N0+ (2. 12)

w

i

seen thal lhe leadirg tcrm of UTZ6|Jﬂrtr, X =

Vo) + G T, Hireln [0y + 140) (2.15)

whers

) = e 2 (@Rt~ Do) Kl [
& (2.16)

is the leading term of a state, orthogonal to ail transverse states, of

rull norm. Tnen we deduce that the algebra of the EL 5 cen he represented
1
vIbndr ol
witndir :FEtr ¥
a Da .
. = i T gt i 1T
Evp = 2% (Lhow - L) (2.17)

x

, - . = . . T
where only the transverse parts of tne operators Ln are lnecluded in Ln’

since they operstc only on the transverse modes. TFor the critical number
of dimeasion only (i.e., for 24 iransverse components) the commutators of

~

wwo o . close Lo
Fel

I

(€., £.]= 2(T-DE

(2.18)

wilh

E}j = Z PO, N’j)"‘_‘



Since on the mass shell

(0T - ) W) = M W) (2.19)

Eq. (2.18) agrees with the algebra of the E

L,i

Finally, let us notice that all our considerations can be imme-
diately extended to the model of Weveu and Schwarz. The LIl are modified

by the addition of a term

-]

-""'4_: Z 'b-r 'b("'h '
znad

and the gauge equations are supplemented by

G B, x) =2 (Ge-V2 DY IER) =0, v=K:3%,5. - {2.20)

with

e'r = Z V:u-b\n-r

hoens

The itesrative construction of the state reads
: 4] o (oL X
[ = (Nt Mo )™ {2, (Boimle gy 4 ormon 1 )
nEt ¥z

£ 5 (Bore B¥a) + bobo (U500

s (2.21)

and the representation of the little group is given by {for eight transverse

dimensions)

Ja o4 . . o0 . .
o= Sa(uloth —or LYY+ 3 (8D 8 - $067)
) hEl ft%

(2.22)}
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In the next sections we shall discuss the covariance of states
from a more general view point. We shall take advantage of Egs. (2.17) and
(2.22) but their properties will be discussed a second time 8o the argument

does not depend logically on this section.

F. = COVARIANCE OF THE PHYSICAL STATES IN THE CONVENTIONAL MODEL

In the previous section, we sSaw how considerations of the comple-
teness of the "transverse" physicsl states when the space—time dimensions
d = 26 and the form of these states in the infinite momentum limit enabled
us to extend the representation of the generators, Eij’ of the (d-2)
dimensional rotation group defined on these states info a representation of

4) constructed the transverse

0{d-1). Del Giudice, Di Vecchia and Fubini
states by introducing operators A; describing the coupling of the zerc mass

vector particle {"photont) :

; ) x [y o
AL = E%I dat P'@) Ve (-nk)2) (3.1)
where
PHR) = 2 wr2", z=e'F

V(' 2) = exp [-Ek’-é 3‘,;—"%“} %F{ﬁk'(htojz +L‘¢1,)}exp{~fik'. é‘;‘;z* }

These operators create the transverse physical states when applied to a tachyon

2

vacuum state of momentun p (p“=1, k2=:0, prk= i%) ; they have the same com-

muitation relations as the p(rll :

[AL A3 = m8Ys, .



_TO_
and additionally

[LM)L\'\] = ('M"h.) Limi-n + %—m(m?—i) ah,*-h

[Lim, A‘E‘]= [HM;AJH'] = O
for K = k«of . Thus for 4 = 26,
n n

(AL A - Al A (3-2)

m
il
i)
m>
i3
Mz

k-3
1]

t

qu"(%-nﬁ\:h "A’E,\wn) (3_3}

IR
5
-
>
Ry
n
gL

-]

where
2 42l
Z:Z Z\ A-MA“+M ‘

me-ps (=2

&
n
|-

(and A; is understood as to be equal to 0) defines a representation of

0{d-1) din the space of states created by the A;. But, in general,

~ oA N o I "
[Ey, Byl = ~ 26~ gala-2D)Egj+ (%¢[d*2]-i)§n(hanl'A_‘nA‘L) (5.43

and so the algebra does not close for d # 26. This is a direct result of

the 4 dependence of the ¢ number in
[, 8] = (m-v) & + m[d-2]mlmz-D 8
(6w, AL = ~n AL (3.5)

Using {3.3) we can compute the action of ﬁLi on the DDF states

[Bu,pdl=89%, + nAlY

(5.6)



wWhore
LJ- "] \ X B . |
e _ L J J LB
IA(P‘ Z [ ( A-'m A,.,.H ’qn—n M/
M=
Wosice shat (3.9) expressce %r' i terms of ke DOF stales and she offect . ve
~g. TFurthermoroe, one can easi zeae taat bac ssructure
- - . ; ¢ . . A H T R ; - N
f5.6; Logoiner wilh vhe algetrs (3.4) for d = 25 Irmplies the algebra (%.5).
Qg
The cperators ;1__,“] © whichk Brower has introduczcod obey the algsbra
ij.f’)r_l wilh Lke © numker 2z(z7-1) Sm,—n for any dirensica. This suggests
tast they migkhs olay the role of Lhe §3r’s for s non-criivical dircnsicn.
1

Egualisn (2.8) suggests taat the sersicle thing tc do to ohrain
i

sll Lne plysical stales lor any nuazoep of dlumensions 18 to rotsse the 47

i
aboaw tas toctzl momenturn, Do iats the plane o p and k. 0Ore can taen
sXtract new cpernu2rs which commatc with tane geauges from the right-hand side.
To th.s crd wo consider the coxaulbator of A; wilh bke generslors of the

Little group of the resosance momentum  p in the waaole Hilberb spacc
o
06 : . , .
- L ¥
EC,J - Z F(M-h u“rl\ - K:’nuh)
s

m .
Euy = L Jr_\“ [?L'N-nbf‘: - %, }ﬁ—'m")
4 5
h=) {3.8)

where p.  1s orthogonzl to po in the plane of p and k
-
A _ P W e = - _ _ -
pp = a/2{p+x) = p, [s0 that ppep, = 0 for p =.2F% = 2 p+ fik)]. E.. and

1

Bbi satisty the algebra of generators of old=1)

By, Bead = 8RB~ 8B~ SVE +8*E,,
(£ Bl = 8% E, — 8%Ey

(B, ELil= P Ey
(3.9)



where we have made the supstitution —pi - Pg valia on states of momendum
x=1p+ 6 X. Now for L1 £ j it is straightforward te calculate the commu-
tator [iLi’ A;Z] explicitly, using (3.1) and (3.8) except one has to use

the formula

2T J{T- T = N2k PR 7, Vo(mk,2)Vlmk,2)

me-ot (z.10)

(which is valida for matrix elements between states of momenta p + Rx). This
- ij : . . . ' . .
yields nAnJ. Thug, from tensorial properties in the transverse dimenslons

it follows That we may write

-

{(3.11)

~

and this definres Ar' From (3.11) we may directly deduce all the algebraic

properties of ﬁn from (%.71) and the algebra of E ;, BE;. and A;
-~ o
(with & = 1+%p§)

H

(1) A + 2 Boa (2 -1)

™
>
z
>
>
L—
fh

(R, AY]

!

“MAsm

[‘Eb,j ﬁm] 0

it

[EL.:L; KA\“] = “Av\:; (ﬁa +.§2-M2-%.m-2) R E\%‘ (A:nﬁwn - ﬁm—n A':'n )

Pecause this algebra now closes, we have succeeded in restoring Lorents
convariance by the addition of the ﬁn to the "photon" operators Ai- It
is now clear that the substitution §5r1—*Ah in (3.%) gives a reaiization
?\f Eris Ej:_j *\Sahich coincides with (3.7} and {3.8) on sfates generated by
An and Aé Thus we have gecn how the operstors An, first constracted
by Brower (his A£+)) 6), and their algebraic praperties may be easily de-
duced from simple considerations of rotational invariance. In fact it can

be showr that the Ai, ﬁn generate all the phyesical states. In the next
section we show how these considerations of rotational properties will enable
us to construct operators which create all the physical states in the Feveu-
Schwarz model.

*
) In fact tkis colncidence accurs for all states with the appropriste

collinear momentum.
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Finglly we would like to remark that (3.11) can be deduced on
. . . J _ .
more abstract grounds. For i £ j [ELi’ Am:] commutes ;1th K, as well
asg Lm and thus should be expregsible in terms of the An. Further as
. J : : i & J
B, and AJ are linear - ;x end  ®? it follows that [E ., 49
must be of the form 2; MHEA;P Ag+m‘
K J f ] . . LT
EA£EEL1 Am] ] and ELkI:E'Li Am]] are sufficient to_determ_ne the b{m,

and so {3.11) deduced.

The Jacobi identities applied to

4. - COVARIANCE OF THE PHMYSICAT STATES IN THE NEVEU-SCHWARZ MODEL

In this sectior we apply the techniques developed in the last
section to construct a closed algebra of operators which generates all the
physical states in the Neveu-3chwarz model. Here the operators describing
the coupling of the "photon", glven by a comnstruction analogous to that of

IDEF are

. ,  pex : . '
A; = ﬁf at {"F‘[%)—l»a\ﬁ_n E.R(2) H‘(%)} Vo(-nk,2)

where

Hite) = 2 b5 2"

LR

Then if H = k+b we have
n n

[Lmbwd = (0=n) Lpawn + G mlmz-0) 8.,
{6, 6%
[Lm &l = (5-0) Grram

[Lw AL] = (6, LD = [k AR] = [y, A1=0.

2 beas + 4 (07-3) Sy

11
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The generators of the little group of p0 are now 3

o - Y . . o4 . J ' .
Eoj = 2o 7 (-mtn —std) + 7, (5567 - B18))
c r=§

foaid R .
El)i‘; = 7, Wb omid — o, both)

b1

[

+ 7 (hob, BE -~ b

rel
z

Phey obey the same algebra as before, of course. Then following Section 3

we compute for I £ j

[Eui,AL] = maY + mBY = mT)

where A;J is still defined by (3.6) and explicitly

VR I iay k.Ht%)';“-"(%) ay R REER)
8= ML de fHie) - ST R - BN

X{} 4k h_*'l_(a_&*i{i—)r Vo (- nk,2)

EERTN: O

and using (3.10) we can write

BH = Z (B'£'3i+n—B:—r3:)

=!
L



where
¢ ! \[’:?T : ‘?'1,_{ A kH{t\lP (1:)
= — : 2 k. Plz)! ‘H.(% }
B =7 3, Azt {d’k (=) )~ T
; 2) k. HE) 7
1+ & kHE 2
A 1R r Vo(-ske,2)
Al though Bij ig s payslezl speorator (i.e., commates with Gr} Lt dces
rot follow that 3% 8. Eowever, onc can orove that it 1s by direct

corputation,

& ,B:%

. 2T L

2% at § kP |

because tac inisgrand is single-valued or states wilh Zomertunm P, = p+ ﬁik.
[in spite of Lheir sowewhat visarre sppcsranco, oporators like {k-sz)} T,
{K-p(z}} - =rc well defined on the occupation =nurber stzics, with momentun
oo+ é?ﬁ, since orly a finive numker of perms in their expansion sbout one
contribuaie to ary matrix elements ; of. Fef. 6);] Furthermore, it is straighl-

forwsrd to verify

gV 8, .

"
o
-
5
L G
r_v_‘l
H

~

o
N
[

We can mow coniinuc adplying tne method of Zection 3 by defining

the operawcr An [shy

4

[E,c AT = Wt A+ wRY
(4-1)
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Analogously we must consider similarly rotating Bi

[EL}' 5#] Sdgr + M\l-j

where

3

i = 30

»

)B, AL~ BLLALY

- L3,

which we regard as defining Br. Bl, Bs’ A;
states by counting arguments. Again, from (4.1
algebraically, the algetbra (with AO - 5, = '%pg)

H e

[ Aw, AT = (mn) Rrtn + - M{mz—ﬂ-)
(e, B = (2-9) R

{8, 8.}

)

23&5 + 4 gr,-s ("""l)

T

(A, AL

—-h ALM-H\
[Aa, B = ~(240) Boa,
'[%"Jsé} = ¢

T+S

[B., ALT= - mB:

Ve ¥

(4.2)

1 ﬁn generate ail the physical

4.1) and (4.2}, we may deduce,
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Now, reversing the deductive procedure in Section 3 we may
replace the generators of the little group of po in the space of physical

states by

By T (Aahic ALA) + T (B8~ 508 (+-3)

Further, for 4 = 10, there must be a representation of this little group

in the space generated by the Ain and Bir only. This can be achieved
. . . i 3 o» ~

using the isomorphism between the algebras {An, Br’ Am, Bs} and

{Aril, Bi,%m, %S} at d = 10, where

o dr ., oA '
l [} - 1 L) Y
%'M = -.E Z _Z!' A’-Ln Amti-n ' + -& Z Z 'E:g :4..‘ * (23*“)
Ri-pg L= =0 =2

w 4 C
"%g = :.ZM Zs Aca :r-s

ez

by replacing 4_ by §5’m and B, by e&s in {4.3), to obtain E , say.

If we similarly define ﬁL:L where d 1is not necessarily 10 we find

~ Fia \ s
[Bu, Bl = -2(% —gd-2])Ey

b (GE ) F (M- AL + (42 - ) S e (BB -

wer

Trus we can only extend the representation of 0(d—2) in the space of
transverse states to one of 0{d-1) in this way when 4 = 10. We remark
trat, as in Section 3, we can construct (4.1) and (4.2) by more abstract

arguments, which we will not elaborate further here.



\

Tne argumnent of the present section shouwla serve To denonstrat

T

tne powcr of considering reotations in taec little grous of g, In desermining
= o 2
all the paysical states Irom those gonerztod by

the (ransvercs "phozTorn

operators.
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AFPFENIOIX

in tnis Append!x we prove some theorems that we only quoted in

Zectlion 2.

I'heore:s

. , o\t
The equstions (2.7,

7 S 105) = - T W) = 30 w10

are compalivle.

Faor the proof of this Theorem we need the following Lemnag

LGt

A necessary and sufficicnt condition for the system of Eqs. {2.7)

wo oadmil a solubion 1is

Koy .’Q\j,n) = D(:*.l“" “D.jﬂ‘) (a.1)

for all m ang o> Q.

Froof of Lenms

The necessity of this condition follows immediately from

Ve X
+,m’ +,1n

]?#j > solution of

] = 0. To show that it is sufficient, consider any vector

(&h.2)

N. = — 3 et G
W n (a.3)
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EIn Sectionm 2 it has been shown that solutions to (A.2) always exista We

prove that any Qﬁj > solution of Eg. (A.2) solves sll #gs. (2.7) when

{A.1) is satisfied.

Indeed, if (4.7} 15 true, we have

() Nam (W) = Xam NoTUSD

LB r -
= E e aa 1T - 1050 (4.4)
= (L o e 19 — 1)

= - [N_+i} i?\-“,.q) 3

herce

0<+,ha [1{]) = - l@i,m)

We can now procecd to prove the Theorem.

Froof of Theorem

We proceed by induction. Suppose Ega. [2.?} are satisfied up to
|QPj_1 > : wo demonstrate ther that the veetors | j,u > sutisfy the
condition of the Lemma, and therefore that a solution for |%Dj > exlsts.
In fact, by the use of Eqs. (2.7}, assumed up to |\Uj_1 >, ard of the

algebra of the L's and ¥ operators, we deduce

\[2_0(4-,'\;\ ‘gﬂr“,n> '" \]E 0‘4-)1\ ‘%,m)
='\J‘ED‘(+,M tn i'lb:;‘,,) -+ M1°'~+,M N»m"‘[”j—z} - (M > N)

=3 (Dt s H 0 b S )+ Mo o 1)~ (aer )



= '_( L\ L.m +m Lh-wn) N’J )~ (L. Koy TN e T Dy, L. )I’%_;)

—-2-’- Nen Kmym hb:f-n) + (mean)
= { [En,[n] —(m'“)t"“*’“} )Ft\b.]"‘?_)

£ [T, o] = [Ensemd = (MW tepman} 11D =0 ()

which completes the inductive proof.

We now demonstrate the statements a)-e) of Section 2. It is
convenient to recall the explicit construction of the vectors ]'l,lfJ =,

This is given by

(b =Nt T (D gy o M )
(4.6)

. =1 + = + , =
Notice that N_, o(»,n LIl and ¢ -n o&_’n all commute with LO- Then,

if |'\]IJO > 1is an eigenvector of I_'o’ g0 are all the terms |'\P"J >. This
proves statement ¢), once we have shown that the sum of the series 1is well

defined.

To prove statement a), that the series in j terminates, it
is useful o decompose the vectors I']lfa > into sums of terms having defi-

nite numbers £+ and 4_ of + and =~ modes

l'qj‘> = (:L I’II’,J‘J{'+)'("> (Ao?)

+

We see that the first operator (X_ L_n) in the right-hand side of Eq. (A.6)

H

transforms a term Hb-,jq’ £ £_ > in a sum of terms of the form

+’
['lPJ., J?,Jr, 4 1> or |ﬁb’j, f,+ -1y £_ >, and that the second operator

-+ .
(wr @ _’n) transform a term ("l]lfj_z, L,y 4_> 1into a fterm of the form
[rqu, £, =1, £_ +1>. It follows that the quantity Jj + £ - 4_ is conserved
in the defining eguation of the series, and that .€.+ is never increased.
It 4 is the maxlmum nwnber of + wodes present in £, then £, < &,

and we have the following bound



Then it 1s clear that the series in ] terminates Lgtﬁtement ai}, bedause
the number of - modes can never cxcced the maximur eigenvaluc of L0

contained in the leading term.

Moreover, since

;e 4 Wy, L, 027 =0

unless 4
+

[‘(JSJ_ > (j< 28+1) can contribute to the norm of

El L= E;, it is also obviousg that only a finite number of

I, EY = TS D
_ Jd

[:stat ement dﬂ .

Statement b) is proved by roting that |1.U'D > is the only

term of the series that has no -~ modes. Statement e) follows from the

equation £+ < 4 and the fact that [szo,tr > has £ = 0.



REFERENCES

o W R “H
— [ e -

-1

—

]
—

W
—

M.A. Virasoro - Pays.Rev. Di, 29%% {1970).

Del Giudice and . Di Vecenla - Nuovo Climento
Jrower and C.B. Thorn - Nuclear Phys. B31, 163
el Giudice, . Li Vecchia and S. Pubini - MIT
Brower and F. Goddard - Nuclear Phys. B40, 437

Rrowsr — MIT Proprint CTP 277 {1972).

v

704, 579 (1970).
(1971).
Preprint TP 209 (1371).

(1972).

Goddard ard C.B. Thorn - CERY Preprint TH. 1493 (1572).

Heveu and J.d. Schwarz - Nuclear Phys. B31, 86

(1971) ;

Hévou, J.H. Schwarz ana C.B. Thorn -~ Phys.Letters 353, 529 (1971).

Dei Giudice, P. DI Vccekia, 5. Fubinl and C. Musto - MIT Preprint

CTP 271 {1972).

Lovelace — Phys.Letters 34B, 500 (1971).



