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Lorentz covariant treatment of the Kerr-8child geometry* 
Metin GOrses t and Feza GOrsey 

Physics Department, Yale University, New Haven, Connecticut 06520 
(Received 26 December 1974) 

It is shown that a Lorentz covariant coordinate~~ can be chosen in the case of the Kerr-Sch~ld . 
geometry which leads to the vanishing of the pseudo energy-mome~!um tensor and hence to the Imeanty 
of the Einstein equations. The ~etarded time and the reUlrded distance are introduced and the Lienard-Wiechert 
potentials are g~eraIized to gravitation in the case of world-line singularities to derive solutions of the ty~._~ 
of Bonnor and Vaidya. An accelerated version of the de Sitter metric is also obtained. Because of the 
Hneanty, complex translations can be performed on these solutions, resulting in a special relativistic version 
of the Trautman-Newman technique and Lorentz covariant solutions for spinning systems can be derived, 
including a new anisotropic interior metric that matches to the Kerr metric on an oblate spheroid. 

1. INTRODUCTION 

In general relativity, the field equations are often 
simplified when we deal with algebraically special or 
degenerate metrics. The degeneracy of the metrics 
is linked with the multiplicity of the Debever-Penrose 
directions. 1,2 One of the important examples for the 
algebraically special metrics is the Kerr--Schild2 met­
ric which is given as 

(1. 1) 

where 17 I"V == (1, - 1, - 1, - 1) is the Minkowski metric, V 
is a scalar function, and A" is a light like vector both 
with respect to g "V and 17 I"v: 

(1. 2) 

This null vector is also geodesic both with respect to 
gl"v and 171"v' that is, 

(1. 3) 

where 01" and "I" are covariant derivatives with respect 
to 1) I"V and g I"V' respectively. These two properties of AI"' 

Eqs. (1. 2), (1. 3), make it a shear free double 
Debever-Penrose vector. If the scalar function V is 
a constant, A" becomes a Killing vector. 

The Kerr -Schild metric has been studied by several 
authors by using either the tetrad formalism2 or the 
direct procedure3 in solving the field equations. We use 
the second method in a special relativistic covariant 
way and find the energy--momentum tensor (e. m. t.) of 
the matter and the field other than the gravitational 
field. The mixed form of the e. m. t. is linear in the 
function V and also it is divergence free in the ordinary 
sense, that is, 

(1. 4) 

Therefore, the pseudo-energy-momentum tensor 
(p. e. m. t.) of the gravitational field must also be con­
served. We find that it vanishes in this coordinate sys­
tem. Vanishing of the p. e. m. t. makes the field equa­
tions linear. Because of this fact, the gravitational 
field is not its own source in this coordinate system. 
If a metric can be thrown into the Kerr-Schild form by 
a coordinate transformation, the gravitational energy 
and momentum are cancelled by this coordinate trans­
formation which represents some kind of acceleration 
according to the equivalence principle. 
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A method, which leads to a new metric from an old 
one, is based on making a complex translation along 
one of the coordinates without changing the physical 
character of the source. Such a complex translation is 
allowed in classical electrodynamics and in linearized 
general relativity because of their linearity4 of the 
equations. In exact general relativity complex transla­
tion was used several years ago by Newman and Janis5 

to obtain the Kerr metric from the Schwarzschild met­
ric and by Newman et al. 6 to obtain the charged Kerr 
metric from the Reissner-Nordstrom metric. Recently, 
Adler et al. 3 used complex translation and reobtained 
the Kerr metric in the Kerr -Schild coordinate system 
without drawing attention to the linearity of the field 
equations. Now it becomes clear that complex transla­
tion is allowed in general relativity whenever we can 
find a coordinate system in which the p. e. m. t. van­
ishes or the Einstein equations are linear in this coor­
dinate system. This is of course not true for an arbi­
trary metric. It happens to be true in the algebraically 
special Kerr -Schild geometry. 

Another advantage of the Kerr -Schild metric is the 
following. When we take A" as the gradient of the re­
tarded time and V as a function of the retarded distance 
for an accelerated system (particles, charges, etc.) 
we get simply the result of Bonnor and Vaidya, 7 gener­
alizing the Li~nard-Wiechert potential in electromag­
netism to the retarded gravitational potential. In addi­
tion to their result we also find the accelerated version 
of the de Sitter metric. 

In Sec. 2, we find the Einstein tensor of the Kerr­
Schild metric and show the linearity of the field equa­
tions. We also prove that AI" is a double Debever-Pen­
rose vector for any e. m. t. In Sec. 3 we find the field 
of accelerated systems, especially of the charged par­
ticle in a de Sitter universe. In Sec. 4 we complexify 
the solutions discussed in the previous section for non­
accelerated systems. We find the e. m. t. for this case. 
The Kerr8 and charged Kerr metrics6 are special cases 
of this e. m. t. For the interior metriC, this tensor is 
shown to correspond to the e. m. t. of an anisotropic 
perfect fluid and to match the Kerr metric on an oblate 
spheroid. In Sec. 5, we show the resemblence between 
the linearized field equations obtained from an approxi­
mation procedure and the field equations obtained for 
the Kerr -Schild metric. 

Copyright © 1975 American Institute of Physics 2385 
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2. THE KERR-SCHilD GEOMETRY 

The light like character of the four vector AIL greatly 
simplifies the calculations. Because of this property, 
it can be raised and lowered with both 7]ILv and gILv' and 
we also have 

(2.1) 

so that we have 

(2.2) 

The Riemann-Christoffel symbols and the curvature 
tensor, for this metric, are 

r a ILV = - [(lal), IL + (lal), v -7]Ya(l ILl),y + 4Al"lILlJ, (2.3) 

R
Y 

ILva 

= 0vrr ILa - a arr ILV + rr /lvI"ll ILot - rr 8a ra ILV 

= lYl( al/!vI" -7]Y~lILZ(yl/!al~ + 2AZIL1( aevt 

- 2AFZ(ve ' a I" - F q,YILa + F q, aILV 

-Zvq,I"Y a + ZI"q,,,,Yv -Z"q,/ a + 71YTZ
vq,TI"" 

- rrlaq,T"V -7]81f(FZ) .iZ ILZa), If + 7]81f(F la) ,8(l ,.tv) ,a 

- (lan, I"Y + (lyF),ILa + 1)
Y8 0IL l a),8Y -71Y8(l"Zy),8a 

- 4(Azrl IL Za).y + 4(AFZ"I) ,a' (2.4) 

where 

and 

IlL = fiAIL' 

l/!ILv = Z8,)8, IL' 

e Y IL = lY,I" -ZI"/' 

6' I"Y= ZIL,V + Zv, IL' 

q, ILva = 1
8 

,IL (ivl a),8' 

Z(al/!8IIL=lal/!8IL -18l/!aIL' 

Z(a 6Y vI = ZaeY v -lv& a' 

We note that 

F l/!Y8 = F q, ar8 = F q, aBY = 0, 

ZyeYIL=AZ IL , A=_,\l'(V1
/
2),y 

Fq,are= 2AZyle, 

lyRY ILva= -lY(ZaF),ILv+Zy(ivF),ILa 

+ 18(Z ILL,,) ,8v - 18([ ILl), 8a' 

Zyl"RY I'va = Z8f([IL Za),8Y 

= [( V,y AY),IlA8V]AILAa' 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

We can find the Ricci tensor by using the identities 
(2.5)--(2.7), and letting Y=1I in Eq. (2.4). It reads 

R ILa = - (lafl,,,y + TjYIl(lILla) ,BY - (lILf),ya 

where 

L= _za,a= _(V1
/
2Aa),a 

K=(A+L)V1
/
2=_(VAIL ),I" . 

(2.10) 

(2.11a) 

(2.11b) 

The Ricci tensor with mixed components R" a and curva­
ture scalar are, 
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R IL
a =(KAIL ),a+7]ILY(KAa ),y+O(V AIL Aa), 

R=2(KAIL ),IL' O=7]ILVOILOV ' 

Hence the Einstein tensor reads 

(2.12) 

GIL a= (KA IL ), a + l11'Y(KAa),y + 0 (VAlLA) - 15" a(K,\l'),n 
(2.13) 

with K given by (2. llb). 

The algebraic classification of space-times is done 
by means of Weyl's conformal tensor which is defined 
by 

We can easily find that 

)yAVCY wa=HAILAa, 

where 

(2.14) 

(2.15) 

H = V(V,IL AIL) ,vAv + A2 - L2+ 7]YIlZT ,flZT,y- i(KN'), IL' 

with A and L given by (2.6) and (2. lla), respectively. 
Equation (2.15) tells us that AIL is a double Debever­
Penrose vector, thus space-time is algebraically 
degenerate. 

Now let us show that Einstein's tensor is divergence 
free in the ordinary sense, that is, 

(2.16) 

From the Bianchi identities we know that GILv is con­
served covariantly, 

V"G" a= 0IL G " a + r" IL8G8 a - re 
"aG"8=0; 

from Eq. (2.1), we have 

r" "e= 08"; -g= 0; 

and it is also straightforward to show that 

rB "aGI" 8= O. 

(2. 17) 

Thus, we obtain Eq. (2.16). In general we know that 
the conservation law for the total energy-momentum 
tensor is given as 

2)T"v + t")= 0 

where t"v is the p. e. m. t. of the gravitational field. 
This p. e. m. t. is given in different forms, i. e., the 
Einstein9 and the Landau10 forms. In our case these 
two forms are the same because of Eq. (2.1) and they 
both vanish. The total e. m. t. T "v + t "V is given by 

T"+tIL=-=-.!..ofPIL 
v v 2G P v' 

(2.18) 

where G is the gravitational constant and j"" v is defined 
as 

fIL"v = - f PIL v= qvao~(qaILqp~ _ ga"r;jIL~), 

where 

qaIL::= ,,; _ g gaIL , 

1 
gaIL = T-ggaIL' 

For the Kerr -Schild metric JIL" v becomes 
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f''' V= 2aB[VO" VAP).B + V7}p8\A" - V'I7"B AP\ - VO"V A" ).8]. 
(2.19) 

We find that 

G(T"v+ t")== G"v. (2.20) 

Hence, from the Einstein equations 

t",,=O. (2.21) 

Using this fact and Gupta's equationll which reads 

a ",aB(7} "'''q"V _7}"<lq"B _7}v<lg"B + 7}""g<l8) 

=2G17"V(T"A + t\) (2.22) 

and using the metric in Eq. (2.2) we recover Eq. (2.13). 
The absence of f\ in Eq. (2.22) makes the field equa­
tions linear, because the total energy-momentum ten­
sor (T\ + t\) can only depend on the metric itseU not 
on its derivatives. Thus in the Kerr-Schild geometry 
Einstein's equations take the linear form 

a CIa B(7}"'8Ff" _1)"'" g"B _7}V<lg "S + TI"v gd) = 2G17"'AT\ (2.23) 

where T\ is the energy-momentum tensor of matter 
and radiation excluding the gravitational field. 

3. GRAVITATIONAL FIELD OF ACCELERATED 
SYSTEMS (NONSPINNING CASE) 

Assume that any element of the system under con­
sideration is on a geodesic r which is described by an 
affine parameter T. Construct a light cone from the 
observation point x"', which intersects the geodesic r 
at any pOint Z"( T). The velocity of the element of the 
system is 

Z _dZ" 
,,- dT ' 

with 

7}""Z",Z,,=e 

where e = 1 and e = 0 correspond to the timelike and 
lightlike cases, respectively. We define a retarded dis­
tance R by 

R= Z"'(x", - Z",(TO», 
for the value To of T for which the distance between the 
point Z "'( To) and the point x" is lightlike, that is, 

7} ",,(x'" - Z"'( To»(X" - Z"( To» = O. (3.1) 

From now on we shall use Z'" to denote ZIi(To). Differ­
entiation of Eq. (3.1) with respect to x'" gives us 

O"To=[X,,-Z,,(To)]jR. 

Now, we can define the lightlike 4-vector \ .. as 

A"=O,,To' (3.2) 

It is straightforward to show that A" satisfies Eqs. 
(1. 2), (1. 3). In order to find the e. m. t. we need the 
following identities: 

2387 

o ",R = Z", - A",(e - RZs)..ll) , 

A"'o",R= A"'Z", = 1, 
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(3.3a) 

(3.3b) 

(3.3c) 

1 
K== - R"(RV' - 2V), (3. 3d) 

V'- dV 
-dR" 

Here, we assume that the scalar function V is only a 
function of the retarded distance R. Using Eq. (3.3a)­
(3.3d) and Eq. (2.13), we get the e. m. t. as12 

T" _(VII + 2V') 0" + (_ V" + 2V) (i"). + i A"') ,,- R" R2 ''II" 

+ [eV" - 2zV' + 2(- e+ 2zRHV/R2)]A"\ (3.4) 

where 

Z=Z"'A. 
'" 

(3.5) 

This e. m. t. in Eq. (3.4) has some simple forms for 
some special V's. When 

V=m/R-e2/2R2 (e and m are constants), 

we get the Bonner and Vaidya7 solution. When 

V == (po!6)R2
, Po is const, 

we get a new solution corresponding to the gravitation­
al field generated by a de Sitter space in accelerated 
motion, i. e. , the interior solution corresponds to a 
finite matter free space-time region with a cosmologi­
cal constant, so that 

G",,-poO",,=O. 

We verify that the only vacuum solution with zero cos­
mological constant is the Schwarz schild metric with 
z = 0 for a nonspinning system. 

4. COMPLEXIFICATION: FIELD OF 
UNACCELERATED SPINNING SYSTEMS 

The gravitational field of an accelerated spinning 
system can be found either by solving the Einstein 
equations given inEq. (2.13) or by complexifying 
the solutions found in the previous section. We choose 
the second method because of its simplicity and use 
special relativistic spinor representations of the four 
vectors. 

In our method we simply make a complex translation 
along x'" and find the real and imaginary parts of every 
four vectors and scalar functions. The new complex 
quantities are 

x''' == x" + ia", 
T' == T1 + iT2 , 

Z' ,,::: Zl" + iZ2", , 

Z' ",= VI" + iV2'" 

where a" is a constant spacelike 4-vector andlS 

v -~-~ 1,,- OT
I 

- OT
2 

' 

Instead of Eq. (3.1) we have the following two equations: 

(4.1) 
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(X,,-ZI,,)(a"-Z2")=0. (4.2) 

We shall look for solutions that can be expressed in 
terms of the complex null vector A~ 

A~=a"T'=J.l"+iv,,, (4.3) 

where 

and the complex retarded distance is 

where 

r l = vI"(x" - ZI,,) - v2"(a" - Z2,,), 

r 2 = v 2"(x" - ZI,,) + VI "(a" - Z2,,)' 

Instead of the identities in Eqs. (3. 3a)-(3. 3d), we 
have the following: 

(4.4) 

(4.6) 

r l ,,,, = Vlct + kfJ.", + lv"" (4.7a) 

r 2, ",:= v2'" -lfJ.", + kv"" (4.7b) 

J.l",VI "'-V2"'V",=1, (4.7c) 

Vla v'" + V2",fJ.'" = 0, (4.7d) 

fJ.",fJ.'" = v"'v'" , (4.7e) 

fJ.",v'" = 0, (4.70 

1 
2 + 2 [rl 1)",s+ (r2l- rIk)fJ.",fJ. s - (r2l- rIk)v",vs r l r2 

- (ril + r 2k)(fJ.",vs + fJ.a v",) - r 2(fJ.",V2B + fJ.SV2'" 

+ V ",VIS + VaVla) + r l (- fJ.",V IS - VI",fJ. S + v "V2B 

+ VaV2ct )]' (4.7g) 

1 
v D = -2--2 [- r 21)_·D + (ril + r 2k)J.l",fJ.a - (rll + r 2k)v",vs "',~ r l +r2 "" 

+ (- rik + r 2l)(fJ."vs + J.lsV",) - r l (/.I",VIa + VaVI " 

+ fJ.",V2S + J.lSV2,,) + r 2(fJ.",VIS + J.leVI'" - V2",VS - V2B v",)], 
(4.7h) 

where 

k= -1 + rIal "'fJ.", - r2v"al'" - r 2a2"'fJ." - r la2 "'v"" (4.8) 

l= -rIa2"'J.l",+r2a2"'v",-r2al"'fJ."-rIal"'v",, (4.9) 

Now in order to find the real null 4-vector \. we use 
the spinor representation of the 4-vectors. If A" is a 
4-vector its spinor equivalent is given as 

A=a"A" (A"=a""oA",il; QI,~=1,2), 

where 

2388 J. Math. Phys., Vol. 16, No. 12, December 1975 

a" = (aa, 0'). 

ao is two-dimensional identity matrix and O"s are the 
Pauli spin matrices. They satisfy the following anti­
commutation relation, 

(4.12) 

where 

- T a" = a2(a,,) a2 = (ao, - 0'), 

and a/ denotes the transpose of 0'". Using the spinor 
representations of the complex vectors 11.'" and Z' IJ. we 
get the following identities: 

A'Z'+Z'~=2, 

A'~ = 0, 

z,i' = 1. 

(4. 13a) 

(4. 13b) 

(4.13c) 

Then we define the spinor representation of the real 
null vector AIJ. as 

11.= A'VIA,t[Tr(A')/Tr(A'v1A,t)], (4.14) 

where VI" is the real part of Z~. Note that when A~ is 
real (alJ.= 0), Eq. (4.14) becomes an identity. Since, in 
this section, we are only interested in the fields of the 
systems with uniform velocity, the procedure outlined 
above becomes simpler. The scalar functions k and 1 
in Eqs. (4.8) and (4.9) become - 1 and 0, respectively, 
and 

where 

Z'IJ.=v1"=n,,, V21J.=0. 

Then, the null vector \ can be found from Eq. (4.14) 
as 

S + Y TvB II. _ J.l fJ.sng. - fJ.g. tC¥.!1tln fJ. 
,,- fJ.BfJ.s-1 

(4.15) 

The derivative of AIJ. with respect to the coordinates xlJ. 
is found asH 

(4.16) 

Here, we notice that the velocity vector n" is a Killing 
vector, because it satisfies the equations 

nOlA" = 1, 

n"'Xa,,,,=O, 

and since it is a timelike vector, it is always possible 
to bring it to its rest frame 61J. ° by a Lorentz trans­
formation. Thus 

n"o,g",s= oolJ",a= O. 

To find the e. m. t. we make a further choice for 
the form of V by taking 

V=j(r1)/(r1
2+r/l. (4.17) 
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With this assumption, the Kerr-Schild metric can be 
transformed into the Boyer-Lindquistl5 coordinate 
system, which reads 

ds2 = (1 _ 2f)d~ _ kdrl
2 - lfle2 _ !!..sin2edIP2 

L:!:>. ~ 

4af -
+ ySin2edCPdt, 

where 

L:= r l
2 + a2 cos2e, 

!:>.=r12+a2 -2/, 

B = (r 12 + a2)2 - a2!:>. sin2e. 

Transformations from Kerr-Schild coordinates into 
the Boyer-Lindquist coordinates are 

(r1 +ia)ei¢sine=x+iy, 

r1 cose= z, 

- 2/ 
dt= dt + t:dru 

In the new coordinate system AI' and the e. m. t. TjL" 
take the forms 

A,,= (1, t, 0, -asin2e) , 

T ""= (D + 4h)u"u" - (D + 4h) ~m"m" - (D + 2h)g,," , 

where 

u = 
" 

(1,0,0, -asin2e), 

m,,=(O,-l,O,O), 

D= - f?/~ (fTl = ::1) 
h - rifTl -f - t . 

The Kerr and the charged Kerr metrics correspond to 
the vanishing of fTlT1' For an interior metric, the e. m. t. 
in Eq. (4.18) corresponds to the e. m. t. of an aniso­
tropic perfect fluid distribution. Isotropy is destroyed 
in the radial direction. We note that the deviation from 
a perfect fluid distribution can also be regarded as 
arising from the contribution of a moving Nambu 
string. 16 Such anisotropic energy-momentum tensors 
have also been discussed recently by Bowers and 
Liang. 17 This interior metric matches to the Kerr 
metric on an oblate spheroid, r l = r 0 the equation of 
this surface being 

ro4 - ro2(~ - a2) - a2z2 = 0 

where 

and the function flr 1 ) satisfies the following boundary 
conditions 
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ad fir)/ =m, 
r 1 T1=rO 

m being the total mass. 

5. LINEARIZED GENERAL RELATIVITY AND 
TRAUTMAN'S COMPLEX TRANSLATION 

The linearized theory of the gravitational field can 
be developed by regarding the actual Riemannian 
space-time as a first order perturbation of flat 
space-time. Here, in contrast to many authors we 
take g "V = v::g g 1'. as the gravitational field and assume 
thatll ,18 

,j _ g g"'. =7)". + 2ecp"'", (5.1) 

where e is a constant and cp"''' is a symmetric tensor. In 
the linearized theory, we neglect terms of all but the 
first order in E. Hence 

(_ detq "''')1/2 = (_ detg ,,)1/2 = (_ g)1/2 

= 1 + et/>, (5.2) 

where 

cp = TJ"'·cp "". (5.3) 

Field equations, in terms of t/>"", follow as 

GT'" =+e(-7)",8,f,Y _7)a8,f,,,, 
1I 'f' v?J3r 'f' a,B", 

+ Dcp"'. - fJ"'"cpa8,a8)' (5.4) 

Without any choice of gauge, it is easy to show that 

o",T"',,= 0, 

and, of course, the pseudo-energy-momentum tensor 
vanishes in this approximation. 11 

It is remarkable that the field equation (5.4) is exact­
ly the same as the one (2.33) which was obtained for the 
Kerr-Schild metric. All the metrics which are in the 
Kerr-Schild class are also the solution of linearized 
field equations (5.4), but the reverse is not true in 
general. 

Trautman4 has developed a method of constructing 
classes of new solutions to linear special relativistic 
partial differential equations. In particular, he used 
the method to produce null curling solutions of Max­
well's equations and he stated that the same method 
can also be used in linearized Einstein's equations. Now 
it becomes very clear that Newman's complex transla­
tion is nothing but Trautman's complex translation. 

6. CONCLUSION 

To obtain linear gravitational field equations there 
are two possible methods. In the first one we use an 
approximation procedure which leads to linearized gen­
eral relativity. In the second one we put some con­
straints on the symmetric tensor t/>"" in Eq. (5.1), in 
such a way that the pseudo-energy-momentum tensor 
vanishes. In this work we showed the existence of the 
second possibility. It is an open question whether the 
Kerr -Schild coordinate system is the only coordinate 
system in which Einstein's equations become linear for 
a special geometry. 

We have further obtained the gravitational field of 
accelerated nonspinning particles and unaccelerated 
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spinning particles. It is also possible to obtain the 
gravitational field of accelerated spinning particles. 
Work on the latter type solution is in progress. 

If we take the null vector A" as a constant null vector, 
the Kerr-Schild metric describes gravitational waves 
such that plane fronted waves are in this class of met­
rics with nonvanishing Weyl tensor. The corresponding 
space-time is of Petrov-type N. 

As another possible application of our method the 
following remark is in order. Quantization of general 
relativity becomes simple for the linearized approxi­
mate theory. Since in the case of special geometries 
Einstein's theory becomes exactly linear in the 
Kerr -Schild coordinates, the same quantization pro­
cedure could also be applied in these special cases. 
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