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Abstract: A charged artificial satellite moving relative to a magnetic field accelerates 
in a direction perpendicular to its velocity and the magnetic field due to the Lorentz 
force. The geomagnetic field is considered as a multipole potential field and the 
satellite electrical charged is supposed to be constant. The study is provided to 
compute Lorentz force acceleration of a charged satellite in Earth’s magnetic field as 
a function of the orbital elements of the satellite. Periodic perturbations in the orbital 
elements of the satellite are derived using Lagrange planetary equations. Numerical 
results for a chosen satellites orbit shows the most effects of Lorentz force are in semi 
major axis, eccentricity, and the longitude of the satellite, but there aren’t any effects 
of the force on the inclination and the argument of the perigee of the satellite 
elements.   
 

INTRODUCTION 
 
The important quantity which determines the magnitude of the effect is the satellite’s 
electrical charge. The surface of a satellite is charged to a negative potential (see 
Al’pert et al., 1964) and in the first approximation behaves like a spherical condenser 
with respect to the ionosphere vicinity.  
The relationship between the plasma environment and spacecraft potential must be 
taken into account for the importance of mission role and spacecraft configuration in 
evaluating absolute and differential charging effects. The build-up of large potentials 
on spacecraft relative to ambient plasma is not, of itself, a serious electrostatic 
discharged design concern. However, such charging enhances surface contamination, 
which degrades thermal properties. These and other charging effects can produce 
potential differences between spacecraft surface or between spacecraft surface and 
spacecraft ground. When a breakdown threshold is exceeded, an electrostatic 
discharge can occur. Vehicle torquing or wobble can also be produced when multiple 
discharging occur (Carolyn K. Purvis et al. 1984). Anderson (et al. 1994) examined 
the relationship between the plasma environment and spacecraft potential for the 
Dynamics Explorer 2 (DE 2) spacecraft in an attempt to improve the accuracy of ion 
drift measurements by the retarding potential analyzer (RPA). The geomagnetic field  
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had considerable effect on the spacecraft potential due to magnetic field confinement 
of the electrons as well as to the (Lorentz force) V×B electric field resulting from the 
movement of the spacecraft across magnetic field lines. They derived an algorithm for 
determining the spacecraft potential (at the location of the RPA on the spacecraft) for 
any point of the DE 2 orbit. Juhasz Antal and Mihaly Horanyi (1997) studied the 
Degrading objects in orbit around the Earth as well as solid rocket motors generate 
micron- and submicron-sized space debris. They shown, the motion of these particles 
is dictated by gravity, solar radiation pressure, and electromagnetic forces, since these 
grains collect electrostatic charges and become vulnerable to the electric and magnetic 
fields in the Earth's magnetosphere. They shown that magnetosphere effects tend to 
reduce the lifetime of these grains either by forcing them onto elliptical orbits to 
collide with the Earth or by swiftly ejecting them into the interplanetary space. 
 
Several attempts were already made to assess the effects of Lorentz force to show in 
principle its negligible value with respect to some other, pre-important effects (e.g. 
Sehnal, 1969). However, the necessary high precession of orbital determination of 
some proposed space experiments (Ciufolini, 1987), requires a full knowledge of the 
electrodynamical effects connected with the Lorentz force, which we shall try to study 
in detail. VokRouhlicky (1989) determined the orbital effects of the Lorentz force on 
the motion of an electrically charged artificial satellite moving in the Earth’s magnetic 
field. In his case the influence of the geomagnetic field manifests itself predominantly 
by Lorentz force. Peck, (2005) found out the components of the Lorentz force in the 
spherical coordinate system.He evaluated the use of Lorentz force as a means of orbit 
control for finite bodies, including small spacecraft. 
 
In the present work, the components of the Lorentz force acceleration of a charged 
satellite in the Earth’s magnetic field are computed as a function of orbital elements of 
the satellite in two directions (radial and tangential). Periodic perturbations in orbital 
elements of the satellite due to the Lorentz force are derived using Lagrange planetary 
equations. Numerical applications for the LAGOS Satellite are introduced. 
 

EQUATIONS of MOTION 
 
Let us consider the magnetic field of the earth to be given as a multipole potential 
field and the satellite electrical charged is supposed to be constant. 
The components of the disturbing force (Lorentz force) we are looking for will be the 
components of a vector 
                                   L Q ×F = V B                                                                            (1) 
where V is the velocity of the satellite in the orbit, B is the vector of the magnetic 
field intensity of the Earth, Q is the satellite’s electrical charge. The components of 
the vector LF , from equation (1) in the direction r̂  (the direction of the position 

vector) and ˆt (the tangential direction, which normal to r and the orbital angular 
momentum).As in Peck (2005) Augmented with the Lorentz Force, Newton’s law of 
gravitation for a satellite of mass m moving in 2r −  gravitational field of the Earth 
with point mass M becomes  
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m m Q
r
μ ⎛ ⎞

+ × ×⎜ ⎟
⎝ ⎠

er = - r r - r Bω ,                                 (2) 

where, the superscript N indicates a derivative taken with respect to a Newtonian, or 
inertial frame, r is the vector position (magnitude r and direction r̂ ) of the satellite 
relative to the system barycentre, MGμ = where G is the universal gravitational 
constant, eω is the Earth’s angular velocity vector fixed frame with the respect to an 
inertial frame. This expression acknowledges that it is the satellite’s velocity relative 

to the magnetic field 
N d
dt

×eV = r - rω  that determines the Lorentz force. In the 

simplest model, the earth’s magnetic field rotates with Earth. Br relativity, this time-
varying magnetic field represents an electric field, which is the means by which work 
can be done on the Lorentz force. In a frame E the rotates with the Earth, the equation 

of motion in terms of the relative velocity 
E d
dt

V = r and a gravitational potential grΦ  

is  

                     ( )
E d
dt gr

Q
m

∇Φ + × × × ×e e eV = - V B - 2 V + 2 rω ω ω                             (3)                

where, dividing through by m introduces the commonly used charge per mass Q
m

 as a 

parameter that determines the scale of the Lorentz force. Following Schaffer and 
Burns (1994), we project this equation onto V 
 

                          
E E

2 2 2 2d 1 d d d 1 sin
dt 2 dt dt dt 2gr eV r ω θ⎛ ⎞⋅ = ∇Φ ⋅ ⎜ ⎟

⎝ ⎠
V V = - r +                    (4)  

            
whereθ  is a coordinate of a spherical coordinate system (r,θ , φ ) with origin at the 
Earth’s centre and associated with an E-fixed basis. Integrating between 1t  and 

2t shows that the total mechanical energy in the rotating fram H is constant: 
                                             2 1( ) ( ) 0,H t H t− =                                                           (5) 
Schaffer and Burns (1994) point out that this function is the appropriate Hamiltonian 
in the non-canonical variables ( ), m= &r p r  as demonstrated by Littlejohn (1982, 
1979), who used these coordinates in a perturbation theory for highly charged 
particles in slowly varying electromagnetic fields. The existence of this constant 
Hamiltonian in a rotating frame suggests that only the rotation of the magnetic field, 
which causes the co-rotational electrical field, can do work in the inertial frame. By 
way of illustration, we consider the osculating elements of a restricted two- body orbit 
whose angular momentum is aligned with the Earth’s magnetic moment (i.e., a 
magnetic equatorial orbit). The energy E per unit satellite mass in inertial frame is 
given by  

                                    
2

E
a
μ

= − ,                                                                                (6) 

where a is the semimajor axis of the sateillite’s orbit. Its time rate of change is 
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a familiar result in which the energy depends entirely on the semimajor axis. Work 
done if and only if the semimajor changed. The perturbing force dF per unit mass is  
                                    ˆˆrd +L tF = F r F t                                                                       (8) 
In the basis of proposed directions of the Lorenzt force, then  

                                    
N d ˆˆ
dt

r rφ&&r = r + t                                                                       (9) 

whereφ  is the true anomaly of the orbit. Therefore,  

                                     ( )( )2
ˆ ˆˆ ˆ

2 ra r r +
a
μ φ= && & tr + t F r F t                                              (10) 

or 

                                      22
a r r

a
μ φ= && & r tF + F .                                                              (11) 

At the magnetic equator ˆˆB ×B = r t . In this case the radial component of the Lorentz 
force is  

                                      ( )
N dˆ
dtr

Q Q Br
m m

φ ω
⎛ ⎞

= ⋅ × × = −⎜ ⎟
⎝ ⎠

&
e eF r r - r Bω ,                 (12) 

And the tangential component of the Lorentz force is  

                                     
N dˆ
dtt

Q QB r
m m
⎡ ⎤⎛ ⎞

= ⋅ × × =⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

&eF t r - r Bω .                             (13) 

The signs of Q and B are important her: positive charge (due to, say electron 
emission) and negative (southward) magnetic fields cause a loss in orbital energy, as 
does negative charge in a positive (northward) magnetic field. Only when Q and B are 
of opposite sign is the energy change positive. Although this result would indicate that 
greater Lorentz force is available at higher altitude, in fact B drops off approximately 
with 3r − ; so that net effect of increased altitude is deleterious. 
We shall make use the formulas 

                                    
( )

2

2

r 1 , sin ,

sin 1 sin , cos cos

a e E r ae E E
a ae E E e
r r

φ

φ φ

= − =

= − = −

& & &&
                    (14)               

where E is the eccentric anomaly of the satellite’s orbit, e is the eccentricity of the 
orbit. Using the relations in (14), we can rewrite the components of the Lorentz force 

LF  in radial and tangential directions as the following: 

                                    21r
Q B a e E r
m

ω⎡ ⎤== − −⎣ ⎦
&

eF ,                                            (15) 

 

                                   sint
Q Bae E E
m

== &F .                                                           (16) 

The Lagrange Planetary equations: 
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are used to derive the perturbations in the orbital elements, where n, I, M,ω ,Ω   are  
the mean motion, inclination, mean anomaly, argument of perigee, ascending node of 
the satellite’s orbit respectively. Therefore, the periodic perturbations in the Keplerian 
elements due to the Lorentz force are in the following shape. 
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RESULTS and DISCUSSION 
 
As we already stated, The LAGEOS orbital elements were taken as a basis for 
numerical examples.  The electrical charge of the satellite was taken as 

113 10Q C ,−= − × (see VokRouhlicky, 1989). The elements of the LAGEOS satellite 
are summarized in the table 1.  
 
 
Table 1. Parameter and elements of LAGEOS satellite under the computation. 
 

Semi-major axis 12270 km 

Eccentricity 0.004 
Inclination 109.9 deg    
Mass of satellite 407 kg 
Charge 3X10-11 C 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                        FIGURE 1. Perturbations in the semimajor axis due to Lorentz force.       
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                           FIGURE 2.  Perturbations in the eccentricity due to Lorentz force.  
 
 
 
 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                      FIGURE 3. Perturbations in the longitude of the satellite orbit due to Lorentz force.  
 
 
 
 
Figure 1, presents the perodic perturbations in the semi-major axis due to the Lorentz 
force, notice that Lorentz force  change the semi-major axis between – 0.001and 
0.001 km in a period of 400 days, it may help us to explain the reason of the shift in 
LAGEOS position about 1 millimetre per day. Figure 2, presents the effects of the 
Lorentz force on the eccentriicity, which descirbe these efeects as a periodic 
perturbations in the eccentricity in a level between - 76 10−− ×  and 76 10−×  after 400 
days. Figure 3, presents the influence of the Lorenzt force on the mean longitude of 
the satellite Mλ ω= +Ω+ , which has secular perturbations from 0.04 to -0.1 deg after 400 days. 
 
 
 
 
 
 

-50 0 50 100 150 200 250 300 350 400

-6.0x10-7

-4.0x10-7

-2.0x10-7

0.0
2.0x10-7

4.0x10-7

6.0x10-7

Pe
rt.

 in
 e

cc
en

te
rc

ity

Time in (days)

0 100 200 300 400
-0.10
-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06 a = 12271 km 

e =   0.004
I =    109.8 deg.

Pe
rt.

 in
 M

ea
n 

Lo
ng

itu
de

 (d
eg

)

Time (days)



1518                                                                                                 Yehia A. Abdel-Aziz 
 
 

CONCLUSION 
 

The components of the Lorentz force acceleration of a charged satellite in the Earth’s 
magnetic field are computed as a function of the orbital elements of the satellite in 
two directions (radial and tangential). Periodic perturbations in the orbital elements of 
the satellite due to the Lorentz force are derived using Lagrange planetary equations. 
Numerical applications for the LAGOS Satellite are introduced. These Numerical 
results shown that the most effects of Lorentz force are in the semimajor axis, 
eccentricity, and the longitude of the satellite, but there aren’t any effects of the 
Lorentz force on the inclination and the argument of perigee of the orbit. The Lorentz 
force that derived in this work may help us to explain the reason of the shift in 
LAGEOS position about 1 millimetre per day. 
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