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Lorentz-force shifts in strong-field ionization with mid-infrared laser fields
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In the past, the ionization of atoms and molecules by strong, mid-infrared (IR) laser fields has attracted
recurrent interest. Measurements with different IR pulses have demonstrated the crucial role of the magnetic
field on the electron dynamics, classically known as the Lorentz force FL = q (E + v × B), that acts upon all
particles with charge q in motion. These measurements also require the advancement of theory beyond the
presently applied methods. In particular, the strong-field approximation (SFA) is typically based on the dipole
approximation alone and neglects both the magnetic field and the spatial dependence of the driving electric field.
Here we show and discuss that several, if not most, observations from strong-field ionization experiments with
mid-IR fields can be quantitatively explained within the framework of SFA, if the Lorentz force is taken into
account by nondipole Volkov states in the formalism. The details of such a treatment are analyzed for the (peak)
shifts of the polar-angle distribution of above-threshold ionization photoelectrons along the laser propagation,
the steering of electron momenta by two not quite collinear laser beams, or the enhanced momentum transfer to
photoelectrons in standing-light fields. Moreover, the same formalism promises to explain the generation of high
harmonics and other strong-field rescattering phenomena when driven by mid-IR laser fields. All these results
show how strong-field processes can be understood on equal footings within the SFA, if one goes beyond the
commonly applied dipole approximation.
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I. INTRODUCTION

If atoms are exposed to visible or near-infrared (IR) laser
pulses with peak intensities larger than, say, 1013 W/cm2,
a number of nonlinear optical processes arise, such as
above-threshold ionization (ATI), tunneling ionization, high-
order-harmonic generation (HHG), or nonsequential double
ionization (NSDI), to recall just a few of them [1,2]. In par-
ticular, the generation of high harmonics has been explored
for more than two decades and has led to a number of im-
portant applications, including the production of attosecond
pulses [3], high-energy harmonics within the water window
[4], or even the imaging of the electron density of various
atomic and molecular targets [5]. In addition, HHG with near-
and mid-IR lasers bears the promise of the development of
an ultrashort coherent light source in the extreme-ultraviolet
and soft x-ray regions [6]. Indeed, such coherent radiation
in the soft x-ray domain may help resolve the electron dy-
namics with attosecond temporal and sub-angstrom spatial
resolution [7]. All these promises have recently initiated a
number of strong-field ionization experiments at rather long
wavelengths, λ > 1200 nm [8–10], and may pave the way to
even longer ones [11].
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However, all the nonlinear light-atom interaction processes
from above rely on the interplay of weakly bound electrons
with the laser field and, more often than not, on their laser-
driven rescattering at the parent ions [12–14]. In mid-IR
laser pulses, these electrons are thus affected by the Lorentz
force [15], as shown schematically in Fig. 1, and which
pushes the (oscillating) electrons away from their parent ions
[16,17]. In a typical strong-field ionization measurement [cf.
Fig. 1(a)] with just a single incident laser beam (red-wavy
line) of intensity I , wavelength λ, and ellipticity ε, the laser-
electron interaction leads to the emission of photoelectrons
with asymptotic momentum p at the detector. In these mea-
surements, the (magnetic) Lorentz force becomes visible in a
nonzero momentum component pz along the laser beam axis,
often briefly referred to as peak shifts in the literature. When,
as shown schematically in Fig. 1(b), the electron is released
from its parent ion into the continuum, it is accelerated by the
electric field E = E (r, t ) up to the velocity v(t ) = (vx, vy, 0).
The classical Lorentz force FL = q [v(t ) × B(r, t )] then con-
tributes a shift � pz to the (longitudinal) momentum along the
beam propagation, which becomes measurable for sufficiently
high velocities of the electron. Figure 1(c) displays the path of
the photoelectron within the reaction plane as spanned by the
polarization (x axis) and propagation (z axis) directions of the
laser. Within each optical cycle, a quasifree electron propa-
gates a distance rz along the beam axis, and with paths shown
for two characteristic wavelengths λ = 800 nm (blue-dashed
line) and λ = 1600 nm (black-solid line) of the incident beam.
This quasifree motion also leads to the frequently discussed
figure-eight motion of the electron in the field with ampli-

tude β0 = E2
0

16cω3 ∼ Iλ3 ∼ Upλ � ao along the beam axis for
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FIG. 1. Influence of the Lorentz force upon strong-field ionization processes. (a) Typical setup of a strong-field ionization measurement
with a single incident laser beam (red) of intensity I , wavelength λ, and ellipticity ε. The interaction of the laser field with the atomic target
leads to photoelectrons with asymptotic momentum p at the detector. In these measurements, the (magnetic) Lorentz force becomes visible
first of all in a nonzero momentum component pz along the laser beam axis. (b) When the electron is released from its parent ion into the
continuum, it is accelerated within the (transverse) polarization plane by the electric field E = E (r, t ) up to the velocity v(t ) = (vx, vy, 0).
The classical Lorentz force FL = q[v(t ) × B(r, t )] then contributes a shift � pz to the (longitudinal) momentum along the beam propagation,
which becomes measurable for sufficiently high velocities of the electron. (c) Path of the photoelectron within the reaction plane, where the
electron propagates a distance rz along the beam axis within each optical cycle. Paths are shown for two characteristic wavelengths λ = 800 nm
(blue-dashed line) and λ = 1600 nm (black-solid line) of the incident beam. (d) Characteristic figure-eight motion of the electron in the field
with amplitude β0 along the beam axis, if the constant averaged drift 〈vz〉 t is subtracted. For sufficiently large amplitudes βo � ao, the Lorentz
force is therefore no longer negligible and requires a proper quantum treatment. (e) Wavelength-intensity domain (gray) in which the dipole
approximation is considered to be valid for a single driving laser beam [18]. Colored symbols are shown for typical wavelengths and intensities
as applied in recent strong-field ionization experiments: blue diamond [19], purple triangle [20], and orange triangle [21]. Moreover, the black
circle displays the typical laser parameters for near-IR experiments with λ = 800 nm. See text for further discussion.

sufficiently long wavelength [Fig. 1(d)], if the averaged drift
〈vz〉 t is subtracted. Here, moreover, Up denotes the pon-
deromotive energy of the photoelectron, i.e., its (classical)
cycle-averaged kinetic energy in the continuum, and Ip the
ionization potential of the target atom, which are often sum-
marized in terms of the Keldysh parameter γ = √

Ip/2Up ∝√
Ip/β0 < 1 [22]. For sufficiently large βo � ao, therefore, the

Lorentz force is no longer negligible and requires a proper
quantum treatment. This is readily seen also from the (gray)
wavelength-intensity domain in Fig. 1(e), for which the dipole
approximation is considered to be valid for a single driving
laser beam. This domain is limited for small wavelength to
the left by the size of the target atoms and for long wavelength
to the right by the Lorentz drift along the beam axis. Colored
symbols are shown in this figure for typical wavelengths and
intensities as applied in recent strong-field ionization experi-
ments. In addition, the black circle displays the typical laser
parameters for near-IR experiments with λ = 800 nm.

Obviously, the large amplitude βo of the oscillating
electron makes it necessary to go beyond the standard dipole
approximation, i.e., beyond a homogeneous electric and
merely time-dependent field. For plane-wave laser beams,
various nondipole methods have therefore been developed
during recent years, including the (single-beam) nondipole
strong-field approximation (SFA) by Titi et al. [23], the
quasirelativistic SFA by Krajewska et al. [24], as well as the
nondipole Volkov solutions to the Schrödinger equation by He
and co-workers [25]. All these methods explain the considered
experiments with mid-IR laser pulses reasonably well, while
Ref. [24] in particular showed how the retardation and recoil
corrections already contribute to the peak shifts ∝ 1/c in the
quasirelativistic SFA. These approaches indeed account for
major parts of the Lorentz force for computing the peak shifts
of the photoelectrons along the beam propagation and, by
including rescattering terms into the SFA, they have been re-
stricted to copropagating plane-wave beams. Until the present,
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TABLE I. Useful parameters that help characterize the (valence-shell) electronic motion of target atoms with ionization potential Ip in
strong laser fields. For an incident pulse with either purely linear (ε = 0) or circular polarization (ε = ±1), wavelength λ (nm), and peak
intensity I (W/cm2), the laser-electron interaction can be examined in terms of the ponderomotive potential Up (eV) to designate the mean
classical energy of a quasi-free electron in the field, the Keldysh parameter γ to relate the strengths of the electrostatic atomic and the laser
(electric) fields, as well as the mean Lorentz force 〈FL,z〉 that acts upon a (classical) electron with binding energy ε = −Ip. Moreover, the
Lorentz force pushes the electron per laser cycle by a distance rz along the propagation direction of the laser beam. After the first return of the
electron to the parent ion, its binding energy at the closest approach is therefore lowered by the factor Rb = εb(rz )/Ip, which nicely indicates its
delocalization from the ionic core. Below, all parameters are shown for krypton (Ip = 14 eV), which has been frequently applied in strong-field
experiments.

λ (nm) I (W/cm2) Up (eV) γ 〈FL,z〉 (10−4 a.u.) rz (pm) Rb

Linearly polarized laser beam (ε = 0)
800 1013 0.6 3.4 0.2 2.8 0.95

5 × 1013 3.0 1.5 1.1 14.0 0.78
1014 6.0 1.1 2.3 28.1 0.65

1600 1013 2.4 1.7 0.5 22.5 0.70
5 × 1013 12.0 0.8 2.3 112 0.31

1014 23.9 0.5 4.6 225 0.19
3200 1013 9.6 0.9 0.9 180 0.23

5 × 1013 47.8 0.4 4.6 899 0.05
1014 95.6 0.3 9.3 1799 0.03

Circularly polarized laser beam (ε = 1)
1600 1013 2.4 1.7 0.2 15.0 0.78

5 × 1013 12.0 0.8 1.1 74.8 0.41
1014 23.9 0.5 2.3 150 0.25

only the nondipole SFA from Ref. [26], derived by us, is able
to support both the discrete and continuous superpositions of
plane-wave beams and, hence, a rather general spatial depen-
dence of the laser field for the motion of the electrons in the
continuum. This nondipole SFA for spatially structured beams
also provides a nonzero and observable peak shift � pz (of the
maxima) in the photoelectron momentum distributions of the
ATI spectra in good-to-excellent agreement with experiment.

To better understand the role of the Lorentz force
upon strong-field ionization and rescattering processes, we
theoretically analyze selected scenarios that have been exper-
imentally realized or discussed in good detail in the literature
[19,21]. Emphasis is placed on the nondipole SFA from
Ref. [26] and how this approximation can be utilized to
quantitatively predict the energy and momentum shifts in the
observed spectra. In Sec. II, we shall recall the theoretical
background of the nondipole SFA by first elucidating the
role of the Lorentz force in terms of a few characteristic
parameters. We also discuss both the construction of the
Volkov states for spatially structured fields as well as the direct
SFA amplitude, before we shall make the influence of the
combined—electric and magnetic—fields upon the electron
dynamics explicit. In Sec. III, we then apply this theory to
a number of atomic strong-field phenomena, including the
peak shifts in the polar-angle distribution (PAD) of the ATI
photoelectron along the laser propagation, the steering of the
electron momenta by noncollinear laser beams, or the en-
hanced momentum transfer to photoelectrons in standing-light
fields. This section demonstrates how quite different observa-
tions can be explained, both qualitatively and quantitatively,
if the Lorentz force is accounted for in a quantum description
of strong-field atomic processes. This includes the promise
to explain the generation of high harmonics as well as other
strong-field rescattering phenomena when driven by mid-IR

laser fields. Finally, a short summary and outlook are given in
Sec. IV.

II. THEORETICAL BACKGROUND

A. Parameters for characterizing the motion of atomic
electrons in mid-IR laser fields

In strong laser fields, a weakly bound atomic electron fol-
lows the laser field quite analogous to a free electron, initially
at rest, though with various constraints due to its parent ion.
Several parameters can be readily derived to characterize the
motion of such quasifree electrons for target atoms with ion-
ization potential Ip. Apart from the ponderomotive potential
Up and the Keldysh parameter γ = √

Ip / 2Up, which empha-
size the (mean) kinetic energy as well as (its ratio to) the
ionization potential, the magnetic field of the incident beam
pushes the electron away from its parent ion along the beam
axis. This influence of the magnetic field can qualitatively be
understood in terms of the Lorentz force, which acts upon
a classical electron with potential energy −Ip and leads to
a drift rz per laser cycle; cf. the discussion of Fig. 1. This
drift, of course, also lowers the effective binding energy by a
factor Rb = εb(rz )/Ip = −Z (eff)/Ip rz at its first return to the
ion and eventually becomes visible in all strong-field ion-
izations as well as rescattering processes. Table I displays
these characteristic parameters for a krypton gas target as
frequently applied in many measurements. These parameters
are displayed for the three wavelengths λ = 800, 1600, and
3200 nm as well as the peak intensities I = 1013, 5 × 1013,
and 1014 W/cm2, respectively. For linearly polarized light, in
particular, the mean Lorentz force 〈FL,z〉, which needs to be
integrated numerically, and the drift per laser cycle rz rapidly
increase with the wavelength λ and intensity I of the laser
beam. While the Lorentz force is linear in both the wavelength
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FIG. 2. Total phase φ(r, t ) of the (free-)electron Volkov states as a function of time, shown for different laser fields. Results are displayed
for a single plane-wave beam and two noncollinear beams by applying three different approximations: The single-beam dipole-Volkov phase
(left column) is compared with the (single-beam) nondipole phase (middle column) as well as the nondipole phase for two not quite collinear
beams (right column), respectively. (a)–(c) The time dependence of the total phase φ(ro, t ) at the origin ro = 0. The red-solid lines display the
full phase φ(ro, t ) for the three different Volkov solutions from above, including (a) φ(ro, t ) = p r − SV (t ) and (b),(c) φ(ro, t ) = p r − 
(ro, t ).
These total phases are also compared to the purely ponderomotive phase φ (ponderomotive) (ro, t ) = p r − Up t (blue-dotted lines) as well as the
phase of a free electron φ (free) (ro, t ) = p r − p2/2 t (black-dashed lines). (d)–(f) A contour plot of the total phase φ(r, to) of the Volkov
solutions at constant time to = Tcycle/2 within the x − z reaction plane. While the electron wave mainly moves along the polarization (x) axis,
the total phase also depends on the beam propagation (z axis), but—like a corrugated cardboard—is independent of y. The colors in the bottom
row are drawn only to guide the eyes and the following parameters are employed: I = 1015 W/cm2, λ = 1600 nm, linear polarization (ε = 0)
along the x axis, p = (

√
2 Ep, 0, 0), and Ep = 5 ω, respectively. In the right column, a second identical beam propagates under the angle

δ = + 5◦ with respect to the first one within the x − z plane. See text for further discussion.

and intensity, the distance rz increases even quadratically with
the wavelength. At λ = 3200 nm, for instance, the electron
is easily pushed more than 10 a.u. ≈500 pm within a single
laser cycle away from the parent ion. As seen from the relative
binding energy Rb in the last column, the electron is only
very weakly bound at its first return and can therefore hardly
be recaptured by its ion. For circularly polarized light, the
Lorentz force is smaller and, hence, the electron will remain
stronger bound to its parent ion since Eo ∝

√
I/(1 + ε2).

While the parameters from Table I clearly affirm the
role of the Lorentz force in strong-field processes with
mid-IR laser fields, a more advanced quantum description is
required in order to predict the observed spectra and shifts also
quantitatively. Below, we shall make use of the nondipole SFA
for analyzing how the Lorentz force contributes to the ATI, the
deflection of electrons in a standing-light field (Kapitza-Dirac
effect), or even the generation of high harmonics with mid-IR
fields. To provide a consistent theoretical framework, we
first recall how the nondipole SFA can be applied to account
for the spatial structure and, hence, the magnetic field of
the incident laser pulses. In particular, here we examine
how the nondipole contributions from the Volkov solutions
enter the strong-field amplitude and naturally give rise to
terms that can be discussed individually for all the processes
mentioned above. While we restrict ourselves to just the

relevant stepping stones in this discussion, we refer the reader
to the literature for all further mathematical details [26].
Atomic units (me = h̄ = e2/4πεo = 1) are used throughout
this paper, unless stated otherwise.

B. Electrons in strong laser fields. Volkov states

In an external electromagnetic field with vector potential
A(r, t ), an electron follows, most generally and within veloc-
ity gauge, the time-dependent Schrödinger equation,

i
∂

∂t
χ (r, t ) = 1

2
[p + eA(r, t )] 2χ (r, t ), (1)

where p denotes the kinetic momentum and [p + eA(r, t )]
the so-called (conjugate) canonical momentum of the electron
within the field. While this equation cannot be solved so read-
ily for a spatially dependent vector potential, the well-known
plane-wave solutions for A(r, t ) ≡ 0 are simply given by

χp(r, t ) ≡ 1

(2π )3/2
ei φ(r,t ) = 1

(2π )3/2
ei (p·r− p2

2 t ).

These solutions describe electrons with well-defined momen-
tum p, whose wave fronts move with phase velocity v =
− 1

m
∂φ

∂t = p/m and, thus, immediately reflect the nonrelativis-
tic energy-momentum relation of all free particles, as also
shown by the black-dashed curve in Fig. 2(a).
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Solutions for the time-dependent Schrödinger equation (1)
are also known for monochromatic and purely time-dependent
light fields A(t ) 	= A(r, t ), i.e., in dipole approximation,

χp(r, t ) = 1

(2π )3/2
eip·r e−iSV (t ),

SV (t ) = 1

2

∫ t

dτ [p + A(τ )]2. (2)

These solutions still describe electrons with well-defined ki-
netic momentum p and are referred to as Volkov states in
the literature [27]. They are often utilized in the treatment of
strong-field ionization processes for analyzing the asymptotic
momentum p = (p, ϑ, ϕ) of photoelectrons at the detector,
once the electrons have entered the field-free region. With
these solutions, the Volkov phase SV (t ) gives rise to a discrete
energy spectrum that readily describes the ATI peaks [28–30].
Mathematically, these solutions already contain the frequen-
cies that occur in a Fourier expansion of the vector potential,
i.e., the fundamental frequency and all the overtones of the
driving beam. In contrast to the nondipole Volkov states be-
low, however, the laser field here only influences the energy of
the photoelectrons, while their momentum remains restricted
to the (x − y) polarization plane.

The use of the Volkov solutions (2) in the computation of
transition and ionization amplitudes is therefore in line with
the dipole approximation, in which just a homogeneous elec-
tric field E (t ) is assumed for the entire motion of the electron
within the laser field. Below, we shall refer to these solutions
as dipole-Volkov states in order to clearly distinguish them
from a more generalized formulation of the laser-electron
interaction. The red line in Fig. 2(a) displays as a function
of time t the contribution of the oscillating laser field to the
total phase,

φ(ro, t ) = p · ro − SV (t )

= p · ro − (p2/2 + Up) t + pxA0 sin(ωt ),

of the photoelectron. While the kinetic momentum and the
ponderomotive energy Up alone (blue-dotted line) lead to a
linear decrease of the phase, the vector potential in the Volkov
phase gives rise to oscillations around this straight line. For a
fixed time to, moreover, the lines of constant phase exhibit a si-
nusoidal dependence in the x − z reaction plane [cf. Fig. 2(d)],
instead of just straight lines as we expect for free electrons.

Unfortunately, any spatial dependence of the vector po-
tential A(r, t ) prevents the straightforward solution of the
time-dependent Schrödinger equation (1). However, an ap-
proximate Volkov-like solution can still be constructed for
most laser fields that can be expressed as a superposition of
spatial modes, either in discrete or integral form. For a finite
number of discrete laser modes, especially, these solutions
were first derived by Rosenberg and Zhou [31], including
modes with nonparallel wave vectors k, and were recently
generalized by us [26] in order to account for continuous
superpositions of laser modes as well. In principle, this gen-
eralization enables us to incorporate any spatial dependence
of the driving beam, e.g., Gaussian or twisted light beams,
into the (quantum) dynamics of the photoelectron [32], though
often at the price of quite sophisticated integrals. These gen-

eralized nondipole Volkov solutions can be written by means
of a modified Volkov phase 
(r, t ) as [26]

χp(r, t ) = 1

(2π )3/2
ei(p·r− p2

2 t ) e−i 
(r,t ), (3)


(r, t ) = 
1(r, t ) + 
2(r, t ) + 
3(r, t )

+O
(

β
3/2

0

a0λ1/2

)
, (4)

which consists of three contributions 
i(r, t ), i = 1, 2, 3, due
to the interaction of the free electron with different parts of
the vector potential. The complete expression of the modified
Volkov phase (4) is shown below in Sec. 1 of the Appendix.
The first term 
1(r, t ) ∝ pe Ao

mecω scales with the product of the
kinetic momentum p and the field-induced momentum e Ao

of the ejected electron, while the second term 
2(r, t ) ∝
Up/ω is just proportional to the ponderomotive energy, nor-
malized to the frequency ω of the laser beam. Finally, the
third term 
3(r, t ) ∝ e Ao

me c · Up

ω
depends on the product of the

field-induced momentum and the frequency-normalized pon-
deromotive potential. All further terms are of higher order in
the amplitude Ao of the vector potential and are captured by
the symbol O. These additional terms can be safely neglected
as long as the magnitude β0 of the classical figure-eight mo-
tion is small or comparable with regard to the Bohr radius

a0. This is also seen directly from the argument x = β
3/2

0

a0
√

λ
of

O(. . .) which becomes small (x � 1) for βo � ao, whereas a
relativistic treatment is required and has been suggested right
from the beginning for x � 1 [24,26].

The modified phase (4) also contributes, of course, to the
total phase φ(r, t ) in Figs. 2(b) and 2(c). In the lower row
of this figure, a contour plot is shown of the total phase
φ(r, to) at some constant time to = Tcycle/2 of the Volkov
solutions within the x − z reaction plane. While the electron
mainly moves along the polarization axis (x axis), the total
phase also depends on the beam propagation (z axis), but—
like a corrugated cardboard— is independent of y. To make
the different contributions visible, these phases are displayed
for the (exaggerated) intensity I = 1015 W/cm2, wavelength
λ = 1600 nm, as well as for a linearly polarized (ε = 0)
beam along the x axis that leads to photoelectrons with p =
(
√

2 Ep, 0, 0) and Ep = 5 ω, respectively. In the right column,
moreover, a second identical beam has been assumed to prop-
agate under the angle δ = + 5o with respect to the first one
within the reaction plane.

The solutions (3) and (4) are exact up to the order (v/c)
in the velocity of the electrons and simplify to the known
(dipole) Volkov states (2) for a single plane-wave laser field, if
the wave vector k → 0 and for nonrelativistic electrons. Since
these solutions are valid for any superposition of plane-wave
modes, they are no longer restricted to monochromatic, and
thus time-harmonic, beams, but can (in principle) also be
evaluated for few-cycle laser pulses.

It is instructive to make the generalized nondipole Volkov
states (3) and (4) explicit for various spatially structured field
configurations. For a single elliptically polarized beam with
ellipticity −1 � ε � 1 and wave vector ko = ωo/zez, which
propagates along the z axis, for example, the vector potential
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can be written as [13]

A(r, t ) = A0√
1 + ε2

[cos(k0 · r − ω0t ) ex

− ε sin(k0 · r + ω0t ) ey]. (5)

For such a beam, the modified Volkov phase (4) takes the form


(r, t ) = ρε sin
(
uk0 + ϕ(ε)

p

) + α
ε2 − 1

ε2 + 1
sin

(
2 uk0

) − 2 αuk0 ,

ρε = − A0

ω
√

1 + ε2

p(ε)

1 − p · k0/ω
, (6)

α = Ũp

2ω
= Up

2ω (1 − p · k0/ω)
,

where ρε refers to a product of the kinetic and field-induced
photoelectron momenta, while α denotes the modified pon-
deromotive energy Ũp = Up

1−p·k0/ω
, divided by 2 ω. Moreover,

u k0 = k0 · r − ω0t is the phase of the vector potential and
p(ε), ϕ(ε)

p just describe the modulus and azimuthal angle of
an auxiliary and polarization-dependent momentum vector
p(ε) = (px, εpy, 0) = (p(ε), π/2, ϕ(ε)

p ) in Cartesian and, re-
spectively, spherical representation, and that lies within the
polarization plane. While, at the first glance, this notation
looks slightly overloaded, it has been found to be helpful to
express the modified Volkov phase (4) for other field con-
figurations, as shown below. In comparison with the general
expression (4), the first term on the right-hand side of (6)
arises from 
1(r, t ), and the second and third terms arise from

2(r, t ), while the contribution from 
3(r, t ) simply vanishes
for a single plane-wave beam; cf. Sec. 1 of the Appendix.
The terms in (6) for a single elliptically polarized beam will
become important for our discussions of the peak shifts in
the PAD of the photoelectrons below. The solutions (6) still
account for both the electric and magnetic fields of the laser
beam upon the motion of the electron and, hence, enable
us to include the Lorentz force in the quantum description.
When compared to the dipole approximation above, we only
need to replace the time-harmonic dependence −ω t by the
full phase of the vector potential k0 · r − ω0 t in the sin(. . . )
functions. This also shows how the Lorentz force enters the
Volkov phase 
(r, t ) by the absorption of discrete photon
momenta h̄ k0 and will be made more explicit in the discussion
of peak shifts below. In the dipole limit k0 → 0, again, only
the time-dependent terms will remain in the Volkov phase and
then just refer to a change of the energy of the photoelectrons.

Another field configuration of great practical interest refers
to the superposition of two noncollinear beams, for which the
combined electric and magnetic fields are given by the sum of
the individual vector potentials,

A(r, t ) = A1(r, t ) + A2(r, t ), (7)

A j (r, t ) = A(0)
j [cos(k j · r − ω j t )e j,1

+ ε j sin(k j · r − ω j t )e j,2], j = 1, 2, (8)

and where the field amplitudes A(0)
j = ω j

√
I j (1 + ε 2

j )−1/2 are
determined by their intensity I j , the ellipticity −1 � ε j � 1,
as well as the frequency ω j = 2πc/ λ j or the wavelength λ j of
the two modes. In the following, we choose the wave vectors

k j so that the first beam is directed with k1 = ω1/c ez along
the z axis, whereas the second beam propagates under the
(crossing) angle δ with respect to the first beam with k2 =
ω1/c (sin δ ex + cos δ ez ) within the x − z reaction plane. This
field configuration also accounts for a standing wave, if two
beams with equal intensity and opposite helicity propagate
under the angle δ = 180◦ in just opposite directions. If the
opening angle is small (δ � 5◦), the modified Volkov phase

(r, t ) for such noncollinear beams can be written similarly
to the single-beam case as


(r, t ) =
2∑

j=1

[
ρε, j sin

(
uk j + ϕ

(ε j )
p

) + α+
j sin(2 uk j ) − α−

j uk j

]
+ 2 α+

12 sin
(
uk1 + uk2

) + 2 α−
12 sin

(
uk1 − uk2

)
, (9)

but where the various α coefficients now account for the
simultaneous interaction of the atom with both beams. Again,
the coefficients ρε, j, α ±

j , and α ±
12 have the same origin as in

expression (6) and are given explicitly in Sec. 2 of the Ap-
pendix. Apart from the phase of the vector potentials, u k j =
k j · r − ω j t , moreover, the Volkov phase (9) now contains
two terms that arise from both beams, uk1 ± uk2 . These terms
result from the contribution 
3(r, t ) in the general expression
(4) and vanish identically if either of the two beam amplitudes
A(0)

j is set to zero. These two nonlinear terms are also respon-
sible for the cancellation of the Lorentz-force shifts for two
not quite orthogonal beams as well as for the virtual Compton
scattering of a standing-light wave [33]. The influence of
the additional laser beam on the photoelectron phase can be
seen readily in Fig. 2(c), whereas, for a fixed position ro, the
time-harmonic dependence of the second beam gives rise to
stronger oscillations of the amplitude around the ponderomo-
tive phase with time. Furthermore, the different wave vectors
of the two noncollinear beams lead to an additional directional
dependence: The phase fronts in Fig. 2(f) are then tilted in the
x − z plane when compared to the single beam in Fig. 2(e).

Finally, a standing-light wave is obtained from the vec-
tor potential (7) if two counterpropagating plane-wave laser
modes A(1,2)(r, t ) are assumed with equal intensity I and
wavelength λ, but opposite sign of ellipticity −1 � ε � 1, in
line with the two helicities � = ±1 of the circularly polarized
components of the two beams. For such a superposition, the
vector potentials can be written as

A(1)(r, t ) = A0√
1 + ε2

[ cos(kz − ωt )ex − ε sin(kz − ωt )ey],

A(2)(r, t ) = A0√
1 + ε2

[− cos(kz + ωt )ex + ε sin(kz + ωt )ey],

A−1(r, t ) = A(1)(r, t ) + A(2)(r, t )

= 2 A0√
1 + ε2

sin(kz)[ sin(ωt )ex − ε cos(ωt )ey],

where the wave number fulfills the standard dispersion re-
lation k = ω/c. Here we omit the explicit expression of the
Volkov phase, which is readily obtained from Sec. 2 of the
Appendix, if k1 = − k2 = ez and ε1 = − ε2 = ε is entered
into the modified Volkov phase (9).
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C. Strong-field approximation amplitudes

We can directly make use of the Volkov solutions above
for analyzing how the Lorentz force affects the ionization and
recombination dynamics of electrons in quite different laser
fields. In practice, this is most readily done in the SFA that has
a number of advantages in describing the interaction of strong
laser fields with simple quantum systems [22,34,35]. This
approximation is valid especially for intense, low-frequency
laser fields. Moreover, one often assumes a Keldysh parameter
γ < 1, although this request is still under debate [36] and
does not occur explicitly in the formal derivation. For such
fields, the electron dynamics of the electron in the continuum
is distorted only weakly by the (Coulomb) field of the residual
ion and, hence, the influence of the atom can be described
perturbatively. The SFA also provides an analytic formula for
dealing with strong-field (ionization) processes, into which
different physical interactions can be taken into account, such
as the (distorted) Coulomb interaction of the outgoing electron
with the ionic core or the nondipole interactions discussed
above [37].

In the SFA, the angle- and energy-differential photoioniza-
tion probability

P(p) = p| T (p) |2

is given in terms of the (square of the) transition amplitude
T (p), which, in turn, can be expressed as a sum of the (so-
called) direct and rescattering amplitudes as

T (p) = T (0)(p) + T (1)(p), (10)

T (0)(p) = −i
∫ ∞

−∞
dτ 〈χp(τ )|Vle(r, τ )|�o(τ )〉,

T (1)(p) = (−i)2
∫ ∞

−∞
dτ

∫ ∞

τ

dτ ′〈χp(τ ′)|

×V (r)Ule(τ ′, τ )Vle(r, τ )|�o(τ )〉, (11)

in going from the initial state �o(r, t ) = �o(r)e+i Ip t to the
Volkov states χp(r, t ) of the outgoing electron. Indeed, this
simple decomposition is independent of the spatial structure
of the incident laser field and has a rather obvious physical
interpretation: The (direct) amplitude T (0)(p) describes pho-
toelectrons that are directly released from the target atom by
the laser potential, Vle(r, t )|�0〉, and then freely propagate
within the laser field as Volkov solution χp, until they reach
the detector. In contrast, the rescattering amplitude describes
those photoelectrons that are released as well by the laser po-
tential, then evolve within the laser field by the time evolution
Ule(τ ′, τ ) from time τ → τ ′, get rescattered by the potential
V (r) of the parent ion, before they also propagate towards the
detector. This decomposition therefore enables one to account
for the (magnetic) nondipole contributions into the direct and
rescattering amplitudes by just applying the proper Volkov
solution from above. This was first shown by Titi et al. [23]
who explained the peak offset in the momentum distributions
of ATI photoelectrons, and has recently been pursued further
by us [26]. While the atomic potential V (r) was originally
neglected in the SFA in constructing the continuum states,
Coulomb-Volkov waves or even distorted-Volkov waves can
be applied quite readily to account for a proper atomic poten-

tial for the outgoing electron waves [13]. Indeed, the choice of
this potential was found to be important especially for the low-
energy part of ATI spectra [38], as well as for predicting the
high-harmonic spectra for different driving laser beams in the
optical and near-IR domain [39,40]. All these improvements
in the evaluation of the transition amplitude given by (10) and
(11) go well beyond the assumptions on which the SFA was
built in the first place. Below, we shall especially focus on
the direct amplitude (11) as the dominant term for all (direct)
strong-field ionization processes.

D. Dipole approximation: Discarding the magnetic field

The direct amplitude (11) can be evaluated analytically if
the active electron initially occupies a hydrogenic 1s state, and
is scaled to the ionization potential of the target atom. For
an elliptically polarized beam and within the electric-dipole
approximation, i.e., E(r, t ) ≈ E(t ) and B(r, t ) ≈ 0, the direct
amplitude then takes the simple form

T (0)(p) = −2 π i V (p)
∞∑

n,m=−∞
(−i)mJn

(
px A0√
1 + ε2ω

)

× Jm

(√
1 − ε2 pyA0√

1 + ε2ω

)
δ(Ep + Enm),

together with the matrix element of the Coulomb potential and
the energies,

V (p) = 〈p|V (r) |�0〉 = −2 3/4I 5/4
p

π

1
p2

2 + Ip

, (12)

E nm = −Ip − Up + (n + m) ω. (13)

For the cases of either left- or right-circularly polarized light
(ε = ± 1), moreover, this further simplifies with En ≡ En0 and
Jn(0) = δn,0 to

T (0)(p) = −2 π i V (p)
∞∑

n=−∞
(−1)nJn

(
px A0√

2 ω

)
δ(Ep + En).

(14)

As seen from expansion (14), the transition amplitude
T (0)(p) comprises the energy spectrum of the ATI photoelec-
trons in terms of a sum of discrete δ-like peaks. The position
of these ATI peaks hereby ensures energy conservation of
the ATI process owing to the absorption of a well-defined
number of photons. For circularly polarized light, therefore,
the possible photoelectron energies at the detector are just
given by

Ep = −Ip − Up + n ω,

e.g., photoelectrons are observed only if the atom absorbs n
photons with n ω > Ip + Up. In addition, the prefactors of the
δ function in the transition amplitude (14) determine the line
strengths of the ATI peaks and give rise to the probabilities

Pn(p) = (2π )2
√

Ep V (
√

2Ep) J 2
n

(√
2 EpA0√

2 ω

)
.

With these probabilities, the ATI spectrum just extends up to
the cutoff nmax, simply because the Bessel function behaves
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asymptotically as Jn(x) ∼ e−n for n > x. Here, we shall not
display an explicit expression for this cutoff parameter, but
only note that it can be approximated quite well by the clas-
sical formula nmax = √

2Up /ω. For typical laser parameters
(λ = 800 nm and I ≈ 1014 W/cm2), this cutoff lies in the
order of n � 10, so that the maximum photoelectron energy in
direct ATI spectra appears at about 12–15 eV. For the energy
spectra of direct photoelectrons, in addition, the length gauge
has been found to be superior for nonspherical initial states
[41]. From a large number of weak fields, however, it is known
that such a simple rule does not apply for most, much less all
ionization or capture processes [42], and a similar behavior is
therefore also expected for strong-field ionization processes.

E. Nondipole approximation: Working with
spatially dependent electric fields

The magnetic field enters the traditional SFA mainly via
the Volkov(-type) solution on the left-hand side of both the
direct and/or rescattering amplitudes for different field con-
figurations. Several lengthy expressions have been derived for
various superpositions in order to quantitatively understand
the Lorentz-force contributions to selected strong-field ioniza-
tion and rescattering processes.

For the sake of simplicity, let us restrict ourselves to just a
single elliptically polarized beam, for which the direct ampli-
tude becomes

T (0)(p) = −2 π i
∞∑

n,m=−∞
Jn(ρε )Jm

(
α

1 − ε2

1 + ε2

)
V (p nm) ei n ϕ(ε)

p

× δ[Ep + Ũp + Ip − (n + 2 m) ω0], (15)

with the matrix element (12), the parameters from above, and
the kinetic momenta of the electron in the (nondipole) laser
field,

p nm = p + [Ũp/ω0 − (n + 2 m)]k0 ez. (16)

The possible values of these momenta (16) can be obtained
from the Volkov phase (6) by applying a Jacobi-Anger ex-
pansion with regard to e− i 
(r,t ); they clearly indicate that the
photoelectron absorbs (n + 2 m) photons from the nondipole
laser field. The two parts to this photon number result from the
contributions 
1(r, t ) and 
2(r, t ) of the total Volkov phase
in Eq. (4) and correspond in the dipole limit to the two terms
p · A and A2 in (2). Because of the Lorentz force, moreover,
the kinetic momentum of the electron gains an additional
component [ Ũp/ω0 − (n + 2 m) ] k0 ez along the beam axis
owing to the (magnetic) ponderomotive contribution as well
as the discrete numbers of photon momenta h̄k0. All these
momenta are “absorbed” from the magnetic part of the laser
field. Equation (16) therefore also exhibits the momentum
conservation in the ATI process that is not present in the dipole
approximation.

Of course, Eqs. (15) and (16) contain, as a special case for
ε = 1, a (single) circularly polarized beam. Making use of the
identity Jm(0) = δm,0, the summation over m can be dropped
from the transition amplitude (15) and the outcome compared
to the dipole amplitude (14). This comparison shows that the
nondipole interaction gives rise to a shift of the photoelectron
momentum along the z axis, in addition to the (dipole) shift

of the photoelectron energy as it becomes visible in the ATI
peaks. In other words, any absorption of a photon from the
field not only leads to a peak shift in the energy spectrum, but
also to a change of photoelectron momentum along the beam
axis by h̄k0. Classically, this means that the electron will be
accelerated along the beam axis, which is possible only by
a magnetic field or the combination of electric and magnetic
fields. This is indeed in contrast to the dipole approximation,
in which the momentum of the photoelectron is conserved
since the laser field A(t ) 	= A(r, t ) does not carry any linear
momentum itself.

Finally, the basic form of the direct amplitude (14) remains
the same even if several nonparallel beams are considered.
For such a field configuration, each beam contributes a dou-
ble summation for its own as well as an additional term in
the δ function owing to the fundamental frequency ωi and
the first overtone 2 ωi, respectively. The same decomposition
can also be made for the modified momenta in the laser
field where each beam gives an analog term to the ampli-
tude along its propagation direction ki ei, since the photon
energies and momenta always appear together in the phase
u k0 .

III. LORENTZ-FORCE SHIFTS TO ATOMIC
STRONG-FIELD PROCESSES

A. Peak shifts of electron momenta in ATI spectra

Contributions of the Lorentz force to the strong-field ion-
ization of atoms and molecules were first observed in the
momentum distribution of the emitted photoelectrons. Instead
of (strictly) following the electric field vector E perpendicular
to the laser propagation, small shifts of the electron momenta
either along or opposite to the laser propagation have been
recorded for different gas targets. These shifts depend on the
intensity, the wavelength, and weakly also upon the polariza-
tion of the beam, although here we shall restrict our discussion
to just circularly polarized beams. Such longitudinal peak
shifts of the electron momenta will also suppress, of course,
the intensities of the high harmonics and then require further
experimental measures in order to make HHG with a mid-IR
field feasible.

For mid-IR driving fields, in particular, a nonzero pz com-
ponent of the photoelectron momenta along the propagation
direction of the laser was found in various strong-field ion-
ization experiments [19–21], a phenomenon that is nowadays
briefly known as peak shift �pz in the literature. In a pioneer-
ing work, Smeenk et al. [43] first measured the momentum
distribution in the x − z plane with circularly polarized driv-
ing laser fields of different intensity at 800 and 1400 nm
and by applying velocity map imaging. In these measure-
ments, peak shifts �pz = 5, . . . , 20 × 10−3 a.u. were found
at these wavelengths, which correspond to about 5, . . . , 10
photon momenta, and which increased linearly with the laser
intensity. This behavior also follows the classical expectation
βo ∝ I λ3 as discussed in Fig. 1, while more accurate and re-
liable measurements of the λ dependence still remain a major
technical challenge [21,44].

For a purely linearly polarized, single-mode laser pulse
(ε = 0), the energy conservation due to the δ function in
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FIG. 3. Peak shifts of the photoelectron momentum distributions in the ATI of neutral gas targets, if driven by a single circularly polarized
plane-wave laser beam along the z axis. (a) Schematic PAD of the photoelectrons for three different beam intensities with I1 < I2 < I3. The
Lorentz force pushes the electrons along the propagation direction and, thus, tilts the angular distributions in the x − z plane towards the
beam axis (exaggerated in this figure). This tilt increases roughly linearly with the beam intensity, as discussed in Sec. III A. (b) Peak shift
�pz = Ep,max cos ϑmax as a function of beam intensity. Shifts are shown for three different wavelengths with λ = 800 nm (blue lines), 1600 nm
(red lines), and 3200 nm (black line), as well as for helium (solid lines) and argon (dashed lines) targets, respectively. The peak shift refers to
those ATI peak, for which the maximum ionization probability occurs at the modulus p = √

2 Ep,max, ϑp,max, and ϕ = 0 of the photoelectron
momentum in the x − z plane. (c) The same peak shift �pz, but as function of the wavelengths of the incident beam for helium (solid line) and
argon (dashed line) targets and at fixed intensity I = 1014 W/cm2. See text for further discussions.

Eq. (15) leads to

Ep + Up

1 − √
2 Ep cos ϑp/c

+ Ip − (n + 2 m)ωo = 0. (17)

This conservation ensures that the energy of any discrete ATI
peak at polar angle ϑp solely depends on two integers n and
m, while their strength is given by the prefactor in Eq. (15).
Analog arguments can be used for a circularly polarized
(single-mode) laser pulse, for which the δ function in Eq. (15)
leads to less ATI peaks at the energies,

Ep + Up

1 − √
2 Ep cos ϑp/c

+ Ip − n ωo = 0,

but which agree with those for linearly polarized light if
m = 0. In Ref. [26], we have computed such ATI photo-
electron spectra for various noble-gas atoms and mid-IR
plane-wave laser beams. These computations clearly demon-
strated that the peak shifts in the pz direction can be readily
extracted from the nondipole laser-electron interaction [45].

Figure 3 shows the peak shifts in the ATI photoelectron
momentum distributions for selected gas targets. These distri-
butions are displayed schematically in Fig. 3(a) as a function
of the polar angle and for three beam intensities, I1 < I2 < I3.
Since the Lorentz force pushes the electrons along the propa-
gation direction, the PADs are tilted towards the beam axis,
although quite exaggerated in this figure. Apart from these
PADs, Fig. 3(b) reveals a (nearly) linear dependence of the
peak shift � pz upon the (peak) intensity, in line with the
classical theory, in which the Lorentz force Fz ∼ I λ exerts
a peak shift �pz ∼ I λ2. As seen from Fig. 3(b), however,
the calculated peak shifts � pz are always larger than the
measured values. This difference can be explained by the
following two reasons: (i) For an infinite pulse, the constant
intensity in time is larger than the temporally averaged in-
tensity of finite pulses, as they were applied experimentally.
(ii) For real pulses, furthermore, a counteracting Lorentz-force
contribution arises from the gradient of the spatial envelope,
when compared with an infinitely extended plane-wave beam.

If both these temporal and spatial dependencies are taken into
account by a (so-called) focal averaging, they result in a peak
shift that is always smaller than those for constant intensities
[23,43].

Apart from the overall linear behavior of Fig. 3(b), the
peak shift � pz exhibits a stepwise structure with small but
regular jumps in pz. These steps can be understood from the
(infinitely long) continuous driving beam, as assumed in our
computations, and for which the energy spectra always consist
of discrete δ-like ATI peaks, well separated from each other
by the photon energy h̄ ω. Thus, the peak shift, i.e., the maxi-
mum momentum along the beam axis, needs to be obtained
in Fig. 3(b) for a particular ATI peak, Ep,max = Ep,N , with
maximum ionization strength and which moves to the neigh-
bored ATI peak, Ep,max = Ep,N+1 ≈ Ep,N + h̄ ω, if the laser
intensity has been sufficiently increased. This jump in � pz

is also seen from its dependence �pz = √
2Ep,max cos ϑp,max

upon the maximum energy of the photoelectrons, Ep,max. Fig-
ure 3(c) finally displays the peak shift �pz as a function of the
wavelengths of the incident beam for a helium (solid lines)
and argon (dashed lines) target. While these shifts increase
roughly linearly with λ, accurate measurements on this wave-
length dependence are quite difficult to perform and likely
require further advances in the velocity mapping in order
to confirm or deny our predictions based on SFA and the
nondipole Volkov states (6).

B. Steering the electron momenta with noncollinear laser beams

While the Lorentz force above, as it arises from the di-
rect amplitude (15), always shifts the electron momenta in
a forward direction with regard to the beam propagation, a
backward shift may arise for a sufficiently strong rescattering
of the emitted electrons. While momentum conservation gen-
erally requires a transfer of the absorbed photon momentum
to both the emitted electron and its parent ion, the details of
this (momentum) sharing are still not well understood. From
a simplified viewpoint, this momentum transfer may happen
in the course of the tunnel ionization barrier and may lead
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FIG. 4. Peak shifts of the photoelectron momentum distributions in the ATI of neutral gas targets if driven by noncollinear beams. (a) Two
not quite collinear infrared beams (red) with opening angle δ as well as with equal intensity and polarization may help enhance the rescattering
of photoelectrons with their parent ions. The interaction of these beams with an atomic gas target gives rise to either the emission of ATI
photoelectrons (yellow) or high harmonic photons (blue). (b) For two such noncollinear beams, the Lorentz force always shifts, analogously
to Fig. 3, the peak of the photoelectron momentum distributions into the forward direction (green-solid distribution), if the opening angle
δ is sufficiently small. For an increasing angle, however, a good fraction (�0.5) of the photoelectrons returns within the polarization plane
(orange-dashed distribution for ϑ = 90◦, though exaggerated in this drawing) and may thus facilitate the recombination with the parent ion. If
the opening angle δ is enlarged further, a peak shift along the negative z axis occurs for photoelectrons in the upper half (90◦ � ϑ � 180◦),
while the photoelectrons in the lower half are shifted even further away from the polarization plane (blue-dotted distribution). The peak shifts
of the ATI photoelectron are also shown also as function of the opening angle in the (c) upper and (d) lower halves of the x − z plane. Results
are displayed for circularly polarized beams (ε = ±1) with intensity I = 1014 W/cm2 and for the three wavelengths λ = 800 nm (black solid
lines), λ = 1600 nm (red dashed lines), and λ = 3200 nm (blue dotted lines). For the optimal opening angle δ0, there occurs a zero peak shift in
the upper half plane. (e) Optimal opening angle as a function of the laser intensity and for the same wavelengths as in (c) and (d). (f) The same
but as a function of the wavelength and shown for two intensities, I = 5 × 1013 W/cm2 (green-dashed line) and I = 1014 W/cm2 (purple-solid
line). All these data were generated for an argon target with ionization potential Ip = 15.76 eV and photoelectron energy Ep = 8.1 eV ≈ 5.2 ω

at the maximum of the momentum distribution.

to backward shifts, as observed for linearly polarized beams
[19].

To partly counteract the forward shift of the electron mo-
menta by the Lorentz force, a superposition of (two) not quite
collinear laser pulses has been considered by us following
an earlier semiclassical argumentation by Pisanty et al. [46].
These arguments were originally based on the local forward
ellipticity of the total electric field in the interaction region,
which returns a part of the electron wave packet back to the
parent ion, while other parts are shifted even further away.
However, this discussion of the electric field alone neglects
the contributions of the magnetic field. Below, we therefore
first analyze the ATI for two not quite collinear laser beams
with the same wavelength, intensity, and ellipticity by using
the nondipole SFA from Sec. II C. In particular, here we wish
to understand how the energy spectra and PAD of the photo-
electrons depend on the opening angle δ of the two crossed
beams, and as it is shown schematically in Fig. 4(a).

For two noncollinear beams, we found in Sec. II B that
the nondipole SFA theory gives rise to the modified Volkov
phase (9), in which the photoelectron acquires individual
phase contributions from the two laser beams, but also due to

the simultaneous interaction with both beams together (mixed
terms). If we insert the Volkov phase (9) into the direct SFA
(11) transition amplitude, we obtain

T (0)(p) = − 2π i
∞∑

N1,N2=−∞
CN (p)V (pN )δ(EN + Ip),

EN = Ep + Ũp,1 + Ũp,2 − N1 ω1 − N2 ω2, (18)

pN = p + Ũp,1

ω1
k1 + Ũp,2

ω2
k2 − N1k1 − N2k2, (19)

where the δ function still indicates the position of the discrete
ATI peaks in the energy spectrum. The relative amplitudes
of these peaks are determined by the coefficients CN (p) as
well as the matrix element V (p) = 〈p|V (r) |�o〉 of the active
electron for undergoing a transition into the continuum due
to the atomic potential V (r). Moreover, the integers N1 and
N2 refer to the number of photons as absorbed from the two
laser modes. This direct amplitude therefore gives rise to an
ionization probability that describes ATI peaks owing to the
absorption of photons from both laser modes, but where the
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exact positions of the peaks depend on the opening angle of
the two driving beams.

For two not quite orthogonal beams, Fig. 4(b) clearly
shows that the Lorentz force always shifts the peaks of the
photoelectron momentum distribution into the forward direc-
tion (green-solid distribution), if the opening angle δ is just
sufficiently small. This is rather analogous to a single beam, as
discussed in Sec. III A; cf. Fig. 3. However, when the opening
angle δ of the two beams increases, some fraction (�0.5) of
the photoelectrons may return back within the polarization
plane (i.e., at ϑp = 90◦, orange-dashed distribution) and thus
facilitate a recombination with the photo-ion. For two non-
collinear beams, therefore, an optimal opening angle δ0 does
exist such that a maximum number of electrons return to their
parent ions. At this optimal angle δ0 for the crossing of these
beams, the electrons from the upper half of the PAD (90◦ �
ϑp � 180◦) will remain within or near to the polarization
plane. By using the nondipole Volkov states (9) in the direct
SFA amplitude, indeed, such a rotation of the PAD is found
for all photoelectron energies which significantly contribute
to the ATI spectrum.

Figures 4(c) and 4(d) show the peak shifts of the photoelec-
tron momentum distributions in the ATI as a function of the
opening angle in the upper [Fig. 4(c)] and lower [Fig. 4(d)]
halves of the x − z plane. This peak shift decreases for all
photoelectrons in the upper half with 0◦ � ϑ � 180◦, while
it becomes even larger for the electrons from the lower half.
In these figures, the results are shown for circularly polarized
beams (ε = ±1) with intensity I = 1014 W/cm2 and for the
three wavelengths λ = 800 nm (black-solid line), λ = 1600
nm (red-dashed line), and λ = 3000 nm (blue-dotted line),
respectively. For the optimal opening angle δ0, there occurs
(by definition) a zero peak shift in the upper half plane. Fig-
ure 4(e) displays this optimal opening angle as a function
of the laser intensity and for the same wavelengths as in
Figs. 4(b) and 4(c). The same optimal angle, though as a
function of the wavelength, are finally shown in Fig. 4(f) for
two selected intensities, I = 1014 W/cm2 (purple-solid line)
and I = 1.4 × 1014 W/cm2 (green-dashed line). All of these
dependencies clearly show that a proper choice of the opening
angle between the two incident beams may also support an
efficient HHG with mid-IR laser beams.

C. Kapitza-Dirac effect in standing-light fields

In 1933, Kapitza and Dirac suggested that free electrons
should be deflected by an intense and perpendicular-oriented
standing-light wave owing to the absorption of photons from
the two counterpropagating laser modes [47]. In standing
waves, in particular, electrons may absorb a photon from
one mode and reemit it subsequently into another mode,
a process known as virtual Compton scattering [48]. Since
both modes have the same wavelength (photon energy), the
electron energy remains the same in this process, while its
momentum changes by 2h̄ k. This momentum change then
leads to a characteristic deflection of the electrons with mo-
mentum components along the optical axis. Measurements
of this (low-intensity) Kapitza-Dirac effect (KDE) have re-
mained a challenge until now because typically only a few
photon momenta h̄ k are exchanged [49–51].

In contrast, a much larger momentum transfer normally
occurs in high-intensity standing fields owing to the multi-
ple interaction of the electrons with the radiation field. This
enhanced momentum transfer was first observed by Bucks-
baum et al. [52] who, instead of a free-electron beam, placed
neutral atoms within the standing wave and measured the ATI
photoelectrons. While these electrons are first released within
a rather narrow spatial region near to the polarization plane,
and separated by h̄ ω in energy from each other, they may
become multiply scattered in the continuum and then reach the
detector with longitudinal momenta up to the order 1000 h̄ k.

Figure 5 outlines the behavior of the high-intensity KDE
in an intense standing-light wave. In a typical setup, neutral
atoms are placed at z = z0 	= n λ/2 in an intense standing
wave and emit ATI photoelectrons that are measured with
momentum p = (p, ϑp, ϕp) at the detector D; cf. Fig. 5(a).
Typical spectra P(Ep) ≡ P (

√
2 Ep, ϑp = const, ϕp = 0) are

shown in Fig. 5(b) for two selected values of the polar an-
gle ϑp and the fixed azimuthal angle, ϕp = 0. Figure 5(c)
displays the PAD P(ϑp) ≡ P (

√
2 Ep,0, ϑp, ϕp = 0) at fixed

energy Ep,0 and ϕp = 0 and, hence, just counts the electrons
as a function of ϑp. These PADs are shown for high-energetic
(green-solid curves) and low-energetic (blue-dashed curves)
photoelectrons. In these PADs, two distinct scattering regimes
can be distinguished for sufficiently weak standing fields by
the ponderomotive energy Up and, hence, the energy Ep =
p2/2 of the emitted photoelectrons. In the so-called Bragg
regime, rather high-energetic electrons (Ep � Up) are de-
flected according to Bragg’s law n λe/λ = 2 sin ϑ with the de
Broglie wavelength λe = h/p of the detected electrons. This
Bragg’s law can be readily understood in terms of the clas-
sically ponderomotive force F p. For a standing-light wave,
this force points along the beam axis and has a spatial pe-
riodicity of λ/2, i.e., it forms a well-known Bragg grating.
For an electron that impinges with momentum p and de
Broglie wavelength λe = h/p on the standing wave, a grating
is formed by the minima and maxima of Fp.

In the diffraction regime (Ep � Up), in contrast, a de-
flection pattern is formed behind the standing wave due to
the multiple absorption and emission of photons. Qualita-
tively, the momentum transfer in such a multiple scattering
of photons can be derived by again analyzing the direct SFA
amplitude (11) for two counterpropagating laser beams with
opposite helicity. In practice, this amplitude takes a form
similar to (18),

T (0)(p) = −2π i
∞∑

N1,N2,N12− ∞
CN (p)V (pN ) δ(EN + Ip),

EN = Ep + 2 Ũp − (N1 + N2) ω, (20)

pN = p + 2 Ũp pz

c ω
k − (N1 − N2)k − 2 N12k,

as discussed above for two noncollinear beams. When com-
pared with Eqs. (18) and (19), however, additional terms
appear, each in the energy EN as well as the momenta pN of
the photoelectrons owing to the absorption of photons from
one and the reemission into the second mode, i.e., the virtual
Compton scattering from above [33]. This Compton scattering
leads to a momentum transfer or peak shift � pz along the
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FIG. 5. High-intensity Kapitza-Dirac effect (KDE) with neutral atoms in an intense standing-light field. (a) In a typical setup, neutral atoms
are placed at z = z0 	= n λ/2 in an intense standing wave and emit ATI photoelectrons that are measured with momentum p = (p, ϑp, ϕp) at
the detector D. (b) Typical photoelectron energy spectrums P(Ep) ≡ P (

√
2 Ep, ϑp = const, ϕp = 0) for two selected values of the polar angle

ϑp (black-solid and red-dashed curves), but at fixed azimuthal angle, ϕp = 0. For any selected ATI peak at energy Ep,0, the PAD P(ϑp) ≡
P (

√
2 Ep,0, ϑp, ϕp = 0) just counts the electrons as a function of ϑp. (c) Typical PAD of high-energetic (green-solid curves) and low-energetic

(blue-dashed curves) photoelectrons. (d),(e) PADs are shown for photoelectrons with energy Ep ≈ 3 ω (black-solid lines) and Ep ≈ 10 ω (red-
dashed lines) for laser intensities (d) I = 5 × 1013 W/cm2 and (e) I = 15 × 1013 W/cm2, respectively. (f) Peak shifts �pz = √

2 Ep cos ϑp,max

due to momentum transfer to photoelectrons with energy Ep ≈ 3 ω as a function of intensity, and taken at the maximum strength of the
PAD. (g),(h) PAD of low-energy photoelectrons with Ep = 2.8 eV ≈0.7Up for (g) linear, (h) elliptical, and (i) circular polarizations of the
standing-light wave. Results are shown for I = 15 × 1013 W/cm2 (black-solid curves) of the counterpropagating laser modes. All PADs
have been normalized upon their maximum. In (d)–(i), moreover, a laser beam with λ = 1200 nm (ω = 1.03 eV) and a krypton target with
Ip = 14 eV were assumed, analogous to Ref. [52].
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beam axis for each ATI peak and, hence, to a deflection of
the photoelectrons in the high-intensity KDE. We note that
such a transfer is possible only because of the antiparallel k 1,2

vectors of the counterpropagating modes and their identical
wavelengths.

Until now, only the high-energetic photoelectrons
(Ep > Up) have been observed and analyzed for the
high-intensity KDE, comparable to the Bragg regime with
a free electron at low intensities. Moreover, only standing
waves of linear and circular polarizations were considered
experimentally. However, since standing-light waves with
elliptical polarization and high intensity can nowadays be
generated quite routinely, measurements of low-energy
photoelectrons with Ep < Up and just a (very) few virtual
Compton scattering processes will become feasible and will
then result in a pattern of low diffraction order.

Figure 5(d) displays the PAD of photoelectrons with ener-
gies Ep ≈ 3 ω (black-solid lines) and Ep ≈ 10 ω (red-dashed
lines) for the laser intensity I = 5 × 1013 W/cm2. For a lin-
early polarized standing wave (ε = 0) and intensity I = 5 ×
1013 W/cm2, the photoelectrons are emitted preferably with
the momentum transfer � pz ≈ 560 h̄ k, as seen by the four
maxima in the PAD. These maxima occur symmetrically with
regard to the polarization plane (ϑ = 0◦) and are split into
two peaks in the upper (lower) half due to the nondipole con-
tributions to the amplitude (20) These four maxima all have a
similar shape, independent of the photoelectron energies Ep,
while the angle ϑmax of the maximum photoelectron emission
decreases with Ep.

At the higher laser intensity I = 15 × 1013 W/cm2 in
Fig. 5(e), the four maxima in the PAD of high-energetic
photoelectrons are still clearly discernible, but now occur for
a predominant momentum transfer of � pz ≈ 850 h̄ k. Here,
however, a markedly different PAD is found for the low-
energy photoelectrons (Ep < Up) with momentum transfer
� pz ≈ 1240 h̄ k. The different behavior of the PAD for low-
and high-energy photoelectrons can be understood in terms of
the Lorentz force that acts on the photoelectron in a standing-
light wave. In the three-step model of strong-field ionization,
the photoelectrons leaves the atom with a velocity vector par-
allel to the polarization direction (x axis) of the standing wave.
The (magnetic) Lorentz force then induces an oscillating mo-
tion along the beam axis. As in the free-electron KDE, the
motion of the photoelectron is not bounded for Ep > Up by the
ponderomotive potential and can thus be described classically,
leading to a distinct value of the longitudinal momentum � pz

measured at the detector [52]. For Ep < Up, on the other hand,
the photoelectron can classically not move beyond the crests
of the ponderomotive potential. Moreover, the plane-wave
contributions with different �pz in its wave function interfere
and give rise to other (sets of) maxima in the PADs. Within
the SFA, these contributions arise from and are associated
to different terms of the nondipole Volkov states. For the
photoelectrons with energy Ep ≈ 3 ω, Fig. 5(f) displays the
peak shifts �pz = √

2 Ep cos ϑp,max as a function of intensity
and taken at the maximum strength of the PAD.

Figures 5(g)–5(i) finally display the PAD of the low-
energetic photoelectrons with Ep = 2.8 eV ≈0.7Up for linear
[Fig. 5(g)], elliptical [Fig. 5(h)], and circular [Fig. 5(i)] polar-
izations of the standing-light wave. Results are shown again

for the intensity I = 15 × 1013 W/cm2 (black-solid curves)
of the two counterpropagating laser modes. As seen from this
figure, the momentum transfer to the low-energetic photo-
electrons can be enhanced significantly [when compared to
the blue-dashed curve in Fig. 5(c)] by simply controlling the
polarization of the standing wave.

D. High-harmonic generation: Missing the recombination
at long wavelengths

High harmonics typically refer to coherent light at mul-
tiples of the fundamental laser frequency that are generated
when an (atomic) gas target is irradiated by an intense laser
of, say, I � 1013 W/cm2. The generation of such harmonics
is a nonlinear (optical) up-conversion process, for which the
conservation of energy, linear momentum, as well as spin
and orbital angular momentum of individual harmonics can
often be expressed by means of rather simple selection rules
[53,54]. In applications, the high harmonics are usually gen-
erated with linearly polarized beams since the return to and
the recombination of the electron with its parent ion is crucial
for the HHG mechanism, and where the yield rapidly de-
creases for elliptically polarized laser pulses as the ellipticity
ε → ±1. For optical and near-IR laser pulses, nevertheless,
this laser-driven recollision mechanism of electrons has led to
photon energies several tens of times larger than the driving
laser frequency.

Great efforts have been undertaken in the past in order to
increase the efficiency of HHG. For a given laser beam with
ponderomotive potential Up = I/ 4 ω2

o, the generated spec-
trum of harmonics can often be separated into two regions:
(i) the plateau of harmonics with photon energies below
Ip + 3.17Up and rather constant yields, and (ii) the harmonics
of higher energy but with a rapidly decreasing yield. The quite
simple design of HHG experiments makes it then desirable
to extend the plateau towards the x-ray regime by just fol-
lowing the cutoff law h̄ ωmax = Ip + 3.17 Up and, hence, by
increasing Up. At first glance, this desire appears to be easily
fulfilled since the ponderomotive energy Up ∝ I λ 2 is found
proportional to the intensity I and the (square of) wavelength
λ of the laser field. For mid-IR beams, however, the yield
of energetic photons is already markedly suppressed by the
Lorentz force. In practice, therefore, any increase of the cutoff
photon energy generally lowers the radiation yield and renders
the HHG process unattractive as an x-ray light source.

Analogous to Sec. III B above, a superposition of non-
collinear beams may offer a way out of this limitation as it
counteracts the Lorentz force and may bring a sizable fraction
of electrons back to their parent ions. To understand the most
favorable opening angle δo of the two incident beams, here one
needs to analyze how the nondipole Volkov states contribute
to the rescattering amplitude. In contrast to the ATI from
above, however, this amplitude must first be expressed in
terms of the harmonic dipole moment,

D(t ) = − i
∫ t

−∞
dt ′

∫
d3p e−iIpt d†[p + A(r, t )]

× E(r, t ) · d[p + A(r, t ′)] + c.c., (21)

which describes the recombination of the returning electron
with the parent ion in terms of the (dipole) matrix elements
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FIG. 6. HHG in intense near- and mid-IR laser fields. (a) For a single IR laser beam, the yield of the high harmonics is strongly suppressed
because of the Lorentz force that pushes the electron away from its parent ion. The envelopes of HHG spectra are shown for 800 nm (black-solid
curve), 2000 nm (red-dashed curve), and 4000 nm (green dot-dashed curve). The HHG spectra were computed for He+ target ions and the
intensity I = 1015 W/cm2. (b) HHG spectra for two not quite collinear beams, but with different opening angles δ = 0.2◦ < δ0 (red-dashed
curve), δ = 0.75◦ ≈ δ0 (blue-dotted curve), and δ = 1.3◦ > δ0 (green dot-dashed curve) of the two beam components. For comparison, the
black-solid curve shows the yield for a single driving beam, which is equivalent to δ = 0◦. The spectra were obtained by using the RB-SFA

package [55] that is based on a local forward ellipticity of the (purely time-dependent) vector potential. Since the even harmonic orders
q are strongly suppressed, here we only display the yields for odd harmonics. Lines are just drawn to guide the eye. In (b), the intensity
I = 1014 W/cm2, the wavelength λ = 800 nm, and an argon target (Ip = 15.76 eV) was assumed.

d(p) = 〈χp(t )| r|�0(t )〉. To obtain the harmonics for two non-
collinear beams, this matrix element as well as the associated
time integrals have to be evaluated again with the nondipole
Volkov states (9). In practice, this evaluation and analysis is
quite demanding because of the explicit r dependence of the
modified Volkov phase as well as the second order of the
time and momentum integrations. In addition, the harmonic
dipole moment is typically explored in length gauge and needs
to first be reexpressed within the velocity gauge, before the
nondipole Volkov solutions (9) from above can be utilized
explicitly. This decomposition and (analytical) simplification
of the harmonic dipole moments (21) is currently under
work.

Figure 6(a) shows the harmonic yield in intense mid-IR
laser fields, which is strongly suppressed for a single laser
beam because of the Lorentz force [56]. To illustrate the rapid
decrease of the harmonic yield, Fig. 6(a) displays the envelope
of the harmonic spectrum for beams of three different wave-
lengths but the same intensity. For the sake of simplicity, these
HHG spectra were computed for He+ target ions and a single
beam with intensity I = 1015 W/cm2. Figure 6(b), in contrast,
shows the estimated yield of the odd harmonics, by applying
different opening angles δ and for the near-IR wavelength
λ = 800 nm as well as an argon target (Ip = 15.76 eV). While
the black-solid curve exhibits the yield for a single driving
beam (δ = 0◦), the expected yields are also displayed for
two not quite collinear beams with opening angles δ < δo

(red-dashed curve), δ ≈ δo (blue-dotted curve), and δ > δo

(green dot-dashed curve), respectively. These spectra were
generated using the RB-SFA package [55] that is based on a
local forward ellipticity of the (purely time-dependent) vector
potential; cf. Refs. [46,57]. Since the even harmonics are all
strongly suppressed for linearly polarized beams, we only dis-

play the yields of the odd harmonics and lines to just guide the
eyes.

IV. CONCLUSIONS

As commonly known, both the electric and magnetic fields
may play a significant role in the interaction of light (beams)
and matter. While the electric-dipole field alone is often suffi-
cient in order to explain the excitation or ionization of atoms
qualitatively, care has to be taken with most quantitative
predictions, and especially if the electrons probe rather large
regions of the laser fields. The recent advances in strong-field
ionization and HHG with mid-IR beams confirm this common
knowledge and now call for theoretical methods and tools that
help to go beyond the dipole approximation [58].

The motion of electrons in intense mid-IR fields makes
the ionization of atoms sensitive especially to the magnetic or
Lorentz forces. In this work, we have discussed in good detail
how the nondipole Volkov solutions, originally developed in
Ref. [26], enable us to analyze and understand phenomena
such as the peak shifts in the momentum distribution of ATI
photoelectrons or the compensation of the Lorentz force, if
the ionization and generation of high harmonics is driven by
crossed laser beams. Such a superposition of two beams also
allows for exploring the Kapitza-Dirac deflection pattern of
electrons that arise from atoms in intense standing waves, and
which have found recurrent interest and application in matter
optics [59].

In addition to the direct amplitude, it will be highly de-
sirable to also apply the nondipole Volkov states (3) and
(4) to the rescattering amplitude and to scrutinize in further
detail Lorentz-force contributions for linearly polarized laser
beams. Moreover, the explicit evaluation of the harmonic
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dipole (or recombination amplitude) with these solutions will
enable us to analyze more complex beam geometries in
HHG and to consider novel schemes for table-top radiation
sources.
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APPENDIX: NONDIPOLE VOLKOV STATES

1. Modified Volkov phase for general light fields
with vector potential A(r, t)

The vector potential of any spatially structured light field
can be generally expressed in terms of plane waves,

A(r, t ) =
∫

d3kA(k, t ) =
∫

d3kRe{a(k)e i uk},
uk = k · r − ω t .

For such a (laser) field, the nondipole Volkov solution of an
outgoing photoelectron is given by [26]

χp(r, t ) = 1

(2π )3/2
ei (p·r− p2

2 t )e−i 
(r,t ),

with the modified Volkov phase [cf. Eq. (4)],


(r, t ) = 
1(r, t ) + 
2(r, t ) + 
3(r, t ) + O
(

β
3/2
0

a0λ1/2

)
,


1(r, t ) =
∫

d3kρk sin (uk + θk),


2(r, t ) =
∫

d3k
∫

d3k′[α+
kk′ sin(θ+

kk′ + uk + uk′ )

+α−
kk′ sin(θ−

kk′ + uk − uk′ )],


3(r, t ) = 1

2

∫
d3k

∫
d3k′σkk′ρk

×
(

sin (uk + uk′ + θk + ξkk′ )

ηk + ηk′

+ sin (uk − uk′ + θk − ξkk′ )

ηk − ηk′

)
.

For a (fixed) kinetic momentum p of the photoelec-
tron, the individual functions λ k, θk, ρk, α

±
kk′ , θ−

kk′ , ξ kk′ , σkk′

in the Volkov phase can be obtained most easily by evaluating
the left-hand sides of the following expressions with given
plane-wave amplitudes A(k, t ) and a(k) from above [26]:

p · A(k, t ) = λk cos (uk + θk), −k · A(k′, t ) = σ kk′ cos(uk′ + ξkk′ ),

1

4
a(k) · a(k′) = �+

kk′ exp(i θ+
kk′ ),

1

4
a(k) · a∗(k′) = �−

kk′ exp(i θ−
kk′ ),

ρ k = λ k

ηk
, α±

kk′ = �±
k k′

ηk ± ηk′
.

As seen from these equations, moreover, here ρ k refers to the product of the kinetic and field-induced photoelectron momenta
[p · A(k, t )] for a given Fourier mode A(k, t ). Furthermore, the functions α±

kk′ denote the ponderomotive terms for each mode,
[a(k) · a(k′)].

2. Modified Volkov states for two not quite collinear beams

For the vector potential (7)–(9) of two not quite collinear beams, the modified Volkov phase from Sec. 1 of this Appendix be-
comes


(r, t ) =
2∑

j=1

[
ρε, j sin

(
uk j + ϕ

(ε)
p, j

) + α+
j sin(2uk j ) − α−

j uk j

] + 2 α+
12 sin (uk1 + uk2 ) + 2 α−

12 sin (uk1 − uk2 ),

with

ρε, j = − A(0)
j

ω j

√
1 + ε2

j

p(ε)
j

1 − p · k j/ω j
, uk j = k j · r j − ω j t, j = 1, 2,

ϕ
(ε)
p,1 = arctan

(
ε1

py

px

)
, ϕ

(ε)
p,2 = arctan

(
ε2

py

px cos β − pz sin β

)
,

α+
j = 1

2

Ũp, j

ω1

ε2
1 − 1

ε2
1 + 1

, α−
j = Ũp, j

ω j
,
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α−
12 = A(0)

1 A(0)
2

4

1√(
1 + ε2

1

)(
1 + ε2

2

) cos β + ε1ε2
pz

c (ω1 − ω2 cos β ) − px

c ω2 sin β − (ω1 − ω2)
,

α+
12 = A(0)

1 A(0)
2

4

1√(
1 + ε2

1

)(
1 + ε2

2

) |cos β − ε1ε2|
pz

c (ω1 + ω2 cos β ) + px

c ω2 sin β − (ω1 + ω2)
.

As for a single beam in Sec. II B, ρε,1 and ρε,2 represent the products of the kinetic photoelectron momentum p1,2 with the
momenta induced by the individual beams A1,2, while α±

1,2 capture the contributions of the modified ponderomotive energies

Ũp, j = Up, j

1−p·k j/ω j
, j = 1, 2, of the photoelectron. Similarly, the p(ε)

j and ϕ
(ε)
p, j can be interpreted as the modulus and the azimuthal

angle of the momentum vectors in Cartesian coordinates p(ε1 )
1 = (px, ε1 py, 0) and p(ε2 )

2 = (px sin β − pz sin β, ε2 py, 0),
respectively.
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