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1 Introduction

Two-dimensional conformal field theory enjoys special kinematics that lead to holomorphi-
cally factorized continuous symmetries [1]. However, except in very special cases, the full
theory is not holomorphically factorized. The local operators transform as bi-modules of
the left and right-moving chiral algebras, but a generic local operator cannot be regarded as
the composite of holomorphic and anti-holomorphic local operators. In rational conformal
field theory [2] there is a weaker sense of holomorphic factorization. Loosely speaking,
on an oriented manifold M2, the holomorphic and anti-holomorphic degrees of freedom
dwell on two separate copies ofM2 (more precisely,M2 and its orientation reversalM2),
connected through a bulk topological quantum field theory [3–8]. The truly holomorphically
factorized case is when the bulk theory is trivial. Extensive studies in the past have revealed
that rational conformal field theory, three-dimensional topological quantum field theory,
modular tensor category, and various other mathematical structures are different facets of
the same underlying truth [4–18]. In particular, the nontrivial dynamics of the conformal
field theory, encoded in the three-point structure constants, can be explicitly expressed in
terms of invariant data of modular tensor category, or equivalently as link invariants of the
topological quantum field theory; crossing symmetry is solved by solutions to the pentagon
identity.1 This paper investigates whether some of this rich structure and insight survive
when we venture beyond rationality. Since general conformal field theory has no relation
to bulk topological quantum field theory, it is instructive to first reformulate holomorphic
factorization in a purely two-dimensional framework. The role of line defects in the bulk
topological quantum field theory is replaced by topological defect lines (TDLs) of the
conformal field theory, and a local operator can be regarded as the composite of a holomor-
phic and an anti-holomorphic defect operator connected by a topological defect line.2 For
rational theory, this reformulation is a superficial one, obtained essentially by ignoring the
third dimension of the bulk, and giving a new name, Verlinde lines [23, 33, 40, 52], to the
projected shadows of line operators in the bulk theory. Nonetheless, this new perspective
permits the extrapolation of key ideas to theories that need not have a bulk correspondence.
Mathematically, only the structure of fusion category [53, 54], and not modular tensor
category, is required to describe the dynamics of topological defect lines. Less is more.

Loosely speaking, a local operator O on the Euclidean plane z̄ = z∗ is holomorphically-
defect-factorized if

O(z, z̄) ∼ D(z) L D(z̄) , (1.1)

1This formulation is ignorant of the explicit form of the chiral algebra blocks, and in particular, the
normalization of the blocks is a gauge ambiguity. There is no purely categorical way to decide which gauge
gives the canonically normalized blocks (corresponding to normalizing the two-point function of chiral
algebra primaries). Other means such as solving the null state decoupling equation [19] or the Wronskian
method [20] are necessary to determine this piece of the conformal field theory data. An explicit illustration
of this point will be given in section 5.2.

2Topological defect lines in two-dimensional quantum field theory have been investigated in [4–8, 21–48].
The modernized view of (generalized) symmetries as topological defects was developed in [33, 49–51].
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where L is a topological defect line, and D and D are holomorphic and anti-holomorphic
defect operators. These objects are introduced in section 2, and a precise definition
of factorization is given in Definition 1. To avoid confusion with the stronger sense of
holomorphic factorization (of the full theory), the factorization described above will be
referred to as “holomorphic-defect-factorization” throughout this paper.

Holomorphic-defect-factorization obscures the meaning of spacetime signature. Starting
from a Euclidean correlator, Lorentzian dynamics are obtained by continuing the complex
coordinates z, z̄ of local operators independently to real z and z̄ [55–59]. However, for
a holomorphically-defect-factorized local operator, a new interpretation is available: The
correlator stays in the Euclidean regime, but becomes one involving defect operators and
topological defect lines. This dual perspective suggests that aspects of Lorentzian dynamics
are dictated by fundamental properties of topological defect lines. In particular, for a four-
point function involving holomorphically-defect-factorized local operators, the conformal
Regge limit [60, 61] at infinite boost is completely fixed by the action of the topological
defect line on local operators. For rational theories, this connection was explored from
a bulk perspective by [62] in the context of out-of-time-ordered correlators and chaos.
We reformulate this connection in a purely two-dimensional way, and generalize beyond
rationality. In particular, the “opacity” of a Lorentzian four-point function is related to
the matrix elements of the factorizing topological defect line. By a unitarity bound on the
opacity proven in [63], we show that the spectral radii of factorizing topological defect lines
are determined by the loop expectation values. Interestingly, in higher dimensional conformal
field theory, light-ray operators [64] dominate the Regge limit of four-point functions, and
explain the analyticity in spin of the Lorentzian inversion formula [63]. The central role
played by line operators in the conformal Regge limit appears to be a common theme.

The connection between topological defect lines and Lorentzian dynamics is bidirectional.
The Regge limit of correlators allows the discovery of topological defect lines given the
correlators of local operators. Traditionally, a topological defect line L is characterized
by a topological map L̂ on the Hilbert space H of local operators, subject to stringent
consistency conditions, including the condition that the modular S transform of the twisted
partition function TrH L̂ qL0− c

24 q̄L̄0− c̄
24 gives a sensible partition function for the defect

Hilbert space [23]. A close analogy is the characterization of a consistent conformal
boundary condition as a (closed string) state satisfying the Cardy condition [65–67]. Due
to this analogy, we also call this condition for topological defect lines the Cardy condition.
At the level of principle, it would be desirable to have a direct formula for L̂ in terms
of correlators of local operators. As we will explain, assuming that a local operator is
holomorphically-defect-factorized through L, the conformal Regge limit provides such a
formula. Conversely, the conformal Regge limit serves as a nontrivial test of whether a
local operator is holomorphically-defect-factorized. We call this the strong holomorphic-
defect-factorization criterion (Definition 6). We also formulate the weak holomorphic-defect-
factorization criterion (Definition 7), for topological defect lines satisfying a weaker version
of the Cardy condition.

The holomorphic-defect-factorization criteria are put to test in the c = 1 free boson
theory, on both the toroidal branch and the orbifold branch. On the toroidal branch, all
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local operators are holomorphically-defect-factorized through U(1) symmetry defect lines,
regardless of rationality. On the orbifold [68, 69] branch, although the cosine operators are
always factorized, for the twist fields we find a dichotomy between rational and irrational
points. At rational points, the twist field correlator satisfies the strong holomorphic-defect-
factorization criterion, and we obtain a uniform formula describing the map L̂ for the
topological defect line L through which the twist field factorizes; in particular, at r2 = u/v

with u, v coprime, the planar loop expectation value is 〈L〉R2 =
√
uv. At special rational

points, it can be explicitly checked that our formula agrees with the Verlinde formula [52].
At irrational points, only the weak holomorphic-defect-factorization criterion is satisfied.
More precisely, the twist field factorizes through a “non-compact” topological defect line
with the defining property that its defect Hilbert space exhibits a continuous spectrum
(Definition 5).3 A non-compact topological defect line cannot be described by a semi-simple
object in a fusion category. We initiate a preliminary development of a more general
framework—TDL category—that includes non-compact topological defect lines and relaxes
semi-simplicity. In many examples, the more general TDL categories (which contain non-
compact topological defect lines) arise in the limit of sequences of fusion categories, in which
sequences of simple topological defect lines converge to non-compact topological defect lines.

This paper is organized as follows. Section 2 introduces topological defect lines, explains
the meaning of holomorphic-defect-factorization, expresses the three-point function of local
operators in terms of defect data, discusses the properties of factorizing topological defect
lines, and introduces non-compact topological defect lines and TDL categories. Section 3
studies correlators of holomorphically-defect-factorized local operators, and connects the
conformal Regge limit to fundamental properties of topological defect lines. In particular,
it is explained how the conformal Regge limit provides a way to discover topological defect
lines. Section 4 explores further aspects of Lorentzian dynamics, including a unitarity
bound on the opacity of the four-point function in the conformal Regge limit, its relation
to a formula on the spectral radii of the topological defect lines, and the connection to
chaos via out-of-time-order correlators. Section 5 examines holomorphic-defect-factorization
in rational theories, first from a purely two-dimensional perspective, and then reviews
the three-dimensional bulk perspective. Section 6 tests holomorphic-defect-factorization
beyond rationality, by studying the c = 1 free boson theory on both toroidal and orbifold
branches. Section 7 ends with a summary and further comments. Appendix A proves that
the crossing symmetry of holomorphic defect operators implies the crossing symmetry of
holomorphically-defect-factorized local operators. Appendix B proves the spectral radius
formula by utilizing the Perron-Frobenius theorem and its generalizations. Appendix C
collects formulae and computations relevant for the study of the free boson orbifold theory
in section 6.2.

3Topological defect lines exhibiting continuous spectra in compact theories were previously encountered
in [28].
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2 Holomorphic-defect-factorization of local operators

2.1 Topological defect lines

Let us first review basic properties of topological defect lines (TDLs), which encompass and
generalize symmetry defect lines. The exposition here largely follows [43]; for other relevant
references see footnote 2. TDLs can reverse orientation, act on local operators by circling
and shrinking, end on defect operators, join in junctions, undergo isotopic transformations
without changing the correlation functionals, and different configurations of TDLs are
equivalent under the so-called F -moves. The direct sum of two TDLs gives another TDL,
and correlation functionals are additive under direct sums.

A TDL L has an orientation reversal L, meaning the equivalence of

L = L . (2.1)

It acts on a local operator by circling and shrinking,

φ(z, z̄)
L = L̂(φ)(z, z̄) . (2.2)

In particular, the loop expectation value of a TDL L on the plane is4

〈L〉R2 = L . (2.4)

A TDL is associated with a defect Hilbert space obtained by quantizing on the cylinder
with twisted (by the TDL) periodic boundary conditions. The defect partition function is

ZL(τ, τ̄) = L . (2.5)

4The planar loop expectation value 〈L〉R2 is related to the quantum dimension dL in the categorical
language by a factor of the Frobenius-Schur indicator χL

〈L〉R2 = dL
χL

. (2.3)

The quantum dimension dL is equal to the vacuum expectation value of L wrapping the non-contractible
cycle on a cylinder, i.e.

dL = 〈L〉S1×R .

The two loop expectation values are related by at most a phase arising from the extrinsic curvature
improvement term [43].
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Via the state-operator map, states in the defect Hilbert space HL correspond to defect
operators on which the TDL can end. Since the defect Hilbert space has a norm, every
defect operator D ∈ HL has a hermitian conjugate D† ∈ HL of the same weight,

(hD, h̄D) = (hD† , h̄D†) , (2.6)

and the two are related by charge conjugation.
A TDL L is called simple if the defect Hilbert space HLL has a unique ground state

with (h, h̄) = (0, 0), and called semi-simple if can be uniquely expressed as a direct sum of
finitely many simple TDLs. Any TDL L′ such that the defect Hilbert space HLL′ has a
ground state with (h, h̄) = (0, 0) is said to be isomorphic to L, in the sense that there is
a Virasoro-equivariant isomorphism between HL and HL′ . A category of TDLs is called
semi-simple if every TDL is semi-simple. We assume semi-simplicity for now, and comment
on the more general situation later.

A trivalent junction of TDLs is depicted as

× L3

L1

L2

(2.7)

The marking × labels the ordering of edges at trivalent junctions, and can be permuted
around by the cyclic permutation map VL1,L2,L3 → VL2,L3,L1 . The junction vector space
VL1,L2,L3 associated to a trivalent junction is defined as the subspace of topological weight
(0, 0) states in the defect Hilbert space HL1,L2,L3 . The space of possible trivalent junctions
is encoded in the fusion rule of the simple TDLs; the fusion coefficients correspond to the
dimensions of the junction vector spaces.

There is a trivial TDL I that represents no TDL insertion. However, when it ends
on another TDL L forming a trivalent junction, it introduces a map from the junction
vector space VL,L,I (resp. other permuted orderings) to C. Such a trivalent junction could
be removed by evaluating the map on the identity junction vector 1L,L,I (resp. other
permuted orderings).

A configuration of TDLs is a (linear) correlation functional of junction vectors, and
different configurations are equivalent under F -moves

×
L5

L1

L2 L3

×

L4

=
∑
L6

×
L6

L3L2

L1

×
L4

◦ (FL1,L2,L3
L4

)L5,L6 , (2.8)

where the F -symbols are bilinear maps

(FL1,L2,L3
L4

)L5,L6 : VL1,L2,L5
⊗ VL5,L3,L4 → VL2,L3,L6

⊗ VL1,L6,L4 . (2.9)
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In particular, the planar loop expectation value (2.3) is related to an F -symbol by

(FL,L,LL )I,I : 1L,L,I ⊗ 1I,L,L 7→
1
〈L〉R2

× (1L,L,I ⊗ 1L,I,L) . (2.10)

The aforementioned cyclic permutation map is related to an F -symbol the F -move

×

L1

L2 L3

×

I

= ×

L3L2

L1

×
I

◦ (FL1,L2,L3
I )L3,L1

. (2.11)

For simplicity, the marking × will be ignored subsequently, which means that our formulae
will be correct up to cyclic permutation maps.

2.2 Holomorphic-defect-factorization hypothesis

Definition 1 (Holomorphic-Defect-Factorization) A local operator O on the Eu-
clidean plane z̄ = z∗ with definite conformal weight (h, h̄) is said to be holomorphically-
defect-factorized if it can be obtained in the following coincidence limit:

O(z, z̄)|z̄=z∗ =
√
〈L〉R2 × lim

z̄′→z̄=z∗
D(z) L D(z̄′) , (2.12)

where L is a simple topological defect line, D is a holomorphic defect operator of weight
(h, 0) in the defect Hilbert space HL, and D is an anti-holomorphic defect operator of weight
(0, h̄) in the dual defect Hilbert space HL.

Definition 2 (Factorizing topological defect line) A simple topological defect line L
is said to be factorizing if there exists is a holomorphic defect operator in the defect Hilbert
space HL, and an anti-holomorphic defect operator in the dual defect Hilbert space HL.

Throughout this paper, we use solid dots to represent holomorphic defect operators,
empty dots to represent anti-holomorphic defect operators, and solid-inside-empty dots to
represent local operators. The limit in (2.12) is well-defined because there is no singularity.
As we will see in section 2.3 the overall factor is such that if D and D are each properly
normalized,

〈D(0) L D†(1)〉 = 〈D†(0)
L D(1)〉 = 1 , (2.13)

then O is too,
〈O(0)O†(1)〉 = 1 . (2.14)

We write
O = D L— D (2.15)

for brevity.

– 6 –



J
H
E
P
1
0
(
2
0
2
1
)
1
2
5

When studying local operators in a conformal field theory, it is often natural to choose
a real basis, in which the two-point function of every basis operator with itself is nonzero.
However, holomorphically-defect-factorized local operators are generally complex. In fact,
as we will see in section 2.3, if a local operator is holomorphically-defect-factorized through
an oriented line (L 6= L), then its two-point function with itself vanishes, so it cannot be
real.5 In the concrete example of the free compact boson theory, the exponential operators,
which are complex, are holomorphically-defect-factorized through U(1) symmetry defects.
By contrast, the cosine and sine operators, which are real combinations of exponential
operators, are themselves not holomorphically-defect-factorized by Definition 1.6

Definition 3 (Holomorphic-defect-factorization prerequisite) A local operator O
of weight (h, h̄) is said to satisfy the holomorphic-defect-factorization prerequisite if there
exists a simple topological defect line L such that the defect Hilbert space HL contains
a defect operator of weight (h, 0), and the dual defect Hilbert space HL contains one of
weight (0, h̄).

Holomorphic factorization further implies the following statement about the analyticity
of general correlators, with the special case of sphere four-point functions rigorously proven
in [70]:7

Proposition 1 (Analyticity) An n-point correlation function involving holomorphically-
defect-factorized local operators at (zi, z̄i) admits an analytic continuation for zi and z̄i being
independent complex variables on a branched cover of C2n, where branch points can only
occur when two defect operators collide.

2.3 Operator product expansion

Holomorphic-defect-factorization provides a new perspective on the local operator production
expansion (OPE). The OPE between two holomorphically-defect-factorized O1 and O2
follows from performing an F -move on L1 and L2 and expressing the O1 ×O2 OPE as a
sum of products of D1 ×D2 and D1 ×D2 OPEs,

O1(z1, z̄1)O2(z2, z̄2) =
√∏2

i=1 〈Li〉R2

D1(z1)
L1 D1(z̄1)

D2(z2)
L2 D2(z̄2)

=
√∏2

i=1 〈Li〉R2

∑
L

D1(z1)

D2(z2)

L D1(z̄1)

D2(z̄2)
◦ (FL1,L1,L2

L2
)I,L (1L1,L1,I , 1I,L2,L2

) .

(2.16)

5Throughout this paper, L = L′ means that they are in the same isomorphism class.
6One could define a relaxed notion of factorization by allowing finite sums of holomorphically-defect-

factorized operators. We do not do so here.
7This implication is due to the anonymous JHEP referee.
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Suppose O2 is the hermitian conjugate of O1, i.e. O2 = O†1, and take the vacuum
expectation value. Holomorphy forces

L = I , L2 = L1 , D2 = D†1 , D2 = D†1 , (2.17)

which gives

〈O1(0)O†1(1)〉 = 〈D1(0)
L1

D†1(1)〉 × 〈D†1(0)
L1 D1(1)〉 . (2.18)

This shows that the OPE formula (2.16) has the correct normalization factor.
To proceed, define the three-point defect correlation functionals8

CD1,D2,D3 = 〈

D1(0)

D2(1) D′3(∞)

〉 : VL1,L2,L3 → C ,

CD1,D3,D2
= 〈

D1(0)

D′3(∞) D2(1)

〉 : VL1,L3,L2
→ C .

(2.19)

A central formula is a relation between them and the three-point coefficient CO1,O2,O3 of
local operators,

CO1,O2,O3 =
√∏3

i=1 〈Li〉R2 × (CD1,D2,D3 ⊗ CD1,D3,D2
) ◦ΘL1,L2,L3 , (2.20)

where the bi-vector ΘL1,L2,L3 has multiple equivalent expressions

ΘL1,L2,L3 = 1
〈L3〉R2

× (FL1,L1,L2
L2

)I,L3 (1L1,L1,I , 1I,L2,L2
)

= 1
〈L1〉R2

× (FL2,L2,L3
L3

)I,L1 (1L2,L2,I , 1I,L3,L3
)

= 1
〈L2〉R2

× (FL3,L3,L1
L1

)I,L2 (1L3,L3,I , 1I,L1,L1
) .

(2.21)

The formula (2.20) can be derived by starting with

〈O1(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)〉 =
√∏3

i=1 〈Li〉R2 × 〈

D1(z1)
L1 D1(z̄1)

D2(z2)
L2 D2(z̄2)

D3(z3)
L3 D3(z̄3)

〉 , (2.22)

8The notation ′ means moving an operators to the other patch of the sphere while taking into account
the conformal factors.
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performing an OPE via (2.16), and then performing an F -move on a trivial line connecting
L and L3 to arrive at

√∏3
i=1 〈Li〉R2 ×

∑
L,L′
〈

D1(z1)

D2(z2)

D3(z3)

D1(z̄1)

D2(z̄2)

D3(z̄3)

L′L L
〉

◦ (FL,L,L3
L3

)I,L′ (1L,L,I , 1I,L3,L3
)⊗ (FL1,L1,L2

L2
)I,L (1L1,L1,I , 1I,L2,L2

) .

(2.23)

If we take the vacuum expectation value, then holomorphy forces L′ = I and L = L3, and
gives (2.20) with ΘL1,L2,L3 written in its first expression in (2.21). Analogous derivations
by first taking the O2 × O3 or the O1 × O3 OPE arrive at the other two expressions for
ΘL1,L2,L3 . Note that the equivalence of the three expressions for ΘL1,L2,L3 is a purely fusion
categorical property.

In appendix A, we show that given (2.20), the crossing symmetry of holomorphically-
defect-factorized local operators follows from the crossing symmetry of holomorphic de-
fect operators.

2.4 Closedness, uniqueness, and commutativity

Using the above formulation of local OPE in terms of TDL fusion and defect OPE, we can
argue for the following properties of holomorphic-defect-factorization.

Proposition 2 (Closedness of factorized operators) If two local operators O1 and O2
are both holomorphically-defect-factorized, Oi = Di Li— Di, then all operators in the O1×O2
operator product expansion (OPE) are holomorphically-defect-factorized.

This proposition obviously follows from (2.16).

Proposition 3 (Closedness of factorizing topological defect lines) The set of fac-
torizing topological defect lines is closed under fusion.

Given Proposition 2, it suffices to argue that every TDL L appearing in the fusion of two
factorizing TDLs L1 and L2 is factorizing. This can be shown by considering

L

D1(z1) D2(z2)

L

D2(z̄2) D1(z̄1)

(2.24)

and taking the D1D2 and D1D2 OPEs.

– 9 –
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Proposition 4 (Uniqueness of factorization) The holomorphic-defect-factorization
(2.12) of a local operator O is unique (up to isomorphism) if existent.

Suppose O = D L— D = D′ L
′

— D′, by taking the operator product expansion (2.16) of
O = D L— D with its hermitian conjugate O† = (D′)† L

′
— (D′)†, one would conclude that

the fusion LL′ produces the trivial TDL, which implies that L = L′. Furthermore, the
orthonormality of defect operators implies D = D′ and D = D′.

Proposition 5 (Uniqueness of holomorphic defect operator) Every topological de-
fect line hosts at most one holomorphic defect operator that is highest-weight with respect to
the maximally extended chiral algebra.

Suppose a topological defect line L hosts a set of holomorphic defect highest-weight operators
(with respect to the maximally extended chiral algebra) Di, chosen to be orthonormal, then
the holomorphic defect OPE gives

Di(z) L D†j(0) =
∑
Ω
z
hΩ−hDi−hDj CDi,D†j ,Ω

Ω(0) . (2.25)

where Ω are holomorphic local operators. All Ω must be chiral algebra descendants of the
vacuum, because otherwise the chiral algebra would have been further extended. Then
by associativity, Di and Dj appear in each other’s OPE with Ω, i.e. they are in the same
chiral algebra module. Thus, every topological defect line hosts at most one holomorphic
defect highest-weight operator, and only the vacuum module appears in the holomorphic
defect OPE.

However, not every topological defect line hosts a holomorphic defect operator in its
defect Hilbert space. A simple example is given by the charge conjugation symmetry defect
line in the three-state Potts model.

Proposition 6 (Commutativity) The fusion rule of factorizing topological defect lines
is commutative.

Let O1 and O2 be local operators holomorphically-defect-factorized through L1 and L2,
respectively. The operator product expansions of O1(z, z̄)O2(0, 0) and O2(z, z̄)O1(0, 0)
contain the same set of local operators that factorize through L1 L2 and L2 L1. By
Propositions 3 and 4, we must therefore have L1 L2 = L2 L1.

2.5 Non-compact topological defect lines

In the above, we have assumed that the category of TDLs is semi-simple. To incorporate
non-semi-simple TDLs, the usual fusion categorical framework needs to be enlarged. To
motivate, consider the Tambara-Yamagami categories [71] with G = Zn, and embed Zn in
U(1). Heuristically, the infinite n limit should give rise to a Tambara-Yamagami category
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with G = U(1). Indeed as we will see below, a properly-normalized version of the non-
invertible TDL produces upon self-fusion an integral over U(1) symmetry lines. While
such a mathematical framework has not been fully developed, we nevertheless attempt to
characterize the key properties of such TDLs. For the lack of a better name, we refer to
this generalized structure as a TDL category.

Definition 4 (Weak Cardy condition) A topological defect line is said to satisfy the
weak Cardy condition if its defect Hilbert space has a positive norm.

In particular, the weak Cardy condition allows for continuous (delta-function normalizable)
spectra inside the defect Hilbert space along with discrete (normalizable) states. By contrast,
the usual Cardy condition requires the spectrum of the defect Hilbert space to be discrete.

Definition 5 (Non-compactness) A topological defect line with a continuum inside the
defect Hilbert space is said to be non-compact.

A TDL category contains TDLs satisfying the weak Cardy condition. Importantly,
there exists a basis of TDLs, parameterized by variables taking both discrete and continuous
values, such that every TDL can be expressed as a direct integral over the basis TDLs with
positive measure (discrete TDLs correspond to delta-function measures). This basis must
contain all the simple TDLs, and possibly some non-compact TDLs.

There are two ways to normalize a simple TDL. The standard way, which we call
Cardy normalization, is to demand that the leading term (corresponding to the ground
state) in the q, q̄-expansion of its defect partition function ZLL(τ, τ̄) has unit coefficient.
The alternative way, which we call loop normalization and denote the corresponding TDL
by L̃, is to normalize the cylinder loop expectation value 〈L̃〉S1×R to one. The two are
related by L̃ = 〈L〉−1

S1×R L. For non-compact basis TDLs, Cardy normalization is not always
well-defined, as the ground state in HLL may sit at the bottom of a continuous spectrum;
therefore, the only natural normalization is the loop normalization.

In terms of basis TDLs, the F -move could be defined in the same way as (2.8), but
with the sum replaced by an integral over the basis TDLs, and with the F -symbol becoming
an integration measure. Accordingly, every appearance of “

∑
L”, for instance in (2.16)

and (2.23), should be interpreted as integrals over the basis TDLs.
We will encounter an example of such a TDL category in the free boson orbifold theory

in section 6.2. An important lesson we learn from this example is that the more general
TDL category (which contains non-compact TDLs) can arise as a limit of a sequence of
semi-simple fusion categories. More precisely, a non-compact basis TDL L̃ can arise as a
limit of a sequence of simple TDLs Ln, such that when Ln is Cardy normalized, the loop
expectation value 〈Ln〉S1×R diverges in the n→∞ limit, while at the same time the spacing
in the spectrum of the defect Hilbert space HLn diminishes. Hence, the sequence of defect
Hilbert spaces HL̃n of the loop-normalized simple TDLs L̃n = 〈Ln〉−1

S1×R Ln converges to
a Hilbert space with continua in its spectrum. This limiting defect Hilbert space could
thereby be identified as that of a non-compact TDL L̃ = limn→∞ L̃n.

The general structure of the fusion of two non-compact basis TDLs L̃ and L̃′ can also
be nicely understood from the limit of a sequence of fusions of simple TDLs L̃n and L̃′n. The
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decomposition of the fusion product Ln L′n must either contain a simple TDL whose loop
expectation value diverges in the n→∞ limit, or be a sum whose number of summands
diverges in the n→∞ limit. In the latter case, we find that the decomposition of the fusion
L̃ L̃′ should contain a direct integral of simple TDLs.

We stress that an infinite direct sum of Cardy-normalized TDLs is unphysical because the
defect partition function diverges, as we presently explain. By the modular S-transformation,
the defect partition function is related to the twisted partition function, which is proportional
to the cylinder loop expectation value 〈 〉S1×R. In a unitary compact theory, the 〈 〉S1×R of
every topological defect line is lower-bounded by one. An infinite sum of numbers lower-
bounded by one produces infinity. Therefore, when such an infinity is formally encountered
in taking the limit of theories or fusion categories, one should loop-normalize the simple
TDLs, and interpret the limiting TDL as a non-compact TDL that has a continuous yet
finite defect partition function.

To illustrate the ideas presented above, consider the Tambara-Yamagami categories [71]
with G = Zn. At finite n, the fusion rule is

N 2 =
n−1∑
m=0

ηm , (2.26)

where η is the symmetry line corresponding to a generator of Zn, and N is the non-invertible
TDL with 〈N〉S1×R =

√
n. The naive n→∞ limit produces an infinite sum on the right,

and relatedly 〈N〉S1×R diverges. Suppose the Zn symmetry is embedded in a U(1) whose
elements are parameterized by θ ∈ [0, 2π). If we denote the U(1) symmetry lines by Lθ,
then the embedding map is

ηm 7→ L2πm
n
. (2.27)

By defining the loop-normalized

Ñ ≡ N
〈N〉S1×R

= N√
n
, (2.28)

(2.26) becomes

Ñ 2 = 1
n

n−1∑
m=0

ηm . (2.29)

In the n→∞ limit, the sum becomes an integral

Ñ 2 =
∫ 2π

0

dθ

2π Lθ .
(2.30)

In the holomorphic-defect-factorization of a local operator O, the factorizing TDL could
be a non-compact basis TDL L̃, and the defect operator D could sit in a continuum in the
defect Hilbert space HL̃. Note that while the local operator O is normalizable, the defect

operator D is delta-function normalizable. To make sense of O = D L̃— D as an operator
equivalence inside correlation functions, the expectation value 〈 〉 should be defined with
the additional prescription of appropriately removing “δ(0)” factors.
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Let us try to make precise the preceding paragraph by considering a sequence of
local operators On that factorize through a sequence of simple TDLs Ln. We write the
holomorphic-defect-factorization in a slightly different form:

On(z, z̄)|z̄=z∗ = lim
z̄′→z̄=z∗

D̃n(z)
L̃n

D̃n(z̄′) , (2.31)

where L̃n is loop-normalized, and the defect operators D̃n, D̃n are normalized as9

D̃n ≡ 〈Ln〉
1
4
R2〈Ln〉

1
2
S1×RDn , D̃n ≡ 〈Ln〉

1
4
R2〈Ln〉

1
2
S1×RDn , (2.32)

in order to absorb all factors of 〈Ln〉R2 and 〈Ln〉S1×R. Under this normalization, the
two-point functions (2.13) become

〈 D̃n(0)
L̃n

D̃†n(1)〉 = 〈 D̃
†
n(0)

L̃n
D̃n(1)〉 = 〈Ln〉

1
2
S1×R , (2.33)

and the relation (2.18) between the local operator two-point function and defect operator
two-point functions becomes

〈On(0)O†n(1)〉 = 〈Ln〉−1
S1×R × 〈D̃n(0)

L̃n
D̃†n(1)〉 × 〈 D̃

†
n(0)

L̃n
D̃n(1)〉 . (2.34)

The n→∞ limit of correlators of local operators, such as the two-point function (2.34),
is finite.

In the spectrum of the limiting non-compact TDL L̃ = limn→∞ L̃n, the limiting
holomorphic defect operator D̃ = limn→∞ D̃n is buried inside a continuum, say parameterized
by µ, and becomes delta-function normalizable,

〈 D̃(µ; 0)
L̃

D̃†(ν; 1)〉 = δ(µ− ν) . (2.35)

Likewise for the anti-holomorphic defect operator D̃. From this prespective, the diverging
〈Ln〉

1
2
S1×R on the right hand side of (2.33) should be interpreted as a “δ(0)” factor. Moreover,

In a correlator of local operators, such as the two-point function (2.34), a specific power
of “δ(0)” should be removed. The 〈Ln〉−1

S1×R factor in (2.34) transits to such a removal
operation in the n→∞ limit, and (2.34) schematically becomes

〈O(0)O†(1)〉 = “ 1
δ(0)2 ” 〈 D̃(0)

L̃
D̃†(1)〉 × 〈 D̃

†
(0)

L̃
D̃(1)〉 . (2.36)

9Note that 〈Ln〉R2〈Ln〉∗R2 = 〈Ln〉2S1×R.
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3 Holomorphically-defect-factorized local operators in the Regge limit

3.1 Action on local operators in the conformal Regge limit

Suppose a local operator is holomorphically-defect-factorized, O = D L— D, then to study
the action (2.2) of L on a particular local operator φ, we can take the four-point function
〈O†(0)O(z, z̄)φ(1)φ′†(∞)〉 and send z around 1 while keeping z̄ fixed. This wraps L around
φ(1). By then sending z, z̄ → 0 with z/z̄ fixed and removing the leading singularity, we
obtain 〈 ̂̃L(φ)φ′〉, where L̃ is loop-normalized such that ̂̃L(1) = 1. This limit is none other
than the conformal Regge limit [60, 61] of the four-point function. The following is a
visual for when L is simple:

√
〈L〉R2 ×

D(z̄)

D(z)
O†(0) φ(1) φ′†(∞)

→
√
〈L〉R2 ×

D(z)

D(z̄)O†(0) φ(1) φ′†(∞)

= 1√
〈L〉R2

×
∑
L′

D(z)
L′

D(z̄)
O†(0) φ(1) φ′†(∞)

(1L,L,I , 1I,L,L)

∼ 1
〈L〉R2

1
z2hz̄2h̄

×
φ(1) φ′†(∞)

.

(3.1)

In the second-to-last line, we used the relation (2.10) between the planar loop expectation
value and the F -symbol (FL,L,LL )I,L′ (1L,L,I , 1I,L,L). In the last line, we kept the leading
term in the z, z̄ → 0 limit corresponding to the domination of L′ = I, and used (2.10) to
rewrite the F -symbol as an inverse planar loop expectation value.
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Normally, continuing z and z̄ independently takes a correlator off the Euclidean plane.
However, if one of the operators is holomorphically-defect-factorized, then the correlator
has a new interpretation as a Euclidean correlator involving not only local operators, but
also defect operators joined by topological defect lines.

3.2 Holomorphic-defect-factorization criterion in the torus Regge limit

To study the action of L on all local operators at once, one can consider the torus two-point
function 〈O(z, z̄)O(0)〉T 2(τ,τ̄). By sending z → z + 1 (spatial translation) with z̄ fixed and
then z, z̄ → 0 with z/z̄ fixed while removing the leading singularity, one obtains the torus
partition function ZL̃(τ, τ̄) with the loop-normalized L̃ wrapped along the spatial direction.
The following is a visual for when L is simple:

√
〈L〉R2 ×

D(z̄)

D(z)
O(0)

L →
√
〈L〉R2 ×

D(z̄)

D(z)

O(0)

→ 1√
〈L〉R2

× L′

L

D(z̄)
D(z)

O(0)

∼ 1
〈L〉R2

e2iπh

z2hz̄2h̄
× L .

(3.2)

In the last step, we kept the dominant L′ = I contribution, and performed a 2π angle
rotation of L at D to return to the original configuration, thereby creating the extra e2iπh

phase. With the e2iπh phase stripped off, we call this the spatial torus Regge limit.
The modular S transform of ZL̃(τ, τ̄) gives the defect partition function ZL̃(τ, τ̄), i.e.

the torus partition function with L̃ wrapped along the temporal direction. The latter could
be obtained directly from 〈O(z, z̄)O(0)〉T2(τ,τ̄) by sending z → z − τ (temporal translation)
with z̄ fixed and then z, z̄ → 0 with z/z̄ fixed while removing the leading singularity. The
following is a visual for when L is simple:

√
〈L〉R2 ×

D(z̄)

D(z)
O(0)

→ · · · ∼ 1
〈L〉R2

e2iπh

z2hz̄2h̄
× .

(3.3)
With the e2iπh phase stripped off, we call this the temporal torus Regge limit.

As we have seen, the conformal and torus Regge limits naturally produce correlators with
loop-normalized TDLs. When L is simple, we expect that multiplication with 〈L〉R2 gives
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the more standard Cardy-normalized torus partition function, which has a q, q̄ expansion
with positive integer coefficients (Cardy condition). This requirement presents a nontrivial
criterion for the factorization of the local operator O through a simple TDL.

Definition 6 (Strong holomorphic-defect-factorization criterion) Given a local op-
erator O in a unitary conformal field theory, if the torus two-point function
〈O(z, z̄)O(0)〉T2(τ,τ̄) in the temporal torus Regge limit has a q, q̄ expansion with posi-
tive integer coefficients up to some overall number, then O is said to satisfy the strong
holomorphic-defect-factorization criterion.

To incorporate holomorphic-defect-factorization through non-compact TDLs, the dis-
creteness and integer-coefficient requirements need to be relaxed, hence the Cardy condition
should be replaced by the weak Cardy condition of Definition 4.

Definition 7 (Weak holomorphic-defect-factorization criterion) Given a local op-
erator O in a unitary conformal field theory, if the torus two-point function
〈O(z, z̄)O(0)〉T2(τ,τ̄) in the temporal torus Regge limit is the Laplace transform of a
non-negative density of states, then O is said to satisfy the weak holomorphic-defect-
factorization criterion.

While the weak holomorphic-defect-factorization criterion is certainly natural in non-
compact theories like Liouville or Toda [33], it also applies to compact theories. In particular,
topological defect lines satisfying the weak criterion but not the strong criterion will arise
in the free boson orbifold theory at irrational points in section 6.2.

4 Lorentzian dynamics and holography

As discussed in section 3, the conformal Regge limit [60, 61] of the four-point function of a
pair of holomorphically-defect-factorized local operators O = D L— D computes the matrix
element of the map L̂ on the Hilbert space of local operators. Traditionally, the conformal
Regge limit is interpreted as a limit of Lorentzian correlators, since analytically continuing z
around 1 while fixing z̄ moves the local operator off the Euclidean plane onto the Lorentzian
sheet. In holographic theories, the conformal Regge limit corresponds to the Regge limit of
the bulk S-matrix — the high energy limit with a fixed impact parameter. There is also
a close connection to chaos [72–75], as the conformal Regge limit is equivalent to the late
time limit of the out-of-time-ordered-correlator (OTOC) at finite temperature [76].

To be concrete, let us consider the Euclidean four-point function of a pair of hermitian
conjugate operators O, O† with another pair of hermitian conjugate operators φ, φ† on the
complex plane

G(z, z̄) = 〈O†(z1, z̄1)O(z2, z̄2)φ(z3, z̄3)φ†(z4, z̄4)〉
〈O†(z1, z̄1)O(z2, z̄2)〉〈φ(z3, z̄3)φ†(z4, z̄4)〉 ,

(4.1)

where the cross ratios are
z = z12z34

z13z24
, z̄ = z̄12z̄34

z̄13z̄24
. (4.2)
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φφ† OO†

ρ

ρ̄

Figure 1. The conformal Regge limit depicted in the global ρ-coordinate. The dotted lines are the
light-cones of the operators φ and φ†.

By conformal symmetry, the positions of the operators can be fixed to

z1 = −ρ , z2 = ρ , z3 = 1 , z4 = −1 . (4.3)

Then the cross ratios are related to the global variables ρ, ρ̄ by [77]

ρ = z

(1 +
√

1− z)2 , ρ̄ = z̄

(1 +
√

1− z̄)2 . (4.4)

Under the analytic continuation sending z around 1 while fixing z̄, the cross ratios become
independent variables; on the Lorentzian sheet, they are both real. In the conformal Regge
limit, (1− z)→ e2πi(1− z) with z̄ fixed and then z, z̄ → 0 with z/z̄ fixed, ρ and ρ̄ scale as

ρ = 4
z

+O(z0) , ρ̄ = z̄

4 +O(z̄2) . (4.5)

The analytic continuation and the conformal Regge limit could be equivalently described in
the ρ-coordinate. One first write ρ and ρ̄ as

ρ = reiθ , ρ̄ = re−iθ . (4.6)

In Euclidean signature, the distance from the origin r and the angle θ are real. One then
analytic continues the angle θ as θ = −iζ − ε, and arrives at the Rindler coordinates

ρ = reζ−iε , ρ̄ = re−ζ+iε , (4.7)

where the ζ is the boost parameter (rapidity) of the O, O† operators relative to the φ, φ†

operators.
The conformal Regge limit [60, 61] corresponds to the large boost limit where the pair

of O, O† operators become time-like separated from the pair φ†, φ, respectively, and O and
O† approach the light-cone of each other. Under the holographic duality, this limit can be
interpreted as the high energy scattering of particles created by the operators φ and O with
a fixed finite impact parameter.
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4.1 Opacity bound and spectral radius formula

The four-point function in the conformal Regge limit has the expected behavior [61]10

G(z, z̄)	 ∼ 1−#
(
ρ

ρ̄

) 1
2 (j0−1)

, (4.8)

where G(z, z̄)	 denotes the four-point function after the continuation of z around 1, and j0
is the Regge intercept, i.e. the analytic continuation of the leading Regge trajectory j(∆)
to ∆ = 1. In unitary theories, [63] used the Cauchy-Schwarz inequality11

|G(z, z̄)	| ≤ G(z, z̄) , 0 ≤ z, z̄ ≤ 1 (4.9)

to prove that the Regge intercept is bounded by

j0 ≤ 1 . (4.10)

The Regge behavior of the Lorentzian four-point function can be separated into two
distinct classes, transparent j0 < 1 and opaque j0 = 1 [78]. When j0 < 1, the Lorentzian
four-point function factorizes into a product of two-point functions in the conformal Regge
limit; holographically, the particle created by the operator φ and that by O pass through
each other without interacting in the high energy fixed impact parameter limit. By contrast,
when j0 = 1, the Lorentzian four-point function does not factorize, and the bulk scattering
is nontrivial.

The behavior in the Regge limit can be further subdivided into transparent, refractive,
and opaque. If we define

r[O, φ] ≡ lim
z→0, z/z̄ fixed

G(z, z̄)	 , (4.11)

then the four-point function is called transparent if r[O, φ] = 1, refractive if r[O, φ] is a
nontrivial phase, and opaque otherwise.12 We then define the notion of opacity

κ[O, φ] ≡ 1− |r[O, φ]| (4.12)

for the four-point function G(z, z̄). Note that while the four-point function has zero opacity
when |r[O, φ]| = 1, there could still be nontrivial refraction that corresponds to a nontrivial
phase of r[O, φ]. The inequality (4.9) shows that

κ[O, φ] ≥ 0 . (4.13)

If the operator O is holomorphically-defect-factorized through a topological defect line
L, then according to (3.1), we have

r[O, φ] = 1
〈L〉R2

〈
φ†(0) L̂(φ)(1)

〉〈
φ†(0)φ(1)

〉 . (4.14)

10In the conformal Regge limit, our variables ρ and ρ̄ are related to the variables σ and ρ in (55) and (56)
of [61] by

16 ρ̄
ρ

= σ2 , ρρ̄ = e2ρ

where the variables σ and ρ appearing on the right are the ones defined in [61].
11We thank Petr Kravchuk for a discussion.
12By the definition of [78], refractive scattering is opaque.
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When κ[O, φ] = 0 (in other words |r[O, φ]| = 1), the nontrivial Regge dynamics are encoded
in the subleading

∑
L′ 6=I part of (3.1). By contrast, when κ[O, φ] > 0 or |r[O, φ]| ≤ 1, the

leading L′ = I piece is already nontrivial, and incorporates an O(1) contribution from
the second piece in (4.8). The opacity bound (4.13) immediately implies a corollary about
topological defect lines in unitary conformal field theory.

Corollary 1 In a (1+1)d unitary conformal field theory, the spectral radius rL of a factor-
izing topological defect line L, defined by

rL ≡ max
φ

{∣∣∣∣∣
〈
φ†(0) L̂(φ)(1)

〉〈
φ†(0)φ(1)

〉 ∣∣∣∣∣
}
, (4.15)

is equal to the loop expectation value of L, i.e.

rL = |〈L〉R2 | . (4.16)

In other words, for any factorizing topological defect line L and any local operator φ,∣∣∣∣∣ 1
〈L〉R2

〈
φ†(0) L̂(φ)(1)

〉〈
φ†(0)φ(1)

〉 ∣∣∣∣∣ ≤ 1 . (4.17)

In appendix B, we give complementing arguments for the spectral radius formula (4.16)
without assuming that the TDL L is factorizing, by use of the Perron-Frobenius theorem
and its generalizations.

Finally, the spatial torus Regge limit (3.2) of the torus two-point function of O conve-
niently packages the infinitely-boosted conformal Regge limit for all possible φ.

4.2 Aspects of chaos

The relation between the conformal Regge limit and the chaos limit of the Lorentzian
four-point function at finite temperature T = β−1 could be seen by conformally mapping
the complex plane to the cylinder S1×R by z = e

2iπ
β

(τ+ix), where the S1 is the thermal circle
with periodicity β [73, 76]. The Euclidean time τ could be further analytically continued to
Lorentzian time t by

z1 = e
2π
β

(t+iε1)
, z2 = e

2π
β

(t+iε2)
, z3 = e

2π
β

(x+iε3)
, z4 = e

2π
β

(x+iε4)
,

z̄1 = e
− 2π
β

(t+iε1)
, z̄2 = e

− 2π
β

(t+iε2)
, z̄3 = e

2π
β

(x−iε3)
, z̄4 = e

2π
β

(x−iε4)
.

(4.18)

The ordering of the operators in the correlator is specified by choosing ε1 < ε4 < ε2 < ε3.
At t = 0, the operators are space-like separated and z̄i = z∗i . When t increases from t = 0
to t > |x|, the cross ratio z moves across the branch cut at [1,∞) onto the second sheet,
while z̄ remains on the first sheet. In the late time limit t→∞, both z and z̄ approach 0
with their ratio z/z̄ = e

4π
β
x +O(e−

2π
β
t) fixed, which is precisely the conformal Regge limit.

The out-of-time-ordered correlator (OTOC) captures the perturbation caused by the
operators φ on the later measurements O. The behavior of the four-point function in the
conformal Regge limit (4.8) translates to the exponential time dependence of the OTOC at
late time

G(z, z̄)	 ∼ 1−#e
2π
β
λt
. (4.19)
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The exponent λ is related to the Regge intercept j0 by λ = j0 − 1, and bounded according
to (4.10) by λ ≤ 0. When λ < 0, the OTOC approaches the product of two-point functions
signifying that the effect of the operators φ’s on the measurements O’s exponentially decays
at late time. When λ = 0, the effect of the operator φ could have finite imprint on the
measurement O at infinite time.

In a chaotic system, the effect of the operator φ on the measurement O could grow
exponentially during some intermediate time scale. At large central charge c and the time
scale t ∼ β log c, the OTOC is expected to behave as [73, 79–83]

G(z, z̄)	 ∼ 1− #
c
e

2π
β
λLt . (4.20)

The chaos exponent λL could take positive values and bounded in unitary theories by [75]

λL ≤ 1 . (4.21)

Probing the chaotic behavior (4.20) of the OTOC requires taking the limit z → 0 while
fixing z̄/z and c× z. Such a limit could be similarly studied by applying the manipulations
in (3.1) to large c theories. One would need to include subleading terms that involve lasso
diagrams [43].

5 Rational conformal field theory

5.1 Holomorphic-defect-factorization and Lorentzian dynamics

The holomorphic-defect-factorization prerequisite (Definition 3) is the existence of holo-
morphic and anti-holomorphic defect operators of suitable weights in some defect Hilbert
spaces, so that holomorphic-defect-factorization is at all possible.

The local operators transform as bi-modules of the holomorphic and anti-holomorphic
chiral algebras. The highest-weight operators in the bi-modules are labeled by Oi,j , where
the indices i and j label the irreducible modules of the holomorphic and anti-holomorphic
chiral algebras. Modular invariance further constrains the set of Oi,j that appear in the
theory, and the holomorphic-defect-factorization prerequisite is satisfied by the existence of
the Verlinde lines [23, 33, 40, 52].

In a diagonal modular invariant rational conformal field theory, the partition function
of local operators is

Z(τ, τ̄) =
∑
i

χi(τ)χ̄i(τ̄) . (5.1)

The Verlinde line Lk acts the local operator Oi,i by

L̂k(Oi,i) = Ski
S0i
Oi,i , (5.2)

where Ski is the modular S matrix, and i = 0 denotes the vacuum module. The partition
function twisted by the Verlinde line Lk is

ZLk(τ, τ̄) = TrH L̂ qL0− c
24 q̄L̄0− c̄

24 =
∑
i

Ski
S0i

χi(τ)χ̄i(τ̄) . (5.3)
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The partition function for the defect Hilbert space HLk is obtained by a modular S transform.
The result is

ZLk(τ, τ̄) =
∑
i,j

N j
ki χi(τ)χ̄j(τ̄) , (5.4)

where the fusion coefficients N j
ki are non-negative integers given by the Verlinde formula [52],

N j
ki =

∑
`

Sk`Si`S
∗
j`

S0`
. (5.5)

The holomorphic-defect-factorization prerequisite is satisfied because N0
ki = δki andN j

k0 = δjk.
In other words, for any admissible highest-weight operator Oi,i with weight (hi, hi), the
defect Hilbert space of the Verlinde line Li contains one defect highest-weight operator of
weight (hi, 0) and another one of weight (0, hi).

When there exists a permutation automorphism ζ of the irreducible modules of the
chiral algebra, satisfying

ζ(0) = 0 , Sζ(i)ζ(j) = Sij , Tζ(i)ζ(j) = Tij , (5.6)

there is a modular invariant partition function

Z(τ, τ̄) =
∑
i

χi(τ)χ̄ζ(i)(τ̄) . (5.7)

The topological defects lines in such theories were classified by Petkova and Zuber [23]. The
Verlinde line Lk acts on the local operator Oi,ζ(i) by

L̂k(Oi,ζ(i)) = Ski
S0i
Oi,ζ(i) . (5.8)

After similar manipulations as before, we find the partition function for the defect Hilbert
space HLk ,

ZLk(τ, τ̄) =
∑
i,j

N
ζ−1(j)
ki χi(τ)χ̄j(τ̄) . (5.9)

The holomorphic-defect-factorization prerequisite in this case follows from N0
ki = δki and

N
ζ−1(j)
k0 = δjζ(k). In other words, for any admissible highest-weight operator Oi,ζ(i) with

weight (hi, hζ(i)), the defect Hilbert space of the Verlinde line Li contains one defect
highest-weight operator of weight (hi, 0) and another one of weight (0, hζ(i)).

Diagonal or not, the defect Hilbert spaceHLk projected onto the subspace of holomorphic
operators (resp. anti-holomorphic operators) is an irreducible module of the holomorphic
(resp. anti-holomorphic) chiral algebra, encapsulated in the equations

lim
q̄→0

q̄ −
c
24ZLk(τ, τ̄) = χk(τ) , lim

q→0
q−

c
24ZLk(τ, τ̄) = χ̄ζ(k)(τ̄) . (5.10)

The diagonal case is when the permutation map ζ is the identity map.
As proven by Moore and Seiberg [10], every rational theory has a maximally extended

chiral algebra with respect to which the theory is either diagonal or permutation modular
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invariant. And since all operators in the same chiral algebra module can be factorized
through the same topological defect line, the preceding discussion covers all possibilities.

The full set of topological defect lines that not necessarily commutes with the maximally
extended chiral algebra is vast, even in rational theories. The fact that all local operators
are factorized through Verlinde lines, i.e. TDLs that commute with the maximally extended
chiral algebra, suggests the following proposition.13

Proposition 7 In rational conformal field theory, if L is a topological defect line whose
defect Hilbert space HL contains a holomorphic defect operator, and whose dual defect
Hilbert space HL contains an anti-holomorphic defect operator, then L and L are Verlinde
lines.

Every L satisfying the assumed property produces a local operator by holomorphic-defect-
factorization, and this map is injective by Proposition 4, but as discussed in rational
conformal field theory all local operators are factorized through Verlinde lines.

Let us comment on the Lorentzian dynamics of rational conformal field theory. Us-
ing (5.2) and (5.8) for the action of Lk on local operators, the infinite boost limit (4.14) is
given by the modular S matrix as

r[Ok,ζ(k),Oi,ζ(i)] = S00Ski
S0kS0i

. (5.11)

The diagonal case (ζ being the trivial permutation) reproduces the result of [62] derived
from the monodromy properties of the chiral algebra blocks, or equivalently from a bulk
perspective (reviewed in section 5.3) by use of the braiding of anyons. However, we emphasize
that the derivation of our formula (4.14) only involves the F -symbols alone, and hence
applies beyond rationality.

5.2 Example: Ising conformal field theory

The Ising conformal field theory has three local operators, the identity 1, the energy
operator ε, and the spin operator σ. It has three topological defect lines, the trivial
I, the Z2 symmetry defect line η, and the non-invertible Kramers-Wannier duality line
N [24, 25, 31]. The fusion rule is

η2 = I , N 2 = I + η , ηN = N . (5.12)

The local operators are holomorphically-defect-factorized as follows:

ε = ψ
η— ψ̄ , σ = τ N— τ̄ , (5.13)

13We thank Zohar Komargodski and Kantaro Ohmori for highlighting this implication.
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where ψ is a weight (1
2 , 0) free fermion, and τ is a weight ( 1

16 , 0) defect operator. Consider
the vector of holomorphic-defect four-point functions

f(z) =



I
τ

τ τ

τ

η
τ

τ τ

τ


=


F
[

1
16

1
161

16
1
16

] 1
2

0
(z)

C2
τ,τ,ψ ×F

[
1
16

1
161

16
1
16

] 1
2

1
2

(z)

 . (5.14)

Under crossing, the (properly normalized) Virasoro blocks transform as
F
[

1
16

1
161

16
1
16

] 1
2

0
(1− z)

F
[

1
16

1
161

16
1
16

] 1
2

1
2

(1− z)

 = 1√
2

(
1 1

2
2 −1

)

F
[

1
16

1
161

16
1
16

] 1
2

0
(z)

F
[

1
16

1
161

16
1
16

] 1
2

1
2

(z)

 . (5.15)

A gauge choice means that canonical junction vectors have been chosen, so all correlation
functionals can be turned into correlation functions by the implicit insertion of canonical
junction vectors. Henceforth defect thee-point correlation functionals become simply defect
three-point coefficients. Suppose we adopt the gauge choice of [43] where the nontrivial
F -symbols are

(F η,N , ηN )N ,N = −1 , FN ,N ,NN = 1√
2

(
1 1
1 −1

)
. (5.16)

The crossing equation

f(1− z) = 1√
2

(
1 1
1 −1

)
f(z) (5.17)

becomes simply(
1
C2
τ,τ,ψ

)
× 1√

2

(
1 1

2
2 −1

)
= 1√

2

(
1 1
1 −1

)
×
(

1
C2
τ,τ,ψ

)
, (5.18)

which gives C2
τ,τ,ψ = 1

2 . The formula (2.20) and (2.21) give the three-point coefficient

Cσ,σ,ε = 〈N〉R2

√
〈η〉R2 Cτ,τ,ψ Cτ̄ ,τ̄ ,ψ̄ Θη,η,N =

√
2× 1×

√
1
2 ×

√
1
2 ×

√
1
2 = 1

2 ,
(5.19)

up to a sign that can be absorbed into a redefinition of ψ and ψ̄.
Alternatively, one may choose a gauge in which the F -symbols are identical to the

crossing matrix of Virasoro blocks,

FN ,N ,NN = 1√
2

(
1 1

2
2 −1

)
, (5.20)
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trivializing the defect three-point coefficients. The formula (2.20) becomes

Cσ,σ,ε = 〈N〉R2

√
〈η〉R2 ΘN ,N ,η =

√
2 ΘN ,N ,η , (5.21)

and in this gauge (2.21) is computed to be (using the first expression)

ΘN ,N ,η = 1
〈η〉R2

× (FN ,N ,NN )I,η = 1
2
√

2
, (5.22)

giving the same result Cσ,σ,ε = 1
2 . However, in this gauge, many previously trivial (= 1)

F -symbols have become nontrivial. For instance,

(FN ,N ,ηη )I,N = 1
2 .

(5.23)

The trivialization of defect three-point coefficients is at the cost of complicating the F -
symbols.

Next let us study the emergence of the Kramers-Wannier duality line N from Lorentzian
dynamics. The torus two-point function of the spin operator σ is [84]

〈σ(z, z̄)σ(0)〉T2(τ,τ̄) =
∣∣∣∣∂zθ1(0|τ)
θ1(z|τ)

∣∣∣∣
1
4 4∑
ν=2

∣∣∣∣∣θν( z2 |τ)
η(τ)

∣∣∣∣∣ , (5.24)

normalized such that in the limit z, z̄ → 0,

〈σ(z, z̄)σ(0)〉T2(τ,τ̄) → |z|−
1
4Z(τ, τ̄) , (5.25)

where Z(τ, τ̄) is the torus partition function

Z(τ, τ̄) =
4∑

ν=2
|θν(0|τ)| . (5.26)

Consider the torus Regge limits.

Spatial torus Regge limit. Under z → z + 1,

〈σ(z, z̄)σ(0)〉T2(τ,τ̄) → 〈σ(z + 1, z̄)σ(0)〉T2(τ,τ̄)

= e
iπ
8

∣∣∣∣∂zθ1(0|τ)
θ1(z|τ)

∣∣∣∣
1
4 −θ1( z2 |τ)θ2( z̄2 |τ̄) + θ4( z2 |τ)θ3( z̄2 |τ̄) + θ3( z2 |τ)θ4( z̄2 |τ̄)

|η(τ)| .
(5.27)

Then

lim
z,z̄→0

e−
iπ
8 |z|

1
4 〈σ(z + 1, z̄)σ(0)〉T2(τ,τ̄) =

θ4( z2 |τ)θ3( z̄2 |τ̄) + θ3( z2 |τ)θ4( z̄2 |τ̄)
|η(τ)| = ZN (τ, τ̄)√

2
.

(5.28)
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Temporal torus Regge limit. Under z → z + τ ,

〈σ(z, z̄)σ(0)〉T2(τ,τ̄) → 〈σ(z + τ, z̄)σ(0)〉T2(τ,τ̄)

= e
iπ
8

∣∣∣∣∂zθ1(0|τ)
θ1(z|τ)

∣∣∣∣
1
4 θ3( z2 |τ)θ2( z̄2 |τ̄) + θ2( z2 |τ)θ3( z̄2 |τ̄) + i θ1( z2 |τ)θ4( z̄2 |τ̄)

|η(τ)| .
(5.29)

Then

lim
z,z̄→0

e−
iπ
8 |z|

1
4 〈σ(z + 1, z̄)σ(0)〉T2(τ,τ̄) =

θ3( z2 |τ)θ2( z̄2 |τ̄) + θ2( z2 |τ)θ3( z̄2 |τ̄)
|η(τ)| = ZN (τ, τ̄)√

2
.

(5.30)
In the above we used some identities (C.4) for the Jacobi theta functions. Noting that
〈L〉R2 =

√
2, we recover the expected twisted torus partition functions ZL(τ, τ̄) and ZL(τ, τ̄).

5.3 Bulk perspective

The holomorphic part of a rational conformal field theory (RCFT) is the boundary edge
theory of a bulk topological quantum field theory (TQFT) [3, 12–14]. A celebrated example
is Witten’s correspondence between Wess-Zumino-Witten (WZW) models and Chern-Simons
theory [3]. The states of the latter quantized on any spatial sliceM2 correspond to the chiral
algebra blocks of the WZW onM2. General RCFTs are dual to more general topological
orders, such as Dijkgraaf-Witten theories, or abstract sets of anyons described by modular
tensor categories.

A TQFT onM2× [0, 1] corresponds to a diagonal RCFT onM2 [4–8]. The holomorphic
degrees of freedom live on one boundary, the anti-holomorphic ones live on the other,
connected through the bulk by anyons. From this point of view, the Verlinde lines in a
diagonal RCFT are the two-dimensional avatars of anyons in the TQFT, and the holomorphic-
defect-factorization of local operators becomes evident,

O(z, z̄) =

D(z)

L

D(z̄)

, (5.31)

where we abused the notation by labeling the anyon also by L. The meaning of treating z, z̄
as independent complex variables is also clear, and the nontrivial monodromies of blocks
correspond to the braiding of anyons. The action of a Verlinde line L′ on a holomorphically-
defect-factorized local operator O = D L— D could be realized as the linking of the anyon
lines L′ and L in the three-dimensional bulk. For example, the action of the Verlinde line
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Lk on local operator Oi,i is realized as

L̂k(Oi,i;α) =

D(z)

Li

D(z̄)

Lk = Ski
S0i
×

D(z)

Li

D(z̄)

,

(5.32)
where we apply braiding to unlink the L and L′ and use the relation between braiding and
the modular S matrix. The result agrees with the action (5.2). Since topological defect lines
in general conformal field theory need not admit braiding, we refrain from using braiding in
the following.

Consider S2× [0, 1], and insert four anyon lines L1, . . . , L4 at z1, . . . , z4 ∈ S2 extended
from one S2 boundary to the other, as shown in the upper left picture of figure 2. This
configuration gives a state in the Hilbert space ĤS2;zi,Li × ĤS2;z̄i,Li , where ĤS2;zi,Li is the
Hilbert space of the holomorphic chiral algebra blocks of the RCFT, and ĤS2;z̄i,Li the
anti-holomorphic [3].

We now argue that this state corresponds to a crossing symmetric four-point function
of local operators O1, . . . , O4. First, we apply a sequence of F -moves on the anyons, to
achieve the configuration on the upper right of figure 2. Next, we cut the space along
the spherical surface represented by the dashed line. The cutting generates two new
boundaries with opposite orientations that could be either S2 with one marked point or no
marked point, which has a zero-dimensional or one-dimensional Hilbert space, respectively.
Hence, the anyon that crosses the cutting surface must be a trivial line. By gluing this
configuration with two solid B3 balls with opposite orientations along the cutting surface,
we obtain the configuration on the bottom right of figure 2, where the left (resp. right)
connected component gives a state in the Hilbert space ĤS2;zi,Li (resp. ĤS2;z̄i,Li). They
correspond to the holomorphic and anti-holomorphic blocks of the chiral algebra. The total
configuration is a finite sum over the holomorphically factorized products and gives the
conformal block decomposition.

6 Free boson theory

Are operators holomorphically-defect-factorized in irrational theories? This section examines
the c = 1 free boson theory whose moduli space contains both rational and irrational points.

6.1 Toroidal branch

As we presently explain, all local operators in the compact boson theory are holomorphically-
defect-factorized through the U(1) symmetry defect lines, which are Wilson lines of the
background U(1) gauge field.
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→

↓

Figure 2. The conformal block decomposition of the four-point function of the holomorphically-
defect-factorized local operator (5.31).

The U(1)m ×U(1)w momentum and winding symmetry Wilson lines can be explicitly
represented by

L(θm,θw) = : exp
[
i

2π

(
θmr + θw

r

)∫
dz ∂XL (z)− i

2π

(
θmr −

θw
r

)∫
dz̄ ∂̄XR (z̄)

]
: .
(6.1)

Integer spectral flow gives an equivalence relation

L(θm,θw) ∼ L(θ′m,θ′w) , θ′m − θm , θ
′
w − θw ∈ 2πZ . (6.2)

The flavored torus partition function of L(θm,θw) is

ZL(θm,θw)(τ, τ̄) = 1
|η(τ)|2

∑
m,w∈Z

eiθmm+iθwwq
p2L
4 q̄

p2R
4 , pL,R = m

r
± wr , (6.3)

whose modular S transform gives the defect partition function

ZL(θm,θw)(τ, τ̄) = 1
|η(τ)|2

∑
m,w∈Z

q
p2L
4 q̄

p2R
4 , pL,R = m+ θw/2π

r
± (w + θm/2π)r . (6.4)

In fact, a defect operator can be explicitly identified by taking the representation (6.1) of
L(θm,θw) and integrating by parts. Doing so in different spectral flow frames gives different
defect operators that belong to the same defect Hilbert space of L(θm,θw). We will see an
example momentarily.

An exponential local operator

Om,w(z, z̄) = : eipLXL(z)+ipRXR(z̄) : , pL = m

r
+ wr , pR = m

r
− wr (6.5)
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is holomorphically-defect-factorized through a particular symmetry Wilson line L, which
has two useful representations (among infinitely many)

L−π( m
r2

+w,m+wr2) ∼ Lπ(−m
r2

+w,m−wr2) , (6.6)

which are equivalent under (w,m) units of spectral flow. Using the first representation, the
defect partition function (6.4) involves the sum

∑
m′,w′∈Z

q
1
4

(
m′−m
r

+(w′−w)r
)2

q̄
1
4

(
m′
r
−w′r

)2

. (6.7)

The termm′ = w′ = 0 corresponds to the unique holomorphic-defect current algebra primary
Dm,w, whereas the term m′ = m, w′ = w corresponds to the unique anti-holomorphic one
Dm,w. These two defect current algebra primaries can be explicitly obtained via integration
by parts. Using the first representation

L−π( m
r2

+w,m+wr2) = : exp
[
−i
(
m

r
+ wr

)∫ z2

z1
dz ∂X (z)

]
: , (6.8)

integration by parts gives a holomorphic defect operator on one end

Dm,w(z1) =: ei(
m
r

+wr)XL(z1) : , h = m2

r2 + w2r2 + 2mw , h̄ = 0 . (6.9)

Using the second representation

Lπ(−m
r2

+w,m−wr2) = : exp
[
i

(
m

r
− wr

)∫ z̄2

z̄1
dz̄ ∂̄X(z̄)

]
: , (6.10)

integration by parts gives an anti-holomorphic defect operator on the other end

Dm,w(z̄2) =: ei(
m
r
−wr)XR(z̄2) : , h = 0 , h̄ = m2

r2 + w2r2 − 2mw . (6.11)

The exponential local operator is holomorphically-defect-factorized as

Om,w = Dm,w L— Dm,w . (6.12)

Let us check that the torus Regge limits are consistent with the above analysis. The
torus two-point function of the exponential local operator (6.5) with its conjugate is

〈Om,w(z, z̄)O−m,−w(0)〉T2(τ,τ̄) =
(
∂zθ1(0|τ)
θ1(z|τ)

) 1
2p

2
L,m,w

(
∂z̄θ1(0|τ̄)
θ1(z̄|τ̄)

) 1
2p

2
R,m,w

× 1
|η(τ)|2

∑
m′,w′

Θm,m′,w,w′(τ, τ̄ , z, z̄) ,
(6.13)

where

Θm,m′,w,w′(τ, τ̄ , z, z̄) = q
1
4p

2
L,m′,w′ q̄

1
4p

2
R,m′,w′eiπ(pL,m′,w′pL,m,wz−pR,m′,w′pR,m,w z̄) . (6.14)
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Consider the spatial torus Regge limit. Under z → z + 1, we find

〈Om,w(z + 1, z̄)O−m,−w(0)〉T2(τ,τ̄) = e
1
2 iπp

2
L,m,w

(
∂zθ1(0|τ)
θ1(z|τ)

) 1
2p

2
L,m,w

(
∂z̄θ1(0|τ̄)
θ1(z̄|τ̄)

) 1
2p

2
R,m,w

× 1
|η(τ)|2

∑
m′,w′

eiπpL,m′,w′pL,m,w Θm,m′,w,w′(τ, z) ,

(6.15)
where we have used

θ1(z + 1|τ) = −θ1(z|τ) . (6.16)

In the further z, z̄ → 0 limit, we find

〈Om,w(z + 1, z̄)O−m,−w(0)〉T2(τ,τ̄)

→ e
1
2 iπp

2
L,m,wz−

1
2p

2
L,m,w z̄−

1
2p

2
R,m,w

∑
m′,w′

eiπpL,m′,w′pL,m,w
q

1
4p

2
L,m,w q̄

1
4p

2
R,m,w

|η(τ)|2 .
(6.17)

Stripping off the leading z, z̄ divergence and the overall e
1
2 iπp

2
L,m,w factor corresponding to

e−2iπh phase in (3.2), the exponential operators Om′,w′ are transformed by the phases

eiπpL,m′,w′pL,m,w = e
iπ

(
m′
r

+w′r
)
(mr +wr) = eiπ

[
m′
(
m
r2

+w
)
+w′(m+wr2)

]
= ei(m

′θm+w′θw) . (6.18)

A modular S transform recovers the expected defect partition function (6.4). We could have
also directly taken the temporal torus Regge limit to arrive at (6.4).

Let us comment on the Lorentzian dynamics. For the four-point function of exponential
operators, (4.14) gives the conformal Regge limit at infinite boost

r[Om,w,Om′,w′ ] = eiπ
[
m′
(
m
r2

+w
)
+w′(m+wr2)

]
. (6.19)

Suppose one is interested in the four-point function of real operators, i.e. the cosine and
sine operators

Ocos
m,n(z, z̄) = 1√

2
(Om,w(z, z̄) +O−m,−w(z, z̄)) =

√
2 cos(pLXL(z) + pRXR(z̄)) ,

Osin
m,n(z, z̄) = 1√

2i
(Om,w(z, z̄)−O−m,−w(z, z̄)) =

√
2 sin(pLXL(z) + pRXR(z̄)) ,

(6.20)

suitable combinations of (6.19) give

r[Ocos
m,w,Ocos

m′,w′ ] = −r[Ocos
m,w,Osin

m′,w′ ] = r[Osin
m,w,Osin

m′,w′ ]

= cosπ
[
m′
(
m

r2 + w

)
+ w′

(
m+ wr2

)]
.

(6.21)

6.2 Orbifold branch

The S1/Z2 partition function is

ZS1
r/Z2(τ, τ̄) = 1

2

(
ZS1

r
(τ, τ̄) + |θ3(τ)θ4(τ)|

|η(τ)|2 + |θ2(τ)θ4(τ)|+ |θ2(τ)θ3(τ)|
|η(τ)|2

)
= 1

2ZS1
r
(τ, τ̄) +

∣∣∣∣ η(τ)
θ2(τ)

∣∣∣∣+ ∣∣∣∣ η(τ)
θ3(τ)

∣∣∣∣+ ∣∣∣∣ η(τ)
θ4(τ)

∣∣∣∣ . (6.22)
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The first two terms enumerate the untwisted sector, and the latter two enumerate the
twisted sector which is universal and independent of the radius r. At c = 1, an irreducible
module with primary weight h = n2 for n ∈ Z≥0 has a null state at level 2n + 1, and
h = (n+ 1

2)2 for n ∈ Z≥0 at level 2n+ 2, so the degenerate characters are

χh=n2(τ) = qn
2 − q(n+1)2

η(τ) , χh=(n+ 1
2 )2(τ) = q(n+ 1

2 )2 − q(n+ 3
2 )2

η(τ) . (6.23)

The untwisted sector can be written as

Zuntwisted
S1
r/Z2

(τ, τ̄) =
∑

n,n̄∈Z≥0
n−n̄∈2Z

χh=n2(τ)χ̄h̄=n̄2(τ̄) + 1
2

(
ZS1

r
(τ, τ̄)− 1

|η(τ)|2
)
, (6.24)

where the first piece enumerates the degenerate Verma modules that are universal on the
orbifold branch, and the second piece enumerates the rest including the cosine operators

Om,w(z, z̄) = cos(pLX + pRX̄) , pL,R = m

r
± wr , (m,w) 6= (0, 0) . (6.25)

At irrational r (not r2), all cosine operators are non-degenerate, but at rational r, some
cosine operators become degenerate. For the simplicity of discussion, we ignore the subtlety
at rational r, and always refer to the states counted by the first piece in (6.24) as degenerate
Verma modules, and to the states counted by the second piece as cosine operators and their
descendants.

On the orbifold branch there is a universal D4 symmetry, as reviewed in appendix C.3.
The five order-two elements correspond to the symmetry lines

ηm , ηw , η ≡ ηm ηw ηm ηw , η′m ≡ ηw ηm ηw , η′w ≡ ηm ηw ηm . (6.26)

From the orbifolding perspective, ηm and η′m descend from the momentum Z2 symmetry
line in the S1 theory, ηw and η′w from the winding Z2, and η is the emergent Z2 symmetry
line that assigns +1 charge to the untwisted sector and −1 charge to the twisted sector.14

At arbitrary radius r, there is a continuous family of unoriented topological defect lines
— which we call cosine lines — with 〈L〉R2 = 2. They descend from the orientation-reversal-
invariant combinations of the U(1)m ×U(1)w symmetry Wilson lines in the S1 theory,15

LS1/Z2
(θm,θw) = LS1

(θm,θw) + LS1

−(θm,θw) . (6.27)

Cosine lines are labeled by a pair of quantum numbers (θm, θw), which not only have
periodicity (2π, 0) and (0, 2π) due to integer spectral flow, but are also identified under
(θm, θw)→ −(θm, θw). The fusion of cosine lines gives

L(θm,θw) L(θ′m,θ′w) = L(θm+θ′m,θw+θ′w) + L(θm−θ′m,θw−θ′w) . (6.28)

14That a single Z2 symmetry line in the S1 theory descends to multiple symmetry lines in the S1/Z2

orbifold theory is due to the non-uniqueness of symmetry action on the twisted sector.
15This combination is not simple before orbifold, but can become simple after.
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They act on the nontrivial cosine operators by

L̂(θm,θw)(Om′,w′) = 2 cos(m′θm + w′θw)Om′,w′ , (6.29)

on the degenerate Verma modules by a factor of 2, and annihilate the twisted sector
states. For any pair of positive integers (Nm, Nw), there is a subring generated by finitely
many objects {

L(θm,θw) | θm ∈ Z/Nm , θw ∈ Z/Nw

}
. (6.30)

A cosine line can be either simple or non-simple; in the latter case it must be the direct
sum of two symmetry lines.16 Because the orbifold theory does not have any continuous
symmetry except at S1

r=1/Z2 = S1
r=2, generic cosine lines are simple. However, for

(θm, θw) = (0, 0) , (π, 0) , (0, π) , (π, π) , (6.31)

because the original LS1

(θm,θw) was already unoriented, one expects LS1/Z2
(θm,θw) to be non-simple.17

They are the following direct sums of D4 symmetry lines:

LS1/Z2
(0,0) = I + η , LS1/Z2

(π,0) = ηm + η′m , LS1/Z2
(0,π) = ηw + η′w ,

LS1/Z2
(π,π) = ηm ηw + ηw ηm .

(6.32)

In the rest of this section, the label S1/Z2 will be suppressed.
The torus partition function twisted by L(θm,θw) (in the temporal direction) is

ZL(θm,θw)(τ, τ̄) =

 ∑
m∈Z
w∈Z>0

+
∑

m∈Z>0
w=0

 2 cos(θmm+ θww)χ p2L
4

(τ)χ p2R
4

(τ)

+ 2
∑

n,n̄∈Z≥0

1 + (−1)n+n̄

2 χh=n2(τ)χ̄h̄=n̄2(τ̄)

= 1
|η(τ)|2

∑
m,w∈Z

eiθmm+iθww q
p2L
4 q̄

p2R
4 + |θ3(τ)θ4(τ)|

|η(τ)|2 , pL,R = m

r
± wr .

(6.33)

The defect partition function of L(θm,θw) is obtained by a modular S transform to be

ZL(θm,θw)(τ, τ̄) =
∑

m,w∈Z

q
p2L
4 q̄

p2R
4

|η(τ)|2 + |θ2(τ)θ3(τ)|
|η(τ)|2 , pL,R =

m+ θw
2π

r
± (w + θm

2π )r , (6.34)

where √
θ2(τ)θ3(τ)

2 =
∑

n∈Z≥0

q
(2n+1)2

16 (6.35)

is a q-series with positive integer coefficients.
16The quantum dimension of a cosine line is

〈
L(θm,θw)

〉
S1×R

= |
〈
L(θm,θw)

〉
R2 | = 2. In a compact conformal

field theory, every topological defect line has quantum dimension ≥ 1, and = 1 if and only if the topological
defect line is a symmetry line [43]. Since the quantum dimension is additive under direct sum, the
claim follows.

17See [43] for this phenomenon in the Z2 orbifold relation between tetra-critical Ising and three-state Potts.
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Consider a cosine line Lπ( m
r2

+w,m+wr2) with m,w ∈ Z. Its defect partition function
involves the sum ∑

m′,w′∈Z
q

1
4

(
m′+m
r

+(w′+w)r
)2

q̄
1
4

(
m′
r
−w′r

)2

. (6.36)

The m′ = w′ = 0 term corresponds to a holomorphic defect primary Dm,w of weight
h = 1

4
(
m
r + wr

)2, and the m′ = −m, w′ = −w terms corresponds to an anti-holomorphic
defect primary Dm,w of weight h̄ = 1

4
(
m
r − wr

)2. The cosine operator is holomorphically-
defect-factorized as

Om,w = Dm,w L— Dm,w , L = Lπ( m
r2

+w,m+wr2) . (6.37)

In particular, Om,w has charge 2 cos(πm2

r2 + πw2r2) under the line Lπ( m
r2

+w,m+wr2) it factor-
izes through.

What about operators in the twisted sector? Consider the twisted sector ground states
Ei of weight ( 1

16 ,
1
16), where i = 1, 2 label the two fixed points. When rational, by the

discussion in section 5, in some (possibly complex) basis, they must be holomorphically-
defect-factorized. Let E denote an operator in such a basis, then

E = D LE— D , (6.38)

and the defect partition function of LE is obtainable from a limit of the twist field two-point
function on the torus. In appendix C.4, we examine special rational points on the orbifold
branch and identify LE as Verlinde lines. However, we can characterize LE in a more
universal fashion by computing the torus two-point function of twist fields in the temporal
torus Regge limit. This computation is carried out in appendix C.5, using the formulae
of [85–88] for general correlators in orbifolds. Moreover, the fusion rule of LE or L̃E with
its orientation reversal is computed in appendix C.6.

Interestingly, we find a clear distinction between rational and irrational theories:

1. If r2 = u/v is rational with u, v coprime, then the strong holomorphic-defect-
factorization criterion is satisfied, and the planar loop expectation value of LE is
〈LE〉R2 =

√
uv. The loop-normalized defect partition function is given in (C.48).

When u is even, the fusion rule is

LE LE = I + ηm +
2u−2∑
m=0
m∈2Z

v−1∑
w=2
m∈2Z

L−π( m
r2

+w,m+wr2) +
u−2∑
m=2
m∈2Z

L−π( m
r2
,m) . (6.39)

When u and v are both odd, the fusion rule is

LE LE = I +
2u−2∑
m=0
m∈2Z

v−1∑
w=2
m∈2Z

L−π( m
r2

+w,m+wr2) +
u−1∑
m=2
m∈2Z

L−π( m
r2
,m) . (6.40)
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2. If r2 is irrational, then the strong holomorphic-defect-factorization criterion fails, but
the weak criterion is satisfied. More precisely, the so-obtained loop-normalized defect
partition function is

ZL̃E
(τ, τ̄) = 1

|η(τ)|2
∞∑
n=0

∫ ∞
0

dp

(
q

(2n+1)2
16 q̄

p2
4 + q

p2
4 q̄

(2n+1)2
16

)
, (6.41)

which in fact does not depend on r. The defect spectrum HL̃E is continuous, hence
L̃E is a non-compact TDL.
The loop-normalized torus partition function with L̃E wrapped along the spatial
direction is

ZL̃E (τ, τ̄) =
∞∑

n,n̄=0
n−n̄∈2Z

(−)nχh=n2(τ)χ̄h̄=n̄2(τ̄) , (6.42)

indicating that L̃E annihilates all non-degenerate modules, and acts on the degenerate
modules by a sign.
The fusion rule is

L̃E L̃E = 1
2

∫ 2π

0

dθwdθm
(2π)2 L(θm,θw) . (6.43)

The TDL L̃E in the theory with irrational r2 is a non-compact TDL characterized in
section 2.5, and belongs to a more general TDL category. In fact, many of the structures of
this more general category could be understood by taking limits of fusion categories. For
any irrational r2, consider a sequence of coprime integers (un, vn) for n = 1, 2, · · · , such
that in the n→∞ limit, un/vn converges to r2. The TDL L̃E in irrational theory could be
obtained by taking the n→∞ limit of the L̃E in rational theory. Both the defect partition
function for L̃E and the fusion rule for L̃E L̃E in the irrational theories indeed arise as limits
of those in rational theories, as we presently explain.

First, in appendix C.5, we find that the sequence of defect partition functions ZLE , S1
r/Z2

for r2 = un/vn in the n → ∞ limit reproduces the defect partition function (6.41) at
irrational points. Note that there are infinitely many different sequences of coprime integers
(un, vn) whose ratios un/vn converge to the same irrational number. At first sight, it is
not obvious that the corresponding sequences of the defect partition functions all converge
to the same result. However, as we find in (C.48), the defect partition function ZLE , S1

r/Z2

depends only on the product uv. Hence, the n→∞ limit coincides with the uv →∞ limit,
and the limits of all possible sequences agree. Furthermore, the result does not depend on r.

Second, consider the sequence of fusion rules (6.39) or (6.40) with r2 = un/vn. Divide
by unvn on both sides of the fusion rule, and change the Cardy normalized LE to loop-
normalized L̃E . Now, in the n → ∞ limit, the sequence of fusion rules converges to the
fusion rule (6.43) for the non-compact TDL L̃E at irrational points.

To end, let us remark on the Lorentzian dynamics of twist fields. According to (6.42),
at irrational points, the Lorentzian four-point function exhibits transparent behavior for
degenerate primaries with even n, refractive behavior for degenerate primaries with odd n,
and opaque behavior for all non-degenerate primary φ (we have r = 1,−1, 0 in the three
cases, respectively).
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7 Summary and discussion

In this paper, we explicated the following aspects of two-dimensional conformal field theory.

1. We presented a purely Euclidean portrayal of treating the coordinates z, z̄ of a local
operator as independent complex variables. The local operator can often be factorized
into a pair of holomorphic and anti-holomophic defect operators, connected by a
topological defect line.

2. We proposed that local operators can be factorized not only through simple topological
defect lines, but also through non-compact topological defect lines that have continua
in their defect spectra. We extended the categorical framework to include such
topological defect lines.

3. Based on factorization, we derived relations among correlation functions of local
operators, correlation functionals of defect operators, and the F -symbols characterizing
the splitting and joining of topological defect lines.

4. We proposed a procedure for discovering topological defect lines. This point warrants
further remarks. A topological defect line is traditionally characterized by a map
on local operators satisfying certain conditions — including but not limited to the
commutativity with the Virasoro algebra and the consistency of the defect partition
function obtained by the modular S transform. From this perspective, a topological
defect line is a solution to a set of consistency conditions, rather than something
computed directly from the data of local operators. In this paper, by considering the
conformal Regge limit, we have shown how the four-point function or torus two-point
function directly generates the defining data for topological defect lines.

5. We characterized aspects of the conformal Regge limit by fundamental properties
of topological defect lines. In particular, whether the bulk scattering is transparent,
refractive or opaque [78] is dictated by the action of topological defect lines on local
operators. The proof of the unitarity bound on the opacity by [63] gave us Corollary 1,
which says that the spectral radius of any factorizing topological defect line is always
given by the loop expectation value. We also give a complementing argument for the
spectral radius formula (4.16), with additional caveats but without assuming that
the topological defect line is factorizing, by utilizing the representation theory of the
fusion rule.

6. Applying our procedure for discovering topological defect lines, we obtained a unified
description of the topological defect line through which the twist field factorizes in the
c = 1 free boson orbifold theory. The result at irrational points suggests the existence
of non-compact topological defect lines even in compact theories.

Consider a local operator O that is holomorphically-defect-factorized through a topo-
logical defect line L. As shown in table 1, there are three logical possibilities regarding
the finiteness of highest-weight operators (with respect to the maximally extended chiral
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LL finite direct sum Cardy-normalized L not well-defined
O ×O finite (a) (b)
O ×O not finite impossible (c)

Table 1. For a local operator O that is holomorphically-defect-factorized through a topological
defect line L, the logical possibilities regarding the finiteness of highest-weight operators (with respect
to the maximally extended chiral algebra) in the O ×O OPE and whether a Cardy-normalized L is
well-defined, such that the fusion LL gives a direct sum.

algebra) in the O ×O OPE and whether a Cardy-normalized L is well-defined, such that
the fusion LL gives a direct sum. Most of our examples, including all local operators in
rational theories and the exponential or cosine operators in the c = 1 free boson theory, fall
into Scenario (a). The twist field in the free boson orbifold theory falls into scenario (c).
We are not aware of any realization of Scenario (b).

Does every conformal field theory admit a (generally complex) basis of local operators
in which every local operator is holomorphically-defect-factorized? The answer is negative
in the strong sense of Definition 6, since it is violated at irrational points in the free boson
orbifold theory, where the topological defect line through which the twist field hypothetically
factorizes exhibits a continuous spectrum in the defect Hilbert space, violating the usual
Cardy condition. However, in the more general weak sense of Definition 7 that allows
factorization through non-compact topological defect lines, the posed question becomes
more intriguing. For irrational theories embedded in a conformal manifold with “dense
enough” rational points, such non-compact topological defect lines may be regarded as the
limit of sequences of Verlinde lines.18 Under this generalized notion, we conjecture that
every conformal field theory has a holomorphically-defect-factorized basis of local operators.

The close connection between the opacity bound and the spectral radius formula
illuminates a virtue of this conjecture. The Perron-Frobenius theorem allows us to prove the
spectral radius formula for simple lines. Moreover, as noted in appendix B, generalizations of
the Perron-Frobenius theorem to integral bounded operators extends the scope of the spectral
radius formula to non-compact topological defect lines. These arguments complement the
proof using the opacity bound of [63]. Finally, we comment that a similar bound on the
four-point function (4.1) in the light-cone limit, (1− z)→ e2πi(1− z) with z̄ fixed and then
z̄ → 0 with z fixed, was derived from causality constraints in [90].
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A Defect crossing implies local crossing

The crossing symmetry of a four-point function of holomorphic defect operators is the
F -move

〈
L5

D1(0)

D2(z) D3(1)

D′4(∞)

〉 = 〈 L6

D3(1)D2(z)

D1(0) D′4(∞)

〉 ◦ (FL1,L2,L3
L4

)L5,L6

(A.1)
decomposed into properly normalized s- and t-channel Virasoro blocks times defect three-
point correlation functionals (bi-covectors),19

∑
D5

F
[
hD1 hD4
hD2 hD3

]c
hD5

(z)× CD1,D2,D†5
⊗ CD5,D3,D4

=
∑
L6

∑
D6

F
[
hD2 hD1
hD3 hD4

]c
hD6

(1− z)× CD2,D3,D†6
⊗ CD1,D6,D4 ◦ (FL1,L2,L3

L4
)L5,L6 ,

(A.2)

where c is the holomorphic central charge. The sums
∑
D5 and

∑
D6 are over holomorphic

Virasoro primaries in the defect Hilbert spaces HL5 and HL6 . When the theory has an
extended chiral algebra, one could decompose the defect four-point function with respect
to the extended chiral algebra. The crossing equation takes the same form as (A.2), but
with F representing the chiral algebra blocks that may depend on other quantum numbers
beside h, and the sums

∑
D5 and

∑
D6 are over holomorphic highest-weight operators of the

chiral algebra in the defect Hilbert spaces HL5 and HL6 .
In rational conformal field theory, the defect Hilbert space of a simple topological defect

line L projected onto the subspace of holomorphic operators is an irreducible module of the
maximally extended chiral algebra. In other words, there is a single highest-weight defect
operator Di for each HLi , and hence, each defect four-point correlation functional is equal
to a single chiral algebra block composed with the appropriate three-point defect correlation
functionals. One can always trivialize the defect three-point correlation functionals by
a special choice of basis junction vectors. This has two complementary ramifications.
First, the formula (2.20) for the three-point coefficients of local primary operators now
only involves fusion categorical quantities, and the holomorphic defect four-point crossing
equation (A.2) reads simply

F
[
hD1 hD4
hD2 hD3

]c
hD5

(z) =
∑
L6

F
[
hD2 hD1
hD3 hD4

]c
hD6

(1− z)× (FL1,L2,L3
L4

)L5,L6 . (A.3)

19A standard normalization for a block is to require unit coefficient for the leading coefficient in the cross
ratio expansion

F
[
hD1 hD4
hD2 hD3

]c
hD5

(z) = zhD5−hD1−hD2 (1 +O(z)) .
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Hence the nontrivial dynamical data is solved if one could determine the explicit values of the
F -symbols in this special basis that trivializes the defect three-point correlation functionals.
However, actually finding such a basis requires knowing the explicit blocks, for which one
must resort to solving the null state decoupling equation [19] or the Wronskian method [20].
Moreover, as demonstrated in the example of Ising in section 5.2, the F -symbols in such a
basis are rather complicated.

The four-point function of holomorphically-defect-factorized local operators can be
evaluated as follows. In the s-channel,

〈O1(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)O4(z4, z̄4)〉

=
√∏4

i=1 〈Li〉R2

∑
L,L′,L′′

〈

D1(z1)

D2(z2)

D3(z3)

D4(z4)

D1(z̄1)

D2(z̄2)

D3(z̄3)

D4(z4)

L′′

L L
L′ L′

〉

◦
[
(FL

′,L′,L4
L4

)I,L′′ (1L′,L′,I , 1I,L4,L4
)⊗ (FL,L,L3

L3
)I,L′ (1L,L,I , 1I,L3,L3

)

⊗ (FL1,L1,L2
L2

)I,L (1L1,L1,I , 1I,L2,L2
)
]

=

√∏4
i=1 〈Li〉R2

〈L4〉R2

∑
L
〈

L

D1(z1)

D2(z2) D3(z3)

D4(z4)

〉〈
L

D4(z̄4)

D3(z̄3) D2(z̄2)

D1(z̄1)

〉

◦
[
(FL,L,L3
L3

)I,L4 (1L,L,I , 1I,L3,L3
)⊗ (FL1,L1,L2

L2
)I,L (1L1,L1,I , 1I,L2,L2

)
]
.

(A.4)

By performing block expansions on the defect four-point functions, and using (2.20)
and (2.21), we recover with the usual s-channel conformal block expansion for local operators,

〈O1(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)O4(z4, z̄4)〉

=

√∏4
i=1 〈Li〉R2

〈L4〉R2

∑
L

∑
D∈Hh̄=0

L

∑
D∈Hh=0

L

F
[
hD1 hD4
hD2 hD3

]c
hD

(z)F
[
h̄D1

h̄D4
h̄D2

h̄D3

]c̄
h̄D

(z̄)

× CD1,D2,D† ⊗ CD3,D4,D ⊗ CD1,D
†
,D2
⊗ CD3,D,D4

◦
[
(FL,L,L3
L3

)I,L4 (1L,L,I , 1I,L3,L3
)⊗ (FL1,L1,L2

L2
)I,L (1L1,L1,I , 1I,L2,L2

)
]

=
∑
O
F
[
hO1 hO4
hO2 hO3

]c
hO

(z)F
[
h̄O1 h̄O4
h̄O2 h̄O3

]c̄
h̄O

(z̄)CO1,O2,O CO3,O4,O .

(A.5)
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Similarly, in the t-channel,
〈O1(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)O4(z4, z̄4)〉

=
√∏4

i=1 〈Li〉R2

∑
L,L′,L′′

〈
D3(z3)

D2(z2)

D1(z1)

D4(z4)

D3(z̄3)

D2(z̄2)

D1(z̄1)

D4(z4)

L′′L L
L′ L′

〉

◦
[
(FL

′,L′,L4
L4

)I,L′′ (1L′,L′,I , 1I,L4,L4
)⊗ (FL1,L1,L

L )I,L′ (1L1,L1,I , 1I,L,L)

⊗ (FL2,L2,L3
L3

)I,L (1L2,L2,I , 1I,L3,L3
)
]

=

√∏4
i=1 〈Li〉R2

〈L4〉R2

∑
L
〈 L

D3(z3)D2(z2)

D1(z1) D4(z4)

〉〈 L

D2(z̄2)D3(z̄3)

D4(z̄4) D1(z̄1)

〉

◦
[
(FL1,L1,L
L )I,L4 (1L1,L1,I , 1I,L,L)⊗ (FL2,L2,L3

L3
)I,L (1L2,L2,I , 1I,L3,L3

)
]
.

(A.6)

Hence, by (2.20) and (2.21), we recover the usual t-channel conformal block expansion for
local operators
〈O1(z1, z̄1)O2(z2, z̄2)O3(z3, z̄3)O4(z4, z̄4)〉

=

√∏4
i=1 〈Li〉R2

〈L4〉R2

∑
L

∑
D∈Hh̄=0

L

∑
D∈Hh=0

L

F
[
hD2 hD1
hD3 hD4

]c
hD

(1− z)F
[
h̄D2

h̄D1
h̄D3

h̄D4

]c̄
h̄D

(1− z̄)

× CD2,D3,D† ⊗ CD1,D,D4 ⊗ CD2,D
†
,D3
⊗ CD1,D4,D

◦
[
(FL1,L1,L
L )I,L4 (1L1,L1,I , 1I,L,L)⊗ (FL2,L2,L3

L3
)I,L (1L2,L2,I , 1I,L3,L3

)
]

=
∑
O
F
[
hO2 hO1
hO3 hO4

]c
hO

(1− z)F
[
h̄O2 h̄O1
h̄O3 h̄O4

]c̄
h̄O

(1− z̄)CO2,O3,O CO1,O,O4 . (A.7)

Let us perform two more F -moves on the last line of the s-channel expression (A.4) to
arrive at

· · · =

√∏4
i=1 〈Li〉R2

〈L4〉R2

∑
L,L′,L′′

〈 L′

D3(z3)D2(z2)

D1(z1) D4(z4)

〉〈 L′′

D2(z̄2)D3(z̄3)

D4(z̄4) D1(z̄1)

〉

◦
[
(FL1,L2,L3
L4

)L,L′ ⊗ (FL4,L3,L2
L1

)L,L′′
]

◦
[
(FL,L,L3
L3

)I,L4 (1L,L,I , 1I,L3,L3
)⊗ (FL1,L1,L2

L2
)I,L (1L1,L1,I , 1I,L2,L2

)
]
. (A.8)
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Compared to the last line of the t-channel expression (A.6), we see that crossing symmetry
of holomorphically-defect-factorized local operators is a consequence of

1. Crossing symmetry (A.2) of holomorphic defect operators, and

2. The fusion categorical identity∑
L

[
(FL1,L2,L3
L4

)L,L′ ⊗ (FL4,L3,L2
L1

)L,L′′
]

◦
[
(FL,L,L3
L3

)I,L4 (1L,L,I , 1I,L3,L3
)⊗ (FL1,L1,L2

L2
)I,L (1L1,L1,I , 1I,L2,L2

)
]

= δL′,L′′ (F
L1,L1,L

′

L′
)I,L4 (1L1,L1,I , 1I,L′,L′)⊗ (FL2,L2,L3

L3
)I,L′ (1L2,L2,I , 1I,L3,L3

)
(A.9)

for fusion categories that admit a gauge in which the cyclic permutation map is trivial.
If not, the identity involves extra cyclic permutation maps/F -symbols.

B Spectral radius formula from the Perron-Frobenius theorem

Consider a quantum field theory hosting a finite (sub)set of simple topological defect lines
(TDLs) {Li | i = 1, . . . , n} that generate a commutative ring R under fusion and direct sum.
Let the fusion coefficients be Nk

ij , and let Ni denote the matrix whose (j, k) component is
given by Nk

ij . Associativity implies that N∗ furnishes a non-negative matrix representation
of the fusion rule, called the regular representation reg, which is the direct sum of irreducible
complex representations, reg =

⊕nr
a=1 ra.20 We write r < reg if r ∈ {r1, . . . , rnr}.

On a cylinder, a TDL wrapped on the spatial circle acts as an operator on the Hilbert
space. If the theory is unitary and if there is a unique vacuum, then every TDL acts on
the vacuum with a positive eigenvalue. In other words, the cylinder loop expectation value
is positive, 〈Li〉S1×R > 0 for all i = 1, . . . , n. This set of numbers solves the abelianized
fusion rule,

〈Li〉S1×R 〈Lj〉S1×R =
∑
k

Nk
ij 〈Lk〉S1×R , (B.1)

and furnishes a one-dimensional representation of R. The relation between 〈Li〉S1×R and
〈Li〉R2 was discussed in footnote 4; in particular,

〈Li〉S1×R = |〈Li〉R2 | . (B.2)

The abelianized fusion rule (B.1) can be interpreted as saying that 〈L∗〉S1×R is a simultaneous
eigenvector of Ni with eigenvalue 〈Li〉S1×R.

Consider the matrix Ni(ε) = Ni + ε
∑
j Nj for ε > 0, which is irreducible (in the

Perron-Frobenius sense21) because for any pair of simple TDLs (Lk, Ll) one can always
20While the regular representation has integer entries, we purposefully omit the word integer as it serves

no purpose here. Also, the irreducible complex representations comprising the regular representation are not
necessarily non-negative in any basis.

21A matrix is called reducible if an off-diagonal block can be set to zero by a permutation of basis. A
matrix that is not reducible is irreducible. A matrix M is irreducible if and only if for any pair of matrix
indices (i, j), there exists a positive integer n such that (Mn)i,j > 0.
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find a (not necessary simple) TDL L such that Ll appears in the decomposition of the
fusion LLk. By the Perron-Frobenius theorem, 〈L∗〉S1×R is the unique positive eigenvector
of Ni(ε) (up to an overall multiplicative factor), and the spectral radius of Ni(ε) is the
Perron-Frobenius eigenvalue 〈Li〉S1×R + ε

∑
j 〈Lj〉S1×R. By taking the ε→ 0 limit, we find

that 〈Li〉S1×R is the spectral radius of Ni, i.e.∣∣∣∣∣v†Niv

v†v

∣∣∣∣∣ ≤ 〈Li〉S1×R ∀i = 1, . . . , n, ∀v ∈ Cn . (B.3)

Proposition 8 In a (1+1)d unitary quantum field theory on a cylinder with a unique
vacuum, let R be the fusion rule of a finite set of simple topological defect lines {Li | i =
1, . . . , n}. Denote by L̂i the operator corresponding to wrapping Li on the spatial circle. For
any state |φ〉 transforming in an irreducible representation r < reg with respect to the ring
R, the following inequality holds∣∣∣∣∣∣

〈
φ†L̂iφ

〉
〈φ†φ〉

∣∣∣∣∣∣ ≤ 〈Li〉S1×R , ∀i = 1, . . . , n . (B.4)

In particular, if R is a group, then because every irreducible representation < reg, the above
inequality holds for all |φ〉.

In conformal field theory, the simple factorizing TDLs generate a commutative ring (see
Definition 2 and Proposition 6).22 By further utilizing the state-operator map, we obtain a
unitary bound on the opacity.

Corollary 2 In (1+1)d unitary conformal field theory, if a local operator O is
holomorphically-defect-factorized through a topological defect line L that generates under
fusion a finite sum of simple objects, and if φ (not necessarily holomorphically-defect-
factorized) transforms in an irreducible representation r < reg, then in the infinite boost
limit, the opacity given by (4.14) and (4.12) is bounded by κ[O, φ] = 1− |r[O, φ]| ≥ 0. If L
is invertible, then there is no restriction on φ.

For Verlinde lines in rational conformal field theory, the simultaneous eigenvectors can
be expressed in terms of the modular S-matrix by the Verlinde formula [52]

Ni · vm = Sim
S0m

vm , (vm)j = Sjm
S0m

. (B.5)

The Perron-Frobenius eigenvector is the zeroth eigenvector v0 = S∗m/S0m = 〈L∗〉S1×R.
The expression in (5.11) is the ratio between the k-th eigenvalue and the Perron-Frobenius
eigenvalue, so its absolute value is no more than one. This proves the spectral radius
formula (4.16) for Verlinde lines in all unitary rational conformal field theories.

Finally, the Perron-Frobenius theorem have been generalized to integral bounded
operators by several theorems: Jentzsch Theorem [91], Schaefer Theorem [92] and Zerner
Theorem [93]; see e.g. [94] for a summary of these theorems. One could include the non-
compact factorizing TDLs into the set of basis TDLs, and apply these theorems to fusion
rules involving direct integrals.

22The full set of factorizing TDLs generally contains non-compact ones. Here we focus on a commutative
ring generated by the simple factorizing TDLs.
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C Free boson orbifold theory

This appendix concerns the holomorphic-defect-factorization of twist fields on the orbifold
branch of the c = 1 free boson theory. We first review the basic definition and properties of
Riemann theta functions that are used to express general correlators, give the character
decomposition of the torus partition function, and describe the universal D4 symmetry.
We then examine dual descriptions at special rational points, and cast the topological
defect lines as Verlinde lines. Finally, we compute the torus Regge limit of twist fields, and
determine the action of the factorizing topological defect line and its fusion properties.

C.1 Riemann and Jacobi theta functions

The Riemann theta function is defined as

θ

[
α

β

]
(z|τ) =

∑
n∈Zg

exp(iπ(n+ α) · τ · (n+ α) + 2iπ(n+ α) · (z + β)) . (C.1)

By definition, it changes characteristic under shifts in z:

θ

[
α

β

]
(z + k|τ) = θ

[
α

β + k

]
(z|τ) ,

θ

[
α

β

]
(z + kτ |τ) = exp(−iπk2τ) θ

[
α+ k

β

]
(z|τ) .

(C.2)

When g = 1 and α, β take values in 1
2Z, they are the Jacobi theta functions

θ1(z|τ) = −θ
[

1
2
1
2

]
(z|τ) , θ2(z|τ) = θ

[
1
2
0

]
(z|τ) ,

θ3(z|τ) = θ

[
0
0

]
(z|τ) , θ4(z|τ) = θ

[
0
1
2

]
(z|τ) .

(C.3)

Thus

θ1

(
z + 1

2 |τ
)

= −θ2 (z|τ) , θ2

(
z + 1

2 |τ
)

= θ1 (z|τ) ,

θ3

(
z + 1

2 |τ
)

= θ4 (z|τ) , θ4

(
z + 1

2 |τ
)

= θ3 (z|τ) ,

θ1

(
z + τ

2 |τ
)

= e−
iπ
4 τθ4 (z|τ) , θ2

(
z + τ

2 |τ
)

= e−
iπ
4 τθ3 (z|τ) ,

θ3

(
z + τ

2 |τ
)

= e−
iπ
4 τθ2 (z|τ) , θ4

(
z + τ

2 |τ
)

= −e−
iπ
4 τθ1 (z|τ) .

(C.4)

Next consider modular transformations, and restrict to z = 0 for simplicity. For
Riemann theta functions,

θ

[
α

β − α+ 1
2

]
(0|τ + 1) = εT e

iπα(1−α) θ

[
α

β

]
(0|τ) ,

θ

[
−β
α

](
0| − 1

τ

)
= εS e

−2iπαβ√τ θ
[
α

β

]
(0|τ) .

(C.5)
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For Jacobi theta functions,

θ4 (0|τ + 1) = εT θ3 (0|τ) , θ3

(
0| − 1

τ

)
= εS

√
τ θ3 (0|τ) ,

θ3 (0|τ + 1) = εT θ4 (0|τ) , θ2

(
0| − 1

τ

)
= εS

√
τ θ4 (0|τ) ,

θ2 (0|τ + 1) = εT e
iπ
4 θ2 (0|τ) , θ4

(
0| − 1

τ

)
= εS

√
τ θ2 (0|τ) ,

(C.6)

with εT = εS = 1.

C.2 Partition function and character decomposition

The partition function of the free boson orbifold theory is

Z (τ, τ̄) = 1
2|η(τ)|2

∑
m,w∈Z

q
p2L
4 q̄

p2R
4 + |θ3(τ)θ4(τ)|

2|η(τ)|2 + |θ2(τ)θ3(τ)|
2|η(τ)|2 + |θ2(τ)θ4(τ)|

2|η(τ)|2 . (C.7)

Let us decompose it into irreducible Virasoro characters

χh(τ) =



qn
2 − q(n+1)2

η(τ) h = n2, n ∈ Z ,

q(n+ 1
2 )2 − q(n+ 3

2 )2

η(τ) h = (n+ 1
2)2, n ∈ Z ,

qh

η(τ) otherwise .

(C.8)

At irrational r2,

Z(τ, τ̄) =

 ∑
m∈Z
w∈Z>0

+
∑

m∈Z>0
w=0

 χ p2L
4

(τ)χ p2R
4

(τ) +
∑

n,n̄∈Z≥0

1 + (−1)n+n̄

2 χn2(τ)χn̄2(τ)

+
∑

n,n̄∈Z≥0

(1 + cos (n−n̄)π
2 − sin (n+n̄)π

2 )χ (2n+1)2
16

(τ)χ (2n̄+1)2
16

(τ) ,

(C.9)

where we have used the identities√
θ2(τ)θ3(τ)

2 =
∑

n∈Z≥0

q
(2n+1)2

16 ,

√
θ2(τ)θ4(τ)

2 =
∑

n∈Z≥0

(
cos nπ2 − sin nπ

2
)
q

(2n+1)2
16 ,

1 + |θ3(τ)θ4(τ)|
2|η(τ)|2 =

∑
n,n̄∈Z≥0
n−n̄∈2Z

χn2(τ)χn̄2(τ) =
∑

n,n̄∈Z≥0

1 + (−1)n+n̄

2 χn2(τ)χn̄2(τ) .
(C.10)
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At rational r2 = u/v with u, v coprime, but irrational r,

Z(τ, τ̄) =

 ∑
m∈Z, w∈Z>0
mv 6=±wu

+
∑

m∈Z>0
w=0

 χ p2L
4

(τ)χ p2R
4

(τ) +
∑

n,n̄∈Z≥0

1 + (−1)n+n̄

2 χn2(τ)χn̄2(τ)

+
∑

m∈Z, w∈Z>0
mv=wu

χ p2L
4

(τ)
∞∑
n=0

χn2(τ) +
∞∑
n=0

χn2(τ)
∑

m∈Z, w∈Z>0
mv=−wu

χ p2R
4

(τ)

+
∑

n,n̄∈Z≥0

(1 + cos (n−n̄)π
2 − sin (n+n̄)π

2 )χ (2n+1)2
16

(τ)χ (2n̄+1)2
16

(τ) .

(C.11)
If r itself is rational, then the characters with pL ∈ Z or pR ∈ Z are further reducible.

C.3 D4 symmetry

The momentum and winding Z2 symmetry lines in the S1 theory descend to pairs of Z2
symmetry lines (ηm, η

′
m) and (ηw, η

′
w), respectively, in the S1/Z2 orbifold theory. Without

loss of generality, ηm and ηw generate a D4 symmetry. The emergent Z2 symmetry that
assigns +1 charge to the untwisted sector states and −1 charge to the twisted sector states
corresponds to the symmetry line η ≡ ηm ηw ηm ηw. The five order-two elements act on the
cosine operators and the twisted sector ground states associated to the two fixed points by

η̂m(Om,w) = (−1)mOm,w , η̂m(E1) = E2 , η̂m(E2) = E1 ,

η̂w(Om,w) = (−1)wOm,w , η̂w(E1) = −E1 , η̂w(E2) = E2 ,

η̂(Om,w) = Om,w , η̂(E1) = −E1 , η̂(E2) = −E2 ,

η̂′m(Om,w) = (−1)mOm,w , η̂′m(E1) = −E2 , η̂′m(E2) = −E1 ,

η̂′w(Om,w) = (−1)wOm,w , η̂′w(E1) = E1 , η̂′w(E2) = −E2 .

(C.12)

The twisted partition functions are

Zηm(τ, τ̄) =

 ∑
m∈Z
w∈Z>0

+
∑

m∈Z>0
w=0

 (−1)mχ p2L
4

(τ)χ p2R
4

(τ) +
∑

n,n̄∈Z≥0
n−n̄∈2Z

χh=n2(τ)χ̄h̄=n̄2(τ̄)

= 1
2|η(τ)|2

∑
m,w∈Z

(−1)m q
p2L
4 q̄

p2R
4 + |θ3(τ)θ4(τ)|

2|η(τ)|2 = Zη
′
m(τ, τ̄) ,

Zηw(τ, τ̄) =

 ∑
m∈Z
w∈Z>0

+
∑

m∈Z>0
w=0

 (−1)wχ p2L
4

(τ)χ p2R
4

(τ) +
∑

n,n̄∈Z≥0
n−n̄∈2Z

χh=n2(τ)χ̄h̄=n̄2(τ̄)

= 1
2|η(τ)|2

∑
m,w∈Z

(−1)w q
p2L
4 q̄

p2R
4 + |θ3(τ)θ4(τ)|

2|η(τ)|2 = Zη
′
w(τ, τ̄) ,
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Zη(τ, τ̄) =

 ∑
m∈Z
w∈Z>0

+
∑

m∈Z>0
w=0

 χ p2L
4

(τ)χ p2R
4

(τ) +
∑

n,n̄∈Z≥0
n−n̄∈2Z

χh=n2(τ)χ̄h̄=n̄2(τ̄)

−
∑

n,n̄∈Z≥0

(1 + cos (n−n̄)π
2 − sin (n+n̄)π

2 )χ (2n+1)2
16

(τ)χ (2n̄+1)2
16

(τ)

= 1
2|η(τ)|2

∑
m,w∈Z

q
p2L
4 q̄

p2R
4 + |θ3(τ)θ4(τ)|

2|η(τ)|2 − |θ2(τ)θ3(τ)|
2|η(τ)|2 − |θ2(τ)θ4(τ)|

2|η(τ)|2 . (C.13)

The partition functions of their defect Hilbert spaces are

Zηm(τ, τ̄) = Zη′m(τ, τ̄) =
∑

m,w∈Z

q
p2L
4 q̄

p2R
4

2|η(τ)|2 + |θ2(τ)θ3(τ)|
2|η(τ)|2 , pL,R = m

r
± (w + 1

2)r ,

Zηw(τ, τ̄) = Zη′w(τ, τ̄) =
∑

m,w∈Z

q
p2L
4 q̄

p2R
4

2|η(τ)|2 + |θ2(τ)θ3(τ)|
2|η(τ)|2 , pL,R =

m+ 1
2

r
± wr ,

Zη(τ, τ̄) = 1
2|η(τ)|2

∑
m,w∈Z

q
p2L
4 q̄

p2R
4 − |θ3(τ)θ4(τ)|

2|η(τ)|2 + |θ2(τ)θ3(τ)|
2|η(τ)|2 − |θ2(τ)θ4(τ)|

2|η(τ)|2

= 1
|η(τ)|2

 ∑
m∈Z
w∈Z>0

+
∑

m∈Z>0
w=0

 q
p2L
4 q̄

p2R
4 +

∑
n,n̄∈Z≥0
n−n̄∈2Z+1

χh=n2(τ)χ̄h̄=n̄2(τ̄)

+ |θ2(τ)θ3(τ)|
2|η(τ)|2 − |θ2(τ)θ4(τ)|

2|η(τ)|2 .

(C.14)

C.4 Special rational points

Holomorphic-defect-factorization can be explicitly examined at special rational points via
dual descriptions:

(a) S1
r=1
Z2

= S1
r=2 ,

(b)
S1
r=
√

3/
√

2
Z2

= SM(4, 6)
(−1)F

(c)
S1
r=
√

2
Z2

= Ising2 ,

(d)
S1
r=
√

3
Z2

= SU(2)4
U(1) ,

(e)
S1
r=
√

6
Z2

= SM(4, 6)⊗ (−1)Arf

(−1)F

(f)
S1
r=2
√

2
Z2

= Sym2 Ising , . . . ,

(C.15)
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where SM denotes an N = 1 super-Virasoro minimal model. We adopt the notation for D4
symmetry lines in appendix C.3, and denote the cosine lines by L(θm,θw) as in section 6.2.

(a) In the S1
r=1/Z2 theory, all local operators including the twist fields are exponential

operators in the S1
r=2 description, factorized through U(1) symmetry lines. Complex

combinations of the twist fields in S1
r=1/Z2 correspond to the exponential operators with

m = ±1, w = 0 in S1
r=2, and are factorized through the Z8 symmetry lines LS1

r=2
(±π4 ,π).

(b) The twist fields of S1
r=
√

3/
√

2/Z2 are the two weight ( 1
16 ,

1
16) operators (one in the Neveu-

Schwarz sector and one in the Ramond sector) in the bosonized SM(4, 6) description.
They are factorized through unoriented Verlinde lines with 〈LEi〉R2 =

√
6. The self-fusion

of each line gives

LE1 LE1 = I + ηw + L( 2π
3 ,0) + L( 2π

3 ,π) , LE2 LE2 = I + η′w + L( 2π
3 ,0) + L( 2π

3 ,π) .

(C.16)

(c) The twist fields Ei at the two fixed points of S1
r=
√

2/Z2 are linear combinations of the
σ1 and σ2 operators in the Ising2 description,

E1 = 1
2(σ1 + σ2) , E2 = 1

2(σ1 − σ2) . (C.17)

They are factorized through the Kramers-Wannier duality lines N1 and N2 with
〈N1〉R2 = 〈N2〉R2 =

√
2. Fusion gives

NiNi = I + ηi , i = 1, 2 , (C.18)

where ηi is the Ising Z2 symmetry line in each copy. They are identified inside the
universal D4 symmetry as

η1 = ηm , η2 = η′m . (C.19)

Further note the identification between cosine lines and Verlinde lines

L(0,0) = I + η , L(π,0) = ηm + η′m , L(π2 ,π) = N1N2 , (C.20)

and ηw is the symmetry line that permutes the two copies of the Ising models.

(d) The twist fields of S1
r=
√

3/Z2 are the two weight ( 1
16 ,

1
16) operators in the Z4 parafermion

theory. Complex combinations of the twist fields are factorized through oriented Verlinde
lines LE ,LE with 〈LE〉R2 =

√
3. Their fusion with each other gives

LE LE = I + L( 2π
3 ,0) . (C.21)

(e) The twist fields of S1
r=
√

6/Z2 are the two weight ( 1
16 ,

1
16) operators (one in the Neveu-

Schwarz sector and one in the Ramond sector) in the bosonization of the tensor product
of SM(4, 6) with the (−1)Arf topological field theory. They are factorized through
Verlinde lines with 〈L〉R2 =

√
6.
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(f) The twist fields of S1
r=2
√

2/Z2 in the language of Sym2 Ising include the weight ( 1
16 ,

1
16)

operator 1√
2(σ1 + σ2) in the untwisted sector, and also the replica twist field ground

state. The former is factorized through the Verlinde line L (≡ N1 + N2 before the
symmetric product orbifold) with 〈L〉R2 = 2

√
2.

We observe a pattern: if r2 = u/v with u, v coprime, then the twist fields in the S1
r/Z2

theory are factorized through a topological defect line L with 〈L〉R2 =
√
uv. That this is

true for all rational r2 is proven in appendix C.5.

C.5 Torus Regge limit of the twist field two-point function

The torus Regge limit computes the loop-normalized defect partition function ZL̃(τ, τ̄),
as was explained in section 3.2. If ZL̃(τ, τ̄) has a discrete expansion in q, q̄, and if the
coefficients are integers up to an overall multiplicative factor, then one can strip off the
factor and obtain the Cardy-normalized defect partition function ZL(τ, τ̄) with positive
integer multiplicities. This overall factor is inverse 〈L〉R2 of the defect, so

ZL̃(τ, τ̄) = ZL(τ, τ̄)
〈L〉R2

. (C.22)

In the free boson orbifold theory, the holomorphic-defect-factorization of local operators
in the untwisted sector can be figured out relatively easily using hints from the pre-orbifold
free compact boson theory. However, the holomorphic-defect-factorization in the twisted
sector is far from obvious. To characterize the factorizing TDL, we resort to the torus Regge
limit. The covering space formalism for computing general correlators of orbifolds [68, 69]
was developed in [85, 86], and applied to the c = 1 free boson theory in great detail
in [87, 88]. In particular, our notation and formulae follow [88] closely.

In the free boson orbifold theory, the bosonic field X is double valued. When com-
puting the partition function on a Riemann surface, there are distinct topological sectors
distinguished by whether X flips sign around each nontrivial cycle. On a closed Riemann
surface of genus g, those sectors are labeled by εi ∈ 1

2Z2 around a-cycles and δi ∈ 1
2Z2

around b-cycles, for i = 1, . . . , g. In a given sector described by εi, δi, the double-valued
field X on Σg can be lifted to a single-valued field X on a double-sheeted cover Σ̃g. The
cover Σ̃g is a replica-symmetric genus 2g Riemann surface, and its modulus is described by
the period matrix Πεi,δi of Prym differentials (replica-symmetric holomorphic one-forms
on Σ̃g). The modulus Πεi,δi is fixed by the period matrix τ of Σg, the sector εi, δi, and the
positions of twist fields; this relation will be explicitly given for g = 1 later.

Consider an orthonormal basis of twist field ground states, and let E be any of the two
basis twist fields. The twist-field two-point function on a genus-g Riemann surface Σg is
given in Dijkgraaf-Verilinde-Verlinde (5.13) to be

〈E(z, z̄)E(0)〉Σg(τ,τ̄) = 2−g
∑

εi,δi∈( 1
2Z2)g

Zcl(r,Πεi,δi ,Πεi,δi)Z
qu
εi,δi

(τ, τ̄) , (C.23)

where
Zqu
ε,δ(τ, τ̄) = Zqu

0 (τ, τ̄)
∣∣∣∣c[εiδi

]
(τ)
∣∣∣∣−2

. (C.24)

– 46 –



J
H
E
P
1
0
(
2
0
2
1
)
1
2
5

Let us explain the pieces comprising this formula.

1. Zcl(r,Πεi,δi ,Πεi,δi) is the classical contribution to the partition function. It is a
solitonic sum over momentum and winding on the two-sheeted cover Σ̃g of Σg,

Zcl(r,Πεi,δi ,Πεi,δi) =
∑

p,p̄∈Γr
exp

[
iπ

2 (p ·Πεi,δi · p− p̄ ·Πεi,δi · p̄)
]
, (C.25)

where

Γr =
{(

mi

r
+ wir,

mi

r
− wir

)
| mi, wi ∈ Z

}
, (i = 1, . . . , g) . (C.26)

2. Zqu
εi,δi

(τ, τ̄) is the quantum contribution to the partition function. And Zqu
0 (τ, τ̄) is a

common factor shared by all distinct topological sectors, that only depends on the
period matrix τ of Σg.

3. Finally,

c

[
εi
δi

]
(τ)
−1

= E(z, 0)−
1
8

θ

[
γi + εi

2
δi

]
(1

2
∫ z

0 ω | 2τ)

θ

[
γi
0

]
(0 | 2Πεi,δi)

, (C.27)

where γi ∈ (1
2Z2)g is arbitrary, ω is the holomorphic one-form on Σg, and E(z, 0)

is the prime form, the closest thing to z that respects the global structure of the
Riemann surface. At short distances, E(z, 0) ∼ z.

We now specialize to g = 1. The classical solitonic sum Zcl(r,Πε,δ,Πε,δ) is just the free
compact boson partition function with τ set to Πε,δ. The common factor in the quantum
contributions to the partition function is

Zqu
0 (τ, τ̄) = 1

|η(τ)|2 . (C.28)

The prime form on a torus is

E(z, q) =
θ

[
1
2
1
2

]
(z | τ)

∂zθ

[
1
2
1
2

]
(z | τ)

∣∣
z=0

(C.29)

The Abel map is z = 1
2
∫ z

0 ω, where ω is the holomorphic one-form on Σg=1. The Schottky
relation (the arbitrariness of γi mentioned before)

θ

[
0
0

]
(z | 2τ)

θ

[
0
0

]
(0 | 2Π0,0)

=
θ

[
1
2
0

]
(z | 2τ)

θ

[
1
2
0

]
(0 | 2Π0,0)

(C.30)

implicitly defines Π0,0 as a function of z and τ . Let Π(z, τ) ≡ Π0,0(z, τ), then the rest of
Πε,δ(z, τ) are related via half-integer shifts of z

Πε,δ(z, τ) = Π(z + δ + ετ, τ) . (C.31)
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Using the Schottky relation (C.30) together with the identities

θ

[
γ

0

](
z + 1

2 | 2τ
)

= θ

[
γ
1
2

]
(z | 2τ) ,

θ

[
γ

0

](
z + τ

2 | 2τ
)

= exp
(
− iπ16

)
θ

[
γ + 1

4
0

]
(z | 2τ) ,

θ

[
γ

0

](
z + 1 + τ

2 | 2τ
)

= exp
(
− iπ16

)
θ

[
γ + 1

4
1
2

]
(z | 2τ) ,

(C.32)

we find that in the limit of the two twist fields colliding z → 0, the period matrix Π
behaves as

Π0,0(0, τ) = τ , Π0, 12
(0, τ) = i∞ , Π 1

2 ,0
(0, τ) = i0+ , Π 1

2 ,
1
2
(0, τ) = −1 + i0+ . (C.33)

We are now ready to examine the torus Regge limit. To recap, the torus two-point
function is a sum of four terms

〈E(z, z̄)E(0)〉Σg=1(τ,τ̄) = 1
2 |η(τ)|2

∑
ε,δ∈ 1

2Z2

Zcl(r,Πε,δ,Πε,δ)
∣∣∣∣c[εδ

]
(τ)
∣∣∣∣−2

. (C.34)

Under z → z + 1,

Zcl(r,Πε,δ,Πε,δ)→ Zcl(r,Πε,δ+ 1
2
,Πε,δ) ,

∣∣∣∣c[εδ
]
(τ)
∣∣∣∣−2
→ e

iπ
8 |E(z, 0)|−

1
4

θ

[
ε
2

δ + 1
2

]
(1

2
∫ z

0 ω | 2τ)

θ

[
0
0

]
(0 | 2Πε,δ+ 1

2
)

θ

[
ε
2
δ

]
(1

2
∫ z

0 ω | 2τ̄)

θ

[
0
0

]
(0 | 2Πε,δ)

,
(C.35)

where we have set γ = 0 without loss of generality. The e2iπh = e
iπ
8 phase will henceforth

be stripped off. In the further z, z̄ → 0 limit, in each term the limiting Π and Π each
takes one of the four values given in (C.33), and the combined limits of the four terms are
summarized in table 2. It suffices to examine say the first and third limits in table 2, as the
remaining two are related by complex conjugation.

For the first limit, Π → i∞ projects the solitonic sum to p = 0, where we see a
dichotomy between rational and irrational r2. If irrational, then the only term with p = 0
is p = p̄ = 0; if r2 = u/v is rational, then p = 0 corresponds to

(m,w) ∈ {n× (u, v) | n ∈ Z} . (C.36)

Hence

lim
Π→i∞

Zcl (r,Π, τ̄) = lim
Π→i∞
Π→τ̄

∑
p,p̄∈Γr

exp
[
iπ

2
(
p2Π− p̄2τ̄

)]

= lim
Π→i∞

∑
m,w∈Z

exp
[
iπ

2

((
m

r
+ wr

)2
Π−

(
m

r
− wr

)2
τ̄

)]

=


∑
n∈Z

exp
[
−2iπuvn2τ̄

]
= θ

[
0
0

]
(0|2uvτ̄) r2 = u/v rational ,

1 r2 irrational .
(C.37)

– 48 –



J
H
E
P
1
0
(
2
0
2
1
)
1
2
5

(ε, δ) (Π,Π)
(0, 0) (i∞ , τ̄)
(0, 1

2) (τ , −i∞)
(1

2 , 0) (i0+ , −1 + i0+)
(1

2 ,
1
2) (−1 + i0+ , −i0+)

Table 2. Limiting values of the moduli (Π,Π) in the spatial torus Regge limit for the four terms in
the torus two-point function of twist fields.

Next consider the third term. The Π,Π-dependent factors are the classical solitonic
sum together with the denominator of (C.35),

lim
Π→i0+

Π→−1−i0+

Zcl(r,Π,Π)

θ

[
0
0

]
(0 | 2Π) θ

[
0
0

]
(0 | 2Π)

. (C.38)

The limit can be easily taken by first performing a modular transformation. Writing
Π′ ≡ −1/Π and Π′ ≡ −1/Π, and noting

Zcl
(
r,Π,Π

)
=
√

Π′Π′ × Zcl
(
r,Π′,Π′

)
, θ

[
0
0

]
(0 | 2Π) =

√
Π′
2 × θ

[
0
0

](
0 | Π′

2

)
,

(C.39)
(C.38) becomes

lim
Π→i0+

Π→−1−i0+

Zcl
(
r,Π,Π

)
θ

[
0
0

]
(0 | 2Π) θ

[
0
0

]
(0 | 2Π)

= lim
Π′→i∞

Π′→1−i0+

2Zcl(r,Π′,Π′)

θ

[
0
0

]
(0 | Π′

2 ) θ
[

0
0

]
(0 | Π′

2 )

=



lim
Π′→1−i0+

2 θ
[

0
0

]
(0|2uvΠ′)

θ

[
0
0

]
(0 | Π′

2 )
=
√

2
uv

exp(− iπ4 ) r2 = u/v rational ,

lim
Π′→1−i0+

2

θ

[
0
0

]
(0 | Π′

2 )
= 0 r2 irrational .

(C.40)

Collecting everything, the final results are summarized as follows.

C.5.1 Rational points

If r2 = u/v is rational, then the loop-normalized torus partition function twisted by LE is

ZL̃E (τ, τ̄) = ZLE (τ, τ̄)
〈LE〉R2

= 1
2 |η(τ)|2

{(
θ

[
0
1
2

]
(0 | 2τ) θ

[
0
0

]
(0 | 2uvτ) + c.c.

)

+
√

2
uv

(
exp(− iπ4 ) θ

[
1
4
1
2

]
(0 | 2τ) θ

[
1
4
0

]
(0 | 2τ) + c.c.

)}
.

(C.41)
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Using the identities

θ

[
0
0

]
(0 | 2uvτ)

η(τ) =
∑

m,w∈Z, pR=0
χ p2L

4

(τ) ,
θ

[
0
1
2

]
(0 | 2τ)

η(τ) =
∞∑
n=0

(−1)nχn2(τ) , (C.42)

we can decompose the twisted partition function into Virasoro characters

ZLE (τ, τ̄)
〈LE〉R2

=

 ∑
m∈Z, w∈Z>0
mv=wu

χ p2L
4

(τ)
∞∑
n=0

(−1)nχn2(τ) + c.c.

 (one-sided degenerate)

+
∑

n,n̄∈Z≥0

(−1)n + (−1)n̄

2 χn2(τ)χn̄2(τ) (two-sided degenerate)

+ 1√
2uv

∑
n,n̄∈Z≥0

(1 + cos (n−n̄)π
2 − sin (n+n̄)π

2 ) (twisted sector)

× (−1)
1
4 (1−cos nπ2 +sin nπ

2 )(1−cos n̄π2 +sin n̄π
2 )χ (2n+1)2

16
(τ)χ (2n̄+1)2

16
(τ) .

(C.43)

The action of LE can be figured out by comparing the decomposition of the twisted partition
function (C.43) with the decomposition of the partition function with no twist (C.11), which
for the ease of reference we reproduce below

Z(τ, τ̄) =

 ∑
m∈Z, w∈Z>0
mv 6=±wu

+
∑

m∈Z>0
w=0

 χ p2L
4

(τ)χ p2R
4

(τ) (non-degenerate)

+

 ∑
m∈Z, w∈Z>0
mv=wu

χ p2L
4

(τ)
∞∑
n=0

χn2(τ) + c.c.

 (one-sided degenerate)

+
∑

n,n̄∈Z≥0

1 + (−1)n+n̄

2 χn2(τ)χn̄2(τ) (two-sided degenerate)

+
∑

n,n̄∈Z≥0

(1 + cos (n−n̄)π
2 − sin (n+n̄)π

2 )χ (2n+1)2
16

(τ)χ (2n̄+1)2
16

(τ) (twisted sector) .

The above decompositions are irreducible if r is irrational (though r2 is rational); otherwise,
the characters with pL ∈ 2Z or pR ∈ 2Z are further reducible. For the simplicity of
discussion, we assume that r is irrational.

The action on primary states without multiplicity can be directly read off: in the
untwisted sector, LE annihilates all non-degenerate primaries with no multiplicity, and
acts on the (one- and two-sided) degenerate primaries by signs. On primary states with
multiplicity, the action of LE cannot be unambiguously determined from (C.43) alone.
Nevertheless, in the following we propose an action that is consistent with the special
rational points examined in appendix C.4, and we believe that this action is correct at all
rational points.
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The non-degenerate states in the untwisted sector have multiplicity two when m = m′u

and w = w′v, with m′, w′ ∈ Z and m′ 6= ±w′. We propose that in an appropriate basis, LE
acts on them by

√
uv

(
1 0
0 −1

)
. (C.44)

In the Ising2 description of the S1
r=
√

2/Z2 point, LE = N1 or N2 acts on the pair of Vir2×Vir2

primaries ε1, ε2 by ±
√

2.
The twisted sector primaries all have multiplicity two. The pattern exhibited by the

special rational points in appendix C.4 suggests that LE is oriented when u and v are both
odd, and unoriented otherwise.

When LE is unoriented, we propose that in an appropriate basis, its action is

(−1)
1
4 (1−cos nπ2 +sin nπ

2 )(1−cos n̄π2 +sin n̄π
2 )
(√

2 0
0 0

)
. (C.45)

Consider again Ising2 = S1
r=
√

2/Z2. The Vir2 × Vir2 primaries in the twisted sector are
σ1, σ2, σ1ε2, ε1σ2. In this subspace, the TDL LE = N1 annihilates σ1 and σ1ε2, but acts
on σ2 and ε1σ2 by ±

√
2.

When LE is oriented, we propose that in an appropriate basis, its action is

(−1)
1
4 (1−cos nπ2 +sin nπ

2 )(1−cos n̄π2 +sin n̄π
2 )
(
e
iπ
4 0

0 e−
iπ
4

)
, (C.46)

and the action of its orientation reversal LE is given by the complex conjugate. In the S1
r=2

description of the S1
r=1/Z2 point, the twisted sector ground states correspond to

pL = 1
4

(
m

2 + 2w
)2

, pR = 1
4

(
m

2 − 2w
)2

, m = ±1 , w = 0 . (C.47)

In this subspace, the Z8 line LE = LS1
r=2

(±π4 ,π) indeed acts by the phases appearing in (C.46).
The modular S transform gives the loop-normalized defect partition function23

ZL̃E
(τ, τ̄) = 1

4
√
uv |η(τ)|2

{(
θ

[
1
2
0

]
(0 | τ2 ) θ

[
0
0

]
(0 | τ

2uv ) + c.c.
)

+
√

2
(
θ

[
1
2
− 1

4

]
(0 | τ2 ) θ

[
0
− 1

4

]
(0 | τ2 ) + c.c.

)}
.

(C.48)

The planar loop expectation value 〈L〉R2 =
√
uv is the smallest number such that the

Cardy-normalized defect partition function

ZL(τ, τ̄) = 〈L〉R2 × ZL̃, S1
r/Z2

(τ, τ̄) (C.49)

has a character expansion with positive integer coefficients.24

23Note that θ
[

1
2
− 1

4

]
(0 | τ2 ) defined in (C.1) as a q-series has coefficients that are 1√

2 times integers due

to the combinations of e± iπ4 , e± 3iπ
4 phases. The 1√

2 is compensated by the overall
√

2 factor to produce
integer coefficients.

24For each of the two pieces in braces in (C.48), there are terms in the q, q̄-expansion with coefficient 2.
But when the two pieces are combined, all terms have coefficients that are multiples of 4, canceling the
overall 1

4 .
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C.5.2 Irrational points

If r2 is irrational, and suppose the twist field factorizes through some LE , then the spatial
torus Regge limit gives

ZL̃E (τ, τ̄) = 1
2|η(τ)|2

(
θ

[
0
1
2

]
(0 | 2τ) + θ

[
0
1
2

]
(0 | 2τ̄)

)

= 1
2|η(τ)|2

(
1 +

∞∑
n=1

(−)n(qn2 + q̄n
2)
)
.

(C.50)

The partition function and twisted partition function can be decomposed into irreducible
Virasoro characters as

Z(τ, τ̄) =
1 +

∣∣∣∣θ[0
1
2

]
(0|2τ)

∣∣∣∣2
2|η(τ)|2 + · · · =

∞∑
n,n̄=0
n−n̄∈2Z

χh=n2χ̄h̄=n̄2 + · · · ,

ZL̃E (τ, τ̄) =
∞∑

n,n̄=0
n−n̄∈2Z

(−)nχh=n2χ̄h̄=n̄2 .

(C.51)

Since all states in the untwisted sector have no multiplicity, it is clear that L acts on the
(two-sided) degenerate modules by a sign, and annihilates the non-degenerate modules
(there are no one-sided degenerate modules when r2 is irrational). The twisted sector
has multiplicity two, so the action of L̃E on the twisted sector cannot be unambiguously
determined from (C.50) alone. Nevertheless, this action should be the uv → ∞ limit of
the corresponding action of the loop-normalized L̃E at rational points: L̃E annihilates the
twisted sector at irrational points.

The modular S transform of (C.50) gives the defect partition function

ZL̃E
(τ, τ̄) = 1

2
√

2|η (τ) |2

(
1√
iτ̄
θ

[
1
2
0

](
0 | τ2

)
+ 1√
−iτ

θ

[
1
2
0

](
0 | τ̄2

))

= 1√
2|η (τ) |2

∞∑
n=0

q (2n+1)2
16
√
iτ̄

+ q̄
(2n+1)2

16
√
−iτ


= 1
|η (τ) |2

∞∑
n=0

∫ ∞
0

dp

(
q

(2n+1)2
16 q̄

p2
4 + q

p2
4 q̄

(2n+1)2
16

)
,

(C.52)

which has a spectrum of primary operators continuous in twist,

(
h, h̄

)
=
(

(2n+ 1)2

16 ,
p2

4

)
,

(
p2

4 ,
(2n+ 1)2

16

)
, n ∈ Z, p ∈ R . (C.53)

At irrational points, the defect partition function (C.52) coincides with the uv →∞ limit
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of that (C.48) at rational points,

lim
uv→∞

ZL̃E
(τ, τ̄) = 1

4|η (τ) |2 lim
uv→∞

1√
uv

(
θ

[
1
2
0

](
0 | τ2

)
θ

[
0
0

]
(0 | τ̄

2uv ) + c.c.
)

= 1
4|η(τ)|2 lim

uv→∞
1√
uv

∑
m,n∈Z

(
q

(2n+1)2
16 q̄

m2
4uv + q

m2
4uv q̄

(2n+1)2
16

)

= 1
|η(τ)|2

∞∑
n=0

∫ ∞
0

dp

(
q

(2n+1)2
16 q̄

p2
4 + q

p2
4 q̄

(2n+1)2
16

)
.

(C.54)

Thus L̃E is a non-compact TDL at irrational points.

C.6 Fusion rules for the non-compact topological defect lines

Consider the fusion of the LE line with its orientation reversal. When r2 = u/v is rational
with u, v coprime, the result can be decomposed into a sum over simple TDLs. One could
decode the fusion rule by from the twisted partition function of the loop-normalized L̃E L̃E ,

ZL̃E L̃E (τ, τ̄) = ZLELE (τ, τ̄)
〈LE〉2R2

=
∑

m∈Z, w∈Z>0
mv=wu

χ p2L
4

(τ)
∞∑
n=0

χn2(τ) +
∞∑
n=0

χn2(τ)
∑

m∈Z, w∈Z>0
mv=−wu

χ p2R
4

(τ)

+

 ∑
m∈Z, w∈Z>0

m 6=±w

+
∑

m∈Z>0
w=0

χuv(m+w)2
4

(τ)χuv(m−w)2
4

(τ)

+
∑

n,n̄∈Z≥0

1 + (−1)n+n̄

2 χn2(τ)χn̄2(τ)

+ 1
uv

∑
n,n̄∈Z≥0

(1 + cos (n−n̄)π
2 − sin (n+n̄)π

2 )χ (2n+1)2
16

(τ)χ (2n̄+1)2
16

(τ) ,

(C.55)

computed by twice applying the LE action proposed in appendix C.5.
When u is an even integer, the twisted partition function (C.55) can be written as25

ZL̃E L̃E (τ, τ̄) = ZLELE (τ, τ̄)
〈LE〉2R2

= 1
2|η(τ)|2

∑
m,w∈Z

2u−2∑
m′=0
m′∈2Z

v−1∑
w′=0

1
uv
eπi(

v
u
m′+w′)m+πi(m′+u

v
w′)wq

p2L
4 q̄

p2R
4

+ |θ3(τ)θ4(τ)|
2|η(τ)|2 + 1

uv

[ |θ2(τ)θ3 (τ) |
2|η (τ) |2 + |θ2 (τ) θ4 (τ) |

2|η (τ) |2
]

25As noted before, the pattern exhibited by the special rational points in appendix C.4 suggests that
LE = LE is unoriented when u or v is even.
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= 1
uv|η (τ) |2

( ∑
m∈Z
w∈Z>0

+
∑

m∈Z>0
w=0

){
(1 + (−1)m)q

p2L
4 q̄

p2R
4

+
2u−1∑
m=0
m∈2Z

v−1∑
w=2
m∈2Z

2 cos
[
πi

(
v

u
m′ + w′

)
m+ πi

(
m′ + u

v
w′
)
w

]
q
p2L
4 q̄

p2R
4

+
u−2∑
m=2
m∈2Z

2 cos
[
πi

(
v

u
m′ + w′

)
m

]
q
p2L
4 q̄

p2R
4

}

+ |θ3 (τ) θ4 (τ) |
2|η (τ) |2 + 1

uv

[ |θ2(τ)θ3(τ)|
2|η(τ)|2 + |θ2(τ)θ4(τ)|

2|η(τ)|2
]
, (C.56)

from which we find the decomposition of LE LE to be

LE LE = I + ηm +
2u−2∑
m=0
m∈2Z

v−1∑
w=2
m∈2Z

L−π( m
r2

+w,m+wr2) +
u−2∑
m=2
m∈2Z

L−π( m
r2
,m) . (C.57)

When u is odd and v is even, by an analogous calculation we obtain a similar fusion rule
with u and v exchanged and ηm replaced by ηw, which is expected by T-duality.

When u and v are both odd integers, the twisted partition function can be written as

ZL̃E L̃E (τ, τ̄) = ZLELE (τ, τ̄)
〈LE〉2R2

= 1
uv|η(τ)|2

( ∑
m∈Z
w∈Z>0

+
∑

m∈Z>0
w=0

){
q
p2L
4 q̄

p2R
4

+
2u−1∑
m=0
m∈2Z

v−1∑
w=2
m∈2Z

2 cos
[
πi(v

u
m′ + w′)m+ πi(m′ + u

v
w′)w

]
q
p2L
4 q̄

p2R
4

+
u−1∑
m=2
m∈2Z

2 cos
[
πi

(
v

u
m′ + w′

)
m

]
q
p2L
4 q̄

p2R
4

}

+ |θ3(τ)θ4(τ)|
2|η(τ)|2 + 1

uv

[ |θ2(τ)θ3(τ)|
2|η(τ)|2 + |θ2(τ)θ4(τ)|

2|η(τ)|2
]
,

(C.58)

from which we find the decomposition of LE LE to be

LE LE = I +
2u−2∑
m=0
m∈2Z

v−1∑
w=2
m∈2Z

L−π( m
r2

+w,m+wr2) +
u−1∑
m=2
m∈2Z

L−π( m
r2
,m) . (C.59)

For arbitrary u and v, the twisted partition function can also be written as

ZL̃E L̃E (τ, τ̄) = ZLELE (τ, τ̄)
〈LE〉2R2

= 1
2|η(τ)|2

∑
m∈uZ
w∈vZ

q
p2L
4 q̄

p2R
4 + |θ3(τ)θ4(τ)|

2|η(τ)|2 + 1
uv

[ |θ2(τ)θ3(τ)|
2|η(τ)|2 + |θ2(τ)θ4(τ)|

2|η(τ)|2
]

=
|θ3(uvτ2 )|2 + |θ4(uvτ2 )|2

4|η(τ)|2 + |θ3(τ)θ4(τ)|
2|η(τ)|2 + 1

uv

[ |θ2(τ)θ3(τ)|
2|η(τ)|2 + |θ2(τ)θ4(τ)|

2|η(τ)|2
]
.

(C.60)
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The defect partition function of the loop-normalized L̃E L̃E is obtained by a modular S
transform to be

Z
L̃E L̃E

(τ, τ̄)

=
|θ3( 2τ

uv )|2 + |θ2( 2τ
uv )|2

2uv|η(τ)|2 + |θ2(τ)θ3(τ)|
2|η(τ)|2 + 1

uv

[ |θ4(τ)θ3(τ)|
2|η(τ)|2 + |θ2(τ)θ4(τ)|

2|η(τ)|2
]
.

(C.61)

The Cardy-normalized defect partition function is the above multiplied by 〈LE〉2R2 = uv,
and has a discrete spectrum with integer multiplicities.

The defect partition function at irrational r2 is obtained by taking the uv →∞ limit

lim
uv→∞

Z
L̃E L̃E

(τ, τ̄)

= 1
2|η(τ)|2 lim

uv→∞
1
uv

∑
m,n∈Z

(
q
m2
uv q̄

n2
uv + q

(m− 1
2 )2

uv q̄
(n− 1

2 )2

uv

)
+ |θ2(τ)θ3(τ)|

2|η(τ)|2

= 1
|η(τ)|2

∫ ∞
−∞

dpdp̄ qp
2
q̄p

2 + |θ2(τ)θ3(τ)|
2|η(τ)|2

= 1
2

∫ 2π

0

dθwdθm
(2π)2 ZL(θm,θw)(τ, τ̄) ,

(C.62)

from which we deduce the fusion rule

L̃E L̃E = 1
2

∫ 2π

0

dθwdθm
(2π)2 L(θm,θw) . (C.63)
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