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LORENTZIAN MANIFOLDS ISOMETRICALLY

EMBEDDABLE IN L
N

O. MÜLLER AND M. SÁNCHEZ

Abstract. In this article, the Lorentzian manifolds isometrically embeddable
in L

N (for some large N , in the spirit of Nash’s theorem) are characterized as
a subclass of the set of all stably causal spacetimes; concretely, those which
admit a smooth time function τ with |∇τ | > 1. Then, we prove that any
globally hyperbolic spacetime (M,g) admits such a function, and, even more,
a global orthogonal decomposition M = R× S, g = −βdt2 + gt with bounded
function β and Cauchy slices.

In particular, a proof of a result stated by C.J.S. Clarke is obtained: any
globally hyperbolic spacetime can be isometrically embedded in Minkowski
spacetime L

N . The role of the so-called “folk problems on smoothability” in
Clarke’s approach is also discussed.

1. Introduction

A celebrated theorem by J. Nash [14] states that any C3 Riemannian mani-
fold can be isometrically embedded in any open subset of some Euclidean space
R

N for large N . Greene [9] and Clarke [7] showed independently, by means of
simple algebraic reasonings, that Nash’s theorem can be extended to indefinite
(even degenerate) metrics, that is, any semi-Riemannian manifold can be smoothly
isometrically embedded in any open subset of semi-Euclidean space R

N
s for large

enough dimension N and index s. Moreover, they also reduced the Nash value for
N : Greene by using the implicit function theorem by Schwartz [18], and Clarke by
means of a technique inspired by Kuiper [11], which yields Ck isometric embeddings
with 3 ≤ k < ∞.

Nevertheless, a new problem appears when a semi-Riemannian manifold of index
s is going to be embedded in a semi-Euclidean space of the same index R

N
s . We

will focus on the simplest case s = 1, i.e., the isometric embedding of a Lorentzian
manifold (M, g) in Minkowski spacetime L

N . Such an embedding will not exist in
general; for example, the existence of a causal closed curve in M contradicts the
possibility of an embedding in L

N . So, the first task is to characterize the class of
isometrically embeddable spacetimes. This is the role of our first result (Section 3):

Theorem 1.1. Let (M, g) be a Lorentzian manifold. The following assertions are
equivalent:

(i) (M, g) admits an isometric embedding in L
N for some N ∈ N.
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(ii) (M, g) is a stably causal spacetime with a steep temporal function, i.e., a
smooth function τ such that g(∇τ,∇τ ) ≤ −1.

Again, this theorem is carried out by using some simple arguments, which essen-
tially reduce the hardest problem to the Riemannian case. So, this result (and the
subsequent ones on isometric embeddings) is obtained under the natural technical
conditions which come from the Riemannian setting: (a) (M, g) must be Ck with
3 ≤ k ≤ ∞, and all the other elements will be as regular as permitted by k, and
(b) the smallest value of N is N = N0(n) + 1, where n is the dimension of M and
N0(n) is the optimal bound in the Riemannian case (see [10] for a recent summary
on this bound). We will not care about the local problem (see [9], a summary in
Lorentzian signature can be found in [19]); recall also that, locally, any spacetime
fulfills condition (ii). So, the main problem we will consider below is the existence
of a global steep temporal function as stated in (ii).

It is known that any stably causal spacetime admits a time function, which can
be smoothed into a temporal one τ (see Section 2 for definitions and background).
Nevertheless, the condition of being steep, |∇τ | ≥ 1 cannot be fulfilled for all
stably causal spacetimes. In fact, a simple counterexample, which works even in
the causally simple case, is provided below (Example 3.3). Notice that causal
simplicity is the level in the standard causal hierarchy of spacetimes immediately
below global hyperbolicity. So, the natural question is to wonder if any globally
hyperbolic spacetime admits a steep temporal function τ .

The existence of embeddings in L
N for globally hyperbolic spacetimes was stated

by Clarke [7, Sect. 2]. In his approach, a function f : M → L
2 with a similar role

to the steep temporal function above is used. Nevertheless, as in other papers of
that epoch, his construction of f is affected by the so-called “folk problems” of
smoothability of causally-constructed functions. So, as will be discussed in the
Appendix, if Clarke’s proof is completed, then a new type of causally-constructed
functions will be shown to be smooth (or at least smoothable).

Apart from the consequence of the embedding in L
N , the existence of a steep tem-

poral τ is relevant for the structure of globally hyperbolic spacetimes. In fact, both
questions, problems of smoothability and structure of globally hyperbolic space-
times, are linked since Geroch’s landmark about topological splittings [8]. More
precisely, recently any globally hyperbolic spacetime (M, g) has been proved to
admit a Cauchy orthogonal decomposition

(1.1) M = R× S, g = −βdT 2 + gT ,

where β > 0 is a function on M , gT is identifiable to a Riemannian metric on
ST := {T } × S smoothly varying with T , and each slice ST becomes a Cauchy
hypersurface [4]. This result, which improves Geroch’s topological splitting M ∼=
R × S as both a differentiable and orthogonal one, is proved by showing that,
starting at Geroch’s Cauchy time function, one could obtain a Cauchy smooth time
function with timelike gradient. Now, recall that, if this Cauchy temporal function
is steep, then the function β is upper bounded by one (Lemma 3.5). One of us
suggested possible analytical advantages of a strengthened decomposition (1.1),
where additional conditions on the elements β, gT are imposed [13]. In particular,
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such a decomposition is called a b-decomposition there if the function β (the lapse
in relativist’s terminology) is bounded. Our next result is then (Section 4):

Theorem 1.2. Any globally hyperbolic spacetime admits a steep Cauchy temporal
function T and, so, a Cauchy orthogonal decomposition (1.1) with (upper) bounded
function β.

Remark 1.3. From the technical viewpoint, the decomposition (1.1) was carried out
in [4] by proving the existence of a Cauchy temporal function; moreover, a simplified
argument shows the existence of a temporal function in any stably causal spacetime
([4], see also the discussion in [17]). Our proof is completely self-contained, as it
re-proves the existence of the Cauchy temporal function with different and some-
what simpler arguments, as well as a stronger conclusion. Nevertheless, we use
some technical elements (remarkably, Proposition 4.2) which hold in the globally
hyperbolic case, but not in the stably causal one1.

Summing up, we emphasize the following consequences of previous theorems (for
the second one also recall Proposition 2.1).

Corollary 1.4. (1) Any globally hyperbolic spacetime can be isometrically embedded
in some L

N .
(2) A Lorentzian manifold is a stably causal spacetime if and only if it admits a

conformal embedding in some L
N . In this case, there is a representative of its con-

formal class whose time-separation (Lorentzian distance) function is finite-valued.

Notice also that, as an immediate consequence, a stably causal spacetime is not
globally hyperbolic if and only if it is conformal to a spacetime non-isometrically
embeddable in L

N (see Example 3.3).
After some preliminaries in the next section, Sections 3 and 4 are devoted, re-

spectively, to prove Theorems 1.1 and 1.2, as well as to discuss its optimality and
consequences. From the technical viewpoint, it is worth pointing out the introduc-
tion of two elements in the first part of Section 4: a semi-local temporal function
for subsets of type J±(p)∩ J∓(S) (Proposition 4.2) and fat cone coverings for any
Cauchy hypersurface S (Proposition 4.4). Finally, in the Appendix, Clarke’s tech-
nique for globally hyperbolic spacetimes is discussed, and new causal problems on
smoothability, which may have their own interest, are suggested.

2. Preliminaries

In what follows, any semi-Riemannian manifold will be Ck, with 3 ≤ k ≤ ∞ as
in Nash’s theorem, and will be assumed to be connected without loss of generality.
Any geometric element on the manifold will be called smooth if it has the highest
order of differentiability allowed by k. For an immersion i : M → M̄ only injectivity
of each dip, p ∈ M is required; the injectivity of i, as well as being a homeomorphism
onto its image, are required additionally for i to be an embedding.

Our notation and conventions on causality will be standard as, for example, in
[2] or [15]. Nevertheless, some terminology on the solution of the so-called “folk
problems of smoothability” introduced in [3, 4] are also used here (see [12] for a
review). In particular, a Lorentzian manifold (M, g) is a manifold M endowed with
a metric tensor g of index one (−,+, . . . ,+), a tangent vector v ∈ TpM in p ∈ M ,

1Notice also that only C1 differentiability is needed for these results.
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is timelike (resp. spacelike; lightlike; causal) when g(v, v) < 0 (resp. g(v, v) > 0;
g(v, v) = 0 but v 
= 0; v is timelike or lightlike); so, following [12], the vector
0 will be regarded as non-spacelike and non-causal – even though this is not by
any means the unique convention in the literature. For any vector v, we write
|v| :=

√
|g(v, v)|. A spacetime is a time-orientable Lorentzian manifold, which will

be assumed to be time-oriented (choosing any of its two time-orientations) when
necessary; of course, the choice of the time-orientation for submanifolds conformally
immersed in L

N will agree with the induced from the canonical time-orientation of
L
N . The associated time-separation or Lorentzian distance function will be denoted

by d, d(p, q) := supc∈Ω(p,q) l(c) where the supremum is taken over the space Ω(p, q)

of future-directed causal C1 curves from p to q parametrized over the unit interval

(if this space is empty, d is defined equal to 0), and l(c) :=
∫ 1

0
|ċ(t)|dt for such a

curve. The following elements of causality must be taken into account (they are
explained in detail in [12]).

• A time function t on a spacetime is a continuous function which increases
strictly on any future-directed causal curve. Recently [4], it has been proved
that this is also equivalent to the existence of a temporal function τ , i.e.,
a smooth time function with everywhere past-directed timelike gradient
∇τ . This also ensures the folk claim that, for a spacetime, the existence
of a time funtion is equivalent to be stably causal (i.e., if the lightcones of
the spacetime are slightly opened, then it remains causal), see [17, Fig. 2,
Th. 4.15, Rem. 4.16] or [12, Th. 3.56]. In the present paper, a temporal
function will be called steep if |∇τ | ≥ 1; as we will see, not all stably causal
spacetimes admit a steep temporal function.

• After stable causality, the two next steps in the so-called causal ladder
or causal hierarchy of spacetimes are: causal continuity (the volume func-
tions t±(p) = μ(I±(p)), p ∈ M are time functions for one, and then for
all, measure associated to any auxiliary semi-Riemannian metric such that
μ(M) < ∞) and causal simplicity (the spacetime is causal with closed
J+(p), J−(q) for all p). A spacetime is called globally hyperbolic if it is
causal and the intersections J+(p)∩J−(q) are compact for all p, q ∈ M (for
the last two definitions, notice [6]). Globally hyperbolic spacetimes are the
most relevant from both the geometric and physical viewpoints, and lie at
the top of the causal hierarchy .

• A time or temporal function is called Cauchy if it is onto on R and all
its level hypersurfaces are Cauchy hypersurfaces (i.e., topological hypersur-
faces crossed exactly once by any inextensible timelike curve). A classical
theorem by Geroch [8] asserts the equivalence between: (i) to be globally
hyperbolic, (ii) to admit a Cauchy hypersurface, and (iii) to admit a Cauchy
time function. Moreover, the results in [3, 4] also ensure the equivalence
with: (iv) to admit a (smooth) spacelike Cauchy hypersurface, and (v) to
admit a Cauchy temporal function T . As a consequence, the full spacetime
admits an orthogonal Cauchy decomposition as in (1.1).

• Further properties have been achieved [5]: any compact acausal space-
like submanifold with boundary can be extended to a (smooth) space-
like Cauchy hypersurface Σ, and any such Σ can be regarded as a slice
T =constant for a suitable Cauchy orthogonal decomposition (1.1). Apart
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from the obvious interest in the foundations of classical General Relativ-
ity, such results have applications in fields such as the wave equation or
quantization, see for example [1, 16].

The following simple results are useful for the discussions below.

Proposition 2.1. Let (M, g) be a spacetime.
(1) If τ is a temporal function, then there exists a conformal metric g∗ = Ωg,

Ω > 0, such that τ is steep.
(2) If T is a Cauchy temporal function and τ is a temporal function, then T + τ

is a Cauchy temporal function. Moreover, T + τ is steep if either τ or T is.

Proof. (1) As ∇∗τ = ∇τ/Ω, choose any Ω ≤ |∇τ |2.
(2) T + τ is temporal (and steep, if so is any of the two functions) because

of the reversed triangle inequality. In order to check that its level hypersurfaces
are Cauchy, consider any future-directed timelike curve γ : (a−, a+) → M . It is
enough to check that lims→±a(T + τ )(γ(s)) = ±∞. But this is obvious, because
lims→±a T (γ(s)) = ±∞ (as T is Cauchy) and τ (γ(s)) is increasing. �

3. Characterization of isometrically embeddable

Lorentzian manifolds

Proposition 3.1. Let (M, g) be a Lorentzian manifold. If there exists a conformal
immersion i : M → L

N , then (M, g) is a stably causal spacetime.
Moreover, if i is an isometric immersion, then: (a) the natural time coordinate

t = x0 of LN induces a steep temporal function on M , and (b) the time-separation
d of (M, g) is finite-valued.

Proof. Notice that x0◦i is trivially smooth and also a time function (as x0 increases
on i ◦ γ, where γ is any future-directed causal curve in M), which proves stable
causality.

If i is isometric, then |∇(x0 ◦ i)| ≥ 1 because, at each p ∈ M , ∇(x0 ◦ i)p is the
projection of ∇x0

i(p) onto the tangent space di(TpM), and its orthogonal di(TpM)⊥

in Ti(p)L
N is spacelike. This proves (a); for (b) notice that the finiteness of d is an

immediate consequence of the finiteness of the time-separation d0 on L
N and the

straightforward inequality d(p, q) ≤ d0(i(p), i(q)) for all p, q ∈ M . �

Remark 3.2. As a remarkable difference with the Riemannian case, Proposition 3.1
yields obstructions for the existence of both conformal and isometric immersions in
L
N . In particular, non-stably causal spacetimes cannot be conformally immersed,

and further conditions on the time-separation are required for the existence of an
isometric immersion. In fact, it is easy to find even causally simple spacetimes
splitted as in (1.1) (with levels of T non-Cauchy) which cannot be isometrically
immersed in L

N , as the following example shows.

Example 3.3. Let M = {(x, t) ∈ R
2 : x > 0}, g = (dx2 − dt2)/x2. This is

conformal to R
+ × R ⊂ L

2 and, thus, causally simple. It is easy to check that
d(p, q) = ∞ for p = (1,−2), q = (1, 2) (any sequence of causal curves {γm}m
connecting p and q whose images contain {(1/m, t) : |t| < 1} will have diverging
lengths). Thus, (M, g) cannot be isometrically immersed in L

N .
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Recall that this example can be generalized, taking into account that a stably
causal spacetime is non-globally hyperbolic if and only if it is conformal to a space-
time with an infinite-valued time-separation (this holds for all strongly causal space-
times, see [2, Th. 4.30]). So, in the conformal class of any non-globally hyperbolic
spacetime, there are spacetimes non-isometrically inmersable in L

N .

Nash’s theorem will be essential for the proof of the following result.

Proposition 3.4. If a spacetime (M, g) admits a steep temporal function τ , then
it can be isometrically embedded in L

N for some N .

For the proof, recall first.

Lemma 3.5. If a spacetime (M, g) admits a temporal function τ , then the metric
g admits an orthogonal decomposition

(3.1) g = −βdτ2 + ḡ,

where β = |∇τ |−2 and ḡ is a positive semi-definite metric on M with radical spanned
by ∇τ .

In particular, if τ is steep, then β ≤ 1.

Proof. The orthogonal decomposition (3.1) follows by taking ḡ as the trivial ex-
tension of g|(∇τ)⊥ to all TM . To determine the value of β, recall that dτ (∇τ ) =

g(∇τ,∇τ ) = −β (dτ (∇τ ))2. �
Proof of Proposition 3.4. Consider the orthogonal decomposition in Lemma 3.5.
Even though M does not need to split as a product R × S (in an open subset of
L
n, the vector field ∇τ may be incomplete and the topology of the level sets may

change), we can rewrite (3.1) as

(3.2) g = −βdτ2 + gτ ,

where each gτ0 is Riemannian metric on the slice Sτ0 = τ−1(τ0) varying smoothly
with τ0. Moreover, each p ∈ M will be written as (τ, x) where x ∈ Sτ(p).

Now, consider the auxiliary Riemannian metric

gR := (4− β)dτ2 + gτ .

By Nash’s theorem, there exists an isometric embedding inash : (M, gR) ↪→ R
N0 .

Then, a simple computation shows that the required isometric embedding i :
(M, g) ↪→ L

N0+1 is just:

i(τ, x) = (2τ, inash(τ, x)) . �
Remark 3.6. (1) From the proof, it is clear that the hypotheses on steepness can
be weakened just by assuming that ∇τ is lower bounded by some positive func-
tion ε(τ ) > 0. In fact, this is equivalent to requiring β(τ, x) ≤ A(τ )2 := 1/ε(τ ),
and the proof would work by taking gR := (4A(τ )2 − β)dτ2 + gτ and i(τ, x) =(
2
∫ τ

0
A(s)ds, inash(τ, x)

)
. Nevertheless, no more generality would be obtained in

this case because of the following two different arguments: (a) it is easy to check
that, if this weaker condition holds, then a suitable composition τ̂ = f ◦ τ for some
increasing function f on R would be steep and temporal, and (b) the existence
of a steep temporal function would be ensured by taking the isometric embedding
i : M ↪→ L

N and restricting the natural coordinate t = x0 as in Proposition 3.1.
(2) Notice that Proposition 3.1 yields a necessary condition for the existence of

an isometric embedding and Proposition 3.4 a sufficient one. Both together prove
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trivially Theorem 1.1, as well as Corollary 1.4(2) (notice also Proposition 2.1(1)).
Recall that, as a difference from Nash’s theorem, Proposition 3.4 does not allow
us to prove that the spacetime is isometrically embedded in an arbitrarily small
open subset, which cannot be expected now (notice that d(p, q) ≤ d0(i(p), i(q)) ≤
|x0(i(p))− x0(i(q))|).

4. The Cauchy orthogonal b-decomposition of any globally

hyperbolic spacetime

In order to obtain a steep Cauchy temporal function in a globally hyperbolic
spacetime, Proposition 2.1(2) reduces the problem to find a steep temporal function
(not necessarily Cauchy), as the existence of a Cauchy temporal function is ensured
in [4]. Nevertheless, we will prove directly the existence of a steep Cauchy temporal
function T , proving Theorem 1.2 independently of the results in [4] (recall Remark
1.3).

So, in what follows (M, g) will be a globally hyperbolic spacetime, and we will
assume that t is a Cauchy time function as given by Geroch [8]. The following
notation will also be used here. Regarding t,

T b
a = t−1([a, b]), Sa = t−1(a).

For any p ∈ M , jp is the function

q → jp(q) = exp(−1/d(p, q)2).

For any A,B ⊂ M ,

J(A,B) := J+(A) ∩ J−(B),

in particular, J(p, S) := J+(p) ∩ J−(S) for S any (Cauchy) hypersurface.

4.1. Some technical elements. In the next two propositions we will introduce a
pair of technical tools for the proof. But, first, consider the following straightfor-
ward lemma, which will be invoked several times.

Lemma 4.1. Let τ be a function such that g(∇τ,∇τ ) < 0 in some open subset U
and let K ⊂ U compact. For any function f there exists a constant c such that
g(∇(f + cτ ),∇(f + cτ )) < −1 on K.

Proof. Notice that at each x in the compact subset K the quadratic polynomial
g(∇(f(x)+ cτ (x)),∇(f(x)+ cτ (x))) becomes smaller than −1 for some large c. �

The following “cone semi-time function” will be useful from a technical view-
point.

Proposition 4.2. Let S be a Cauchy hypersurface, p ∈ J−(S). For all neighbor-
hood V of J(p, S) there exists a smooth function τ ≥ 0 such that:

(i) Supp τ ⊂ V .
(ii) τ > 1 on S ∩ J+(p).
(iii) ∇τ is timelike and past-directed in Int(Supp (τ ) ∩ J−(S)).
(iv) g(∇τ,∇τ ) < −1 on J(p, S).
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Proof. Let t be a Cauchy time function such that2 S = Sa := t−1(a), and let
K ⊂ V be a compact subset such that J(p, Sa) ⊂ Int (K). Compactness guarantees
the existence of some δ > 0 such that: for every x ∈ K there exists a convex
neighborhood Ux ⊂ V with ∂+Ux ⊂ J+(St(x)+2δ), where ∂+Ux := ∂Ux ∩ J+(x).
Now, choose a0 < a1 := t(p) < · · · < an = a with ai+1 − ai < δ/2, and construct τ
by induction on n as follows.

For n = 1, cover J(p, S) = {p} with a set type I+(x) ∩ Ux with x ∈ K ∩ T a1
a0

and consider the corresponding function jx. For a suitable constant c > 0, the
product cjx satisfies both, (ii), (iii) and (iv). To obtain smoothability preserving
(i), consider the open covering {I−(Sa+δ), I

+(Sa+δ/2)} of M , and the first function

0 ≤ μ ≤ 1 of the associated partition of unity (Supp μ ⊂ I−(Sa+δ)). The required
function is just τ = cμjx.

Now, assume by induction that the result follows for any chain a0 < · · · < an−1.

So, for any k ≤ n−1, consider J(p, Sak
) and choose a compact set K̂ ⊂ Int K with

J(p, S) ⊂ Int K̂. Then, there exists a function τ̂ which satisfies condition (i) above

for V = Int K̂ ∩ I−(Sak+1
) and conditions (ii), (iii), (iv) for S = Sak

. Now, cover

K̂ ∩ T
ak+1
ak with a finite number of sets type I+(xi)∩Uxi with xi ∈ K ∩ T

ak+1
ak−1 , and

consider the corresponding functions jxi .
For a suitable constant c > 0, the sum τ̂ + c

∑
i jxi satisfies (iii) for S = Sak+1

.
This is obvious in J−(Sak

) (for any c > 0), because of the convexity of timelike
cones and the reversed triangle inequality. To realize that this can also be obtained
in T

ak+1
ak , where ∇τ may be non-timelike, notice that the support of ∇τ̂ |

T
ak+1
ak

is

compact, and it is included in the interior of the support of
∑

i jxi , where the
gradient of the sum is timelike; so, use Lemma 4.1. As J(p, Sak+1

) is compact,
conditions (ii), (iv) can be trivially obtained by choosing, if necessary, a bigger c.

Finally, smoothability (and (i)), can be obtained again by using the open covering
{I−(Sak+1+δ), I

+(Sak+1+δ/2)} of M , and the corresponding first function μ of the
associated partition of unity, i.e., τ = μ(τ̂ + c

∑
i jxi). �

In order to extend locally defined time functions to a global time function, one
cannot use a partition of unity (as stressed in the previous proof, because ∇τ is
not always timelike when μ is non-constant). Instead, local time functions must be
added directly and, then, coverings as the following will be useful.

Definition 4.3. Let S be a Cauchy hypersurface. A fat cone covering of S is a
sequence of pairs of points p′i � pi, i ∈ N such that both3 C′ = {I+(p′i) : i ∈ N}
and C = {I+(pi) : i ∈ N} yield a locally finite covering of S.

Proposition 4.4. Any Cauchy hypersurface S admits a fat cone covering p′i �
pi, i ∈ N.

Moreover, both C and C′ also yield a finite subcovering of J+(S).

Proof. Let {Kj}j be a sequence of compact subsets of S satisfying Kj ⊂ Int Kj+1,
S = ∪jKj . Each Kj\ Int Kj−1 can be covered by a finite number of sets type

2Along the proof, we will use this lemma only for Cauchy hypersurfaces which are slices of a
prescribed time function. However, any Cauchy hypersurface can be written as such a slice for
some Cauchy time function. In fact, it is easy to obtain a proof by taking into account that both
I+(S) and I−(S) are globally hyperbolic and, thus, admit a Cauchy time function. For details,
including the non-trivial case that S is smooth spacelike and t is also required to be temporal, see
[5].

3Strictly, we will need only the local finiteness of C′.
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I+(pjk), k = 1 . . . kj such that I+(pjk) ∩ S ⊂ Kj+1\Kj−2. Moreover, by continuity
of the set-valued function I+, this last inclusion is fulfilled if each pjk is replaced
by some close p′jk � pjk, and the required pairs p′i(= p′jk), pi(= pjk), are obtained.

For the last assertion, take q ∈ J+(S) and any compact neighborhood W � q.
As J−(W ) ∩ S is compact, it is intersected only by finitely many elements of C, C′,
and the result follows. �
4.2. Construction of the b-decomposition.

Definition 4.5. Let p′, p ∈ T a
a−1, p

′ � p. A steep forward cone function (SFC) for

(a, p′, p) is a smooth function h+
a,p′,p : M → [0,∞) which satisfies the following:

(1) Supp(h+
a,p′,p) ⊂ J(p′, Sa+2).

(2) h+
a,p′,p > 1 on Sa+1 ∩ J+(p).

(3) If x ∈ J−(Sa+1) and h+
a,p′,p(x) 
= 0, then ∇h+

a,p′,p(x) is timelike and past-
directed, and

(4) g(∇h+
a,p′,p,∇h+

a,p′,p) < −1 on J(p, Sa+1).

Now, Proposition 4.2 applied to S = Sa+1, V = I−(Sa+2)∩I+(p′) directly yields:

Proposition 4.6. For all (a, p′, p) there exists an SFC.

The existence of a fat cone covering (Proposition 4.4) allows us to find a function
ha
+ which in some sense globalizes the properties of an SFC.

Lemma 4.7. Choose a ∈ R and take any fat cone covering {p′i � pi|i ∈ N} for
S = Sa. For every positive sequence {ci ≥ 1|i ∈ N}, the non-negative function
h+
a := (|a|+ 1)

∑
i cih

+
a,p′

i,pi
satisfies:

(1) Supp(h+
a ) ⊂ J(Sa−1, Sa+2).

(2) h+
a > |a|+ 1 on4 Sa+1.

(3) If x ∈ J−(Sa+1) and h+
a (x) 
= 0, then ∇h+

a (x) is timelike and past-directed,
and

(4) g(∇h+
a ,∇h+

a ) < −1 on J(Sa, Sa+1).

Proof. Obvious. �
The gradient of h+

a will be spacelike at some subset of J(Sa+1, Sa+2). So, in
order to carry out the inductive process which proves Theorem 1.2, a strengthening
of Lemma 4.7 will be needed.

Lemma 4.8. Let h+
a ≥ 0 as in Lemma 4.7. Then there exists a function h+

a+1

which satisfies all the properties corresponding to Lemma 4.7 and additionally:

(4.1) g(∇(h+
a + h+

a+1),∇(h+
a + h+

a+1)) < −1 on J(Sa+1, Sa+2)

(so, this inequality holds automatically on all J(Sa, Sa+2)).

Proof. Take a fat cone covering {p′i � pi|i ∈ N} for S = Sa+1. Now, for each
pi consider a constant ci ≥ 1 such that cih

+
a+1,p′

i,pi
+ h+

a satisfies inequality (4.1)

on J(pi, Sa+2) (see Lemma 4.1). The required function is then h+
a+1 = (|a| +

2)
∑

i cih
+
a+1,p′

i,pi
. �

4This condition is imposed in order to ensure that the finally obtained temporal function is
Cauchy. It could be dropped if one looks only for a temporal function and, then, uses Proposition
2.1(2).
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Now, we have the elements to complete our main proof.

Proof of Theorem 1.2. Consider the function h+
a provided by Lemma 4.7 for a = 0,

and apply inductively Lemma 4.8 for a = n ∈ N. Then, we obtain a function T + =∑∞
n=0 h

+
n ≥ 0 with nowhere spacelike gradient, which is a steep temporal function

on J+(S0) with support in J+(S−1). Analogously, one can obtain a function T − ≥ 0
which is a steep temporal function with the reversed time orientation on J−(S0).
So, T = T + − T − is clearly a steep temporal function on all M .

Moreover, the levels hypersurfaces of T are Cauchy. In fact, consider any future-
directed causal curve γ, and reparametrize it with the Cauchy time function t.
Then,

lim
t→∞

T (γ(t))

(
= lim

n∈N

T +(γ(n+1)) ≥ lim
n∈N

h+
n (γ(n+ 1))

)
=∞, lim

t→−∞
T (γ(t))=−∞,

and γ crosses all the levels of T , as required. �

5. Appendix

Clarke [7] developed the following method in order to embed isometrically any
manifold M endowed with a semi-Riemannian (or even degenerate) metric g in
some semi-Euclidean space R

N
s . First, he proved that, for some p ≥ 0, there exists

a function f : M → R
p
p such that the (possibly degenerate) pull-back metric g(f)

on M induced from f satisfies gR = g − g(f) > 0. So, the results for positive
definite metrics are applicable to (M, gR), and one can construct a Riemannian
isometric embedding fR : M → R

N0 (fR can be constructed from Nash’s result,
even though Clarke develops a technique to reduce the Nash value for N0). Then,
the required embedding i : M → R

N
p is obtained as a product i(x) = (f(x), fR(x))

for N = p+N0.
In Lorentzian signature, Clarke’s optimal value for p is 2. Nevertheless, he claims

that, if (M, g) is a globally hyperbolic spacetime, then one can take p = 1 [7, Lemma
8]. Our purpose in this Appendix is to analyze this question and show:

(A) the required condition g − g(f) > 0 on f is essentially equivalent to be a
steep temporal function, and

(B) the success of the construction of f in [7, Lemma 8] depends on a problem
of smoothability, which may have interest in its own right.

In order to make these points clear, we will particularize the proof of [7, Lemma
8] to a very simple case, and will follow most of the notation there. In a previous
remark, Clarke assumed that the existence of a temporal function τ had already
been proved, as this question (one of the prominent folk problems of smoothability)
seemed true then. In any case, we can now assume that even τ is Cauchy temporal.
Then, consider a globally hyperbolic spacetime which can be written as

(R2, g) g = −V 2dτ2 +M2dy2,

where (τ, y) are the natural coordinates of R2 and V,M are two positive functions
on R

2. Easily, a function f : R2 → R
1
1(= L

1) satisfies g − g(f) > 0 if and only if

(5.1) −V 2(∂yf)
2 +M2(∂τf)

2 > V 2M2,

and this is trivially equivalent to g(∇f,∇f) < −1. This proves (A) in our particular
example and, taking into account Remark 3.6(1), it seems general.
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Now, consider any smooth function σ ≥ 0 on R
2 invariant through the flow of ∇τ

such that σ−1([0, s]) is compact for all s, and let Y = σ−1([0, 1]); in our simplified
example, we can put σ(τ, y) = |y|2. Outside Y the two lightlike vector fields,

A± = M∂τ ± V ∂σ,

are well defined, and equation (5.1) can also be rewritten as

(5.2) (A+f)(A−f) > V 2M2.

So, the crux is to construct a function f which satisfies (5.2) outside Y , among
other conditions. Clarke’s proposal is the following. Let

H±(t, s) = J±(τ−1(0)) ∩ J∓(τ−1(t) ∩ σ−1([0, s])).

After choosing a certain volume element ω, the function f is defined as

(5.3) f(x) =

∫
H+(τ(x),σ(x))

ω

whenever τ (x) > ε > 0 and outside a neighborhood of5 Y . Notice that A± are
future directed, and A+ points outward the region σ−1([0, σ(x)]) at each x ∈ M\Y .
So, if f is C1, then one would expect A+(f) > A−(f) > 0. Moreover, Clarke
claims that (5.2) can also be achieved by choosing ω large enough (and eventually,
a redefinition of τ ).

Figure 1. The depicted open subset of L2 is globally hyperbolic,
and S a smooth Cauchy hypersurface. Functions J+(x) and J(S, x)
are not smooth at z ∈ I+(S).

To what extent can one assume that f is C1 (or, at least, that it can be smoothed
to a function which satisfies the required conditions)? For each measurable sub-
set Z of the spacetime manifold, consider its ω-measure μ(Z) =

∫
Z
ω. In any

causally continuous spacetime M it is known that the functions x → μ(J±(x))
are continuous if μ(M) < ∞. Moreover, if M is globally hyperbolic and S is any

5For τ(x) < −ε < 0, the function f is negative and defined dually in terms of H−, for τ(x) = 0,
f is 0, and a more technical definition is given for f on a neighborhood of Y ∪ τ−1(0). However,
this is not relevant for our discussion.
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topological Cauchy hypersurface, then I+(S) is a globally hyperbolic spacetime in
its own right, and the function x → μ(J(S, x)), x ∈ I+(S), becomes continuous,
even if we drop the assumption about the finiteness of μ. Nevertheless, neither
the functions μ(J±(x)) nor μ(J(S, x)) are smooth in general (see Figure 1). In
Clarke’s case, the fact that S = τ−1(0) is not only smooth but spacelike may help
to establish smoothness. However, recall that the definition of f also uses the func-
tion σ. Such a σ can be defined by taking some auxiliary complete Riemannian
metric on S, and smoothing along the cut locus the squared distance function to a
fixed point y0 ∈ S. The behavior of f at the points x ∈ M such that the bound-
ary of S ∩ J∓(τ−1(x) ∩ σ−1([0, σ(x)])) intersects the cut locus may complicate the
situation.

Summing up, even assuming (as a necessary element of Clarke’s proof) the exis-
tence of a temporal function, which was proved in [4, 17] and is proved again in a
shorter form for the globally hyperbolic case here, the smoothability of f remains
as a non-trivial problem. The solution of this question not only would complete
Clarke’s proof but also may have interest in its own right.
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