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Loss and dispersion analysis of microstructured 
fibers by finite-difference method  

Shangping Guo, Feng Wu, Sacharia Albin 
Photonics Lab., Department of Electrical  & Computer Engineering 

Old Dominion University, Norfolk, Virginia 23529 
sguo@odu.edu 

Hsiang Tai, Robert S. Rogowski 
Non-destructive Evaluation Science Branch, NASA Langley Research Center, Hampton, Virginia 23681 

Abstract: The dispersion and loss in microstructured fibers are studied using 
a full-vectorial compact-2D finite-difference method in frequency-domain. 
This method solves a standard eigen-value problem from the Maxwell’s 
equations directly and obtains complex propagation constants of the modes 
using anisotropic perfectly matched layers. A dielectric constant averaging 
technique using Ampere’s law across the curved media interface is 
presented. Both the real and the imaginary parts of the complex propagation 
constant can be obtained with a high accuracy and fast convergence. 
Material loss, dispersion and spurious modes are also discussed. 

©2004 Optical Society of America 

OCIS code: (060.3310) Fiber optics, (260.2110) Electromagnetic theory 
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1. Introduction 

Microstructured fibers have been under intensive study as they offer design flexibility in 
controlling the mode propagation properties. These fibers have some extraordinary properties, 
such as endless single mode propagation, special dispersion, and high or low nonlinear effects.  
Air-guiding fibers such as the air-core photonic band gap fibers or Bragg fibers are also of 
considerable interest. Reviews of photonic crystal fibers can be found in [1-3] and the 
references therein. 

In general, the modeling of these fibers takes advantage of the fact that the E or H field 
can be decomposed into longitudinal and transverse components in waveguides with invariant 
index profiles along z-direction. The field can be written as: 

 ( ) ( ) ( ){ } ( )[ ]ztjyxyxtzyx zt βωξξξ −−+= exp,,,,,  (1) 

where ξ denotes E or H field and the subscripts t and z denote respectively the transverse and 
longitudinal components. 

The full-vectorial Helmholtz equations can be obtained by substituting Eq. (1) into 
Maxwell’s equations: 

 ( ) ( )2222
0

2 ln nEEnk ttttt ∇⋅−∇=−+∇ β  (2a) 

 ( ) ( ) 2222
0

2 lnnHHnk ttttt ∇××∇=−+∇ β  (2b) 

 ( ) 2222
0

2 lnnEjEnk ttzt ∇⋅=−+∇ ββ  (2c) 

 ( ) ( ) 2222
0

2 ln nHjHHnk ttztzt ∇⋅+∇=−+∇ ββ  (2d) 

The Helmholtz equations give several important conclusions: it is possible to form an 
eigen-value problem using the transverse E or H components since Eqs. (2a-b) only contain 
the transverse components. However, this is not true for the z-components since they are 
coupled to the transverse components. When the index change is small and the coupled items 
on the right-hand side are omitted, (which is the scalar approximation), all four equations 
become the same, and an eigen-value problem can be formed for any E or H components. 

In the holey fibers or microstructured fibers, the index contrast of the materials is 
generally high, hence the scalar wave analysis methods are not accurate to predict their 
propagation properties; a full-vector approach is required. So far, a few full-vector methods 
have been used to characterize microstructured fibers, such as the plane wave expansion 
method (PWM) [4-8], localized function method [9-12], beam propagation method [13-16], 
finite-element method (FEM) [17-22], and finite-difference method (FDM) in time domain 
[23-28] or frequency domain [29-31]. Specifically, a highly accurate semi-analytical 
multipole method [32] has been developed to model fibers with circular air hole inclusions. A 
brief review of these methods is given below. 
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The PWM is an extension of modeling for photonic crystals. It assumes an infinite 
periodic index profile and treats the unit cell or supercell by applying the Bloch boundary 
conditions. The eigen-matrix is a full matrix and the complexity is the same as the PWM for 
photonic crystals. It is adequate for index-guiding fibers with many periodic air holes in the 
cladding, however, the artificial periodic boundary condition and supercell approach are not 
very suitable for many real fiber structures with a finite number of air holes. 

The localized function method based on Galerkin method has been widely used for 
waveguide analysis, both scalar and vectorial problems. This method applies a set of  
localized orthogonal functions, such as Sine [33], Laguerre-Gauss [34, 35] (for 1D 
waveguide), and Hermite-Gauss [6, 9, 10, 12] (for 2D problem), to approximate the unknown 
mode fields of the localized modes. When the mode is far away from cut-off or well confined, 
the mode fields can be approximated using tens or hundreds of functions. These methods 
generally involve integrations, which are computation intensive, and the convergence is 
generally a problem. 

Finite-element method [17-22] is a powerful numerical tool for waveguide problems. It 
often combines the beam propagation method or simply solves the Helmholtz equation in 
frequency domain by discretizing the region of interest into triangular cells, which is able to 
represent fine curved structures. Hence, FEM can provide high accuracy, but the complexity 
of the algorithm implementation and the computation is generally high.  

Finite-difference method using Yee’s mesh [36] is popular for electromagnetic problems, 
and a compact-2D scheme is often used for waveguides. Compared to FEM, FDM is much 
easier to implement; yet, it is able to offer a comparable accuracy. The FDM approaches 
include time domain (FDTD) and frequency domain (FDFD) methods. The compact-2D 
FDTD [23-28] method solves the eigen-frequency for a given propagation constant, and 
therefore is unable to process material dispersion. The FDFD approaches include those based 
on solving the Helmholtz equation [29, 30] or Maxwell’s equations [31] directly. Both 
material dispersion and material loss are easy to incorporate in FDFD. The latter approach is 
appealing due to its many merits.  There are no second order derivatives; the method is fast 
and accurate, mathematically simple and straightforward; all six fields are obtained from the 
transverse E or H field; different boundaries such as Bloch boundary for photonic band gap 
calculations [37-39] can be readily applied; and sparse techniques can be used to reduce 
computation. 

In practical holey fibers with air hole inclusions, the confinement (by either index guiding 
or PBG guiding) is not perfect due to the finite cladding; hence, the confinement loss is a 
significant characteristic of the microstrucured fiber. It has been calculated using several 
methods, including the semi-analytical multipole method [32], Fourier expansion method [40], 
and FEM with anisotropic perfectly matched layers (PMLs) [19]. PWM and Hermite-Gauss 
methods have not been used for leakage loss calculations. 

In this paper, we use the compact-2D FDFD approach described in [31] for optical 
waveguides based on solving the Maxwell’s equations directly to include the calculation of 
mode leakage loss due to the finite cladding. By applying the anisotropic PML layers, both the 
dispersion and loss properties can be evaluated in a single run. The method preserves all the 
advantages discussed above and is simple and straightforward. The curved profile is studied 
carefully to increase both the accuracy and convergence of the complex propagation constant. 

The analysis method is given in section 2; numerical results for a PCF with a single ring 
of air holes are analyzed in section 3 along with the averaging technique at the media interface, 
and finally conclusions are given in section 4. 

2. Analysis method 

The leakage loss of a mode can be represented by the imaginary part of its complex 
propagation constant. To model the leakage, an open boundary condition has to be used, 
which produces no reflection at the boundary. The PMLs are so far the most efficient 
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absorption boundary condition for this purpose. The split-field PML proposed by Berenger 
[41] which is often used in FDTD algorithm cannot be applied in frequency domain methods 
such as the FEM and FDFD methods since it introduces non-Maxwellian equations. The 
equivalent nonsplit-field anisotropic PML [13, 42-47] has been proposed instead to simulate 
the open environment in these applications. The Maxwell equations for optical waveguide 
with anisotropic PML boundaries are expressed as: 

 
EHsjk

HEsjk

r

r

×∇=−
×∇=

µ
ε

0

0  (3) 
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

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For exp(-jωt) convention which is used in this paper:  
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where σ is the conductivity profile.  
In the compact-2D scheme for waveguides, the z-derivatives are replaced by analytical 

expressions using Eq. (1), and other derivatives are replaced by finite differences in Yee’s 
mesh. Therefore, the curl equations (3) can be expressed in a matrix form:  
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where the U and V are sparse matrices which are obtained in the same way as in [31, 37] 
using a zero boundary outside of the PML layers. There is no need to treat PML in a special 
way as in split-field scheme. 

For simplicity, we assume:  

 rxxyrx ss εε =′ , ryyxry ss εε =′ , rzyxrz ss εε =′   (7) 

and rxxyrx ss µµ =′ , ryyxry ss µµ =′ , rzyxrz ss µµ =′  (8) 

Substituting Eq. (6a) into Eq. (6b) and eliminating Hz as in [31], an eigen-value problem 
can be obtained for Ht: 
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and similarly for Et: 
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where: 
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{ } yrzxyyxrzxrxryrxxrzxyrzyryxx UVVVVUkkVUUVP 112
0

2
0

11 −−−−− ′−′+′′+′′+′′= µεεµεεµµ  (11a) 
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11 −−−−− ′−′+′′+′′+′′= εµµεµµεε  (12a) 

{ } xrzyxxyrzxryyrzxxrzyryxy VUUUUVkUVVUQ 112
0

11 −−−−− ′−′+′′+′′−= εµµµεε  (12b) 

{ } yrzxyyxrzyrxxrzyyrzxrxyx VUUUUVkUVVUQ 112
0

11 −−−−− ′−′+′′+′′−= εµµµεε  (12c) 

{ } xrzyxxyrzyryyrzyryrxxrzxrxyy VUUUUVkUVkVUQ 112
0

12
0

1 −−−−− ′−′+′′+′′+′′= εµµµµεεε  (12d) 

In the absence of PML media, the equations given above are reduced to those obtained in 
[31]. Hence, we can validate our results by setting the thickness of PML layers to zero.  

The waveguide is encompassed by PML layers followed by a layer of perfect electric 
conductor (PEC) or zero boundary. The modes leaking out of the fiber will be absorbed 
efficiently by the PML with very small reflections; hence, the effect of the artificial boundary 
on the modes in the PCF will be minimized (especially for those well-localized guided modes). 

3. Numerical results 

The PCF example in [32] is used in this paper since the analytical results using multipole 
method are available for comparison. The PCF has a single ring of air holes (6 holes) in glass 
fiber. The parameters used are: the lattice constant a = 6.75µm, the air hole radius r = 2.5µm, 
and the refractive index of the glass is 1.45. The material dispersion is omitted since it is 
trivial to include it in a compact-2D FDFD scheme. According to the multipole method, the 
accurate effective mode index at wavelength 1.45µm would be 1.445395345+3.15×10-8i. 

This PCF has a symmetry of C6ν (six-fold rotation symmetry and at least one plane of 
reflection symmetry), and the computation region can be reduced using the symmetry 
properties by applying a combination of PEC and PMC (perfect magnetic conductor) [48]. 
The PCFs with such symmetry supports eight mode classes. Figure 1 shows the fiber profile 
and a quarter of the whole region used for computation of the third and fourth mode classes, 
which are degenerate pairs with a 90-degree rotation symmetry including the fundamental 
mode. Glass material is assumed to extend uniformly to infinity, and PML layers are used 
outside the computation region with a 2nd-order power law profile. The computation region is 
chosen to be 1.5a along both x and y directions and the thickness of the PML layers is 10% of 
the thickness of the inside area along x or y direction. 
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Fig. 1. The PCF under study. A quarter of the PCF is used in calculation, which can obtain the 
third and fourth mode classes with a 90-degree rotation symmetry. 

 
The computation region is discretized by a 2D Yee’s mesh. The curved interface crossing 

a cell is generally approximated using a staircase scheme or averaged using the effective 
index scheme. The averaging technique is shown to be very effective in increasing 
convergence and accuracy as in [31]. Considering two different media in the cell, the average 
dielectric constant in the cell can be evaluated as: 

 ( )ff ba −+= 1εεε  (13) 

where f is the fraction of the first material εa. 
Figure 2 shows the relative error of the calculated complex effective mode index of the 

fundamental mode with different number of grids. The real part of the effective mode index 
converges quickly to an accuracy of 10-5~10-6 even if a coarse mesh (for example, 30x30) is 
used; the accuracy is sufficient to obtain group velocity dispersion and other parameters. 
However, the imaginary part converges rather slowly with a relative error in the range of 10-1 

~ 10-2 with almost 30% relative error using a 30x30 mesh. Though it converges to the true 
value with a fine mesh, the slow convergence is still not satisfactory. 
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Fig. 2. The relative error of the calculated complex mode index of the fundamental mode. The 
y-axis is the relative error of the real and imaginary part of the mode index of the fundamental 
mode. Note the different scales of the two y-axes. 
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We found that the slow convergence of the imaginary part is due to the improper 
averaging technique at the interface of the two dielectric materials. It can be greatly improved 
using a more reasonable averaging technique at the interface. Our averaging scheme is shown 
in Fig. 3. εrx, εry and εrz are the averaged dielectric constant of the cell located at the same 
position as Ex, Ey and Ez. 

 

x 

y 

Ez(i,j) 

Ex(i,j)

Ey(i,j) 

z  
Fig. 3. The six field components and the discretization of the transverse index profile in the x-y 
plane.  The E and H components are in red and blue colors respectively.  The orange line 
denotes the curved interface across the cells, and the dotted cells show the integration plane for 
Ex and Ey respectively. 

 
First, we check the averaging technique using Ampere’s Law (the curl equation): 

 ∫∫∫ ⋅=
∂
∂

11 LA

xx dlHdydzE
t

ε  (14a) 

 ∫∫∫ ⋅=
∂
∂

22 LA

yy dlHdxdzE
t

ε  (14b) 

 ∫∫∫ ⋅=
∂
∂

33 LA

zz dlHdxdyE
t

ε  (14c) 
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Fig. 4. Calculation of Ex, Ey and Ez using Ampere’s law. The orange line denotes the dielectric 
boundary in the integration plane. From left to right are the integration cells for Ex, Ey and Ez 
respectively. 

 
The integration area is the cell formed by the four surrounding H components as shown in 

Fig. 4. It shows the intersection of the curved interface on the integration surface. In each of 
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these surfaces, the E component is tangential to the interface and will be continuous across it, 
and the average of the E field is used for the value at the cell center. Taking Ez as an example: 

 ( ) ∫ ⋅=∆∆
∂
∂

3L

zz dlHyxE
t

ε  and ( ) baz ff εεε −+= 1  (15) 

For εx in yz plane and εy in xz plane, the averaging is easy to do since the boundary is 
parallel to z direction and the integration cell shrinks to a line, which is shown in Fig. 3 as the 
dotted cells. 

Ex and Ey in the xy plane as shown in Fig. 3 are not tangential to the dielectric interface, 
and therefore will not be continuous across the dielectric boundary. As in Fig. 4, when the 
integration surface for Ex moves along x in the cell on the xy plane, the interface will shift, 
and similar is the case for Ey.  Since Ex and Ey are the average field values of the cell in xy 
plane, another average has to be taken and the averaged dielectric values are [28]: 

 ( ) ( )( )
1

1

11
−

∆+









−+∆
= ∫

xx

x
ba

x dx
xfxfx εε

ε  (16) 

 ( ) ( )( )
1

1

11
−

∆+









−+∆
= ∫

yy

y
ba

y dy
yfyfy εε

ε  (17) 

The average rule described in Eqs. (13, 16-17) could also be derived as the classical rules 
for the evaluation of effective dielectric constants as described in Milton’s book [49]. The 
integration can be approximated well using a denser subcell mesh along x or y as the two 
dashed lines shown in Fig. 3. The same averaging procedure can be applied to magnetic 
materials with a profile of µr(r) and our FDFD algorithm is also applicable for these materials. 

Since our averaging technique (Eqs. (15-17)) satisfies Ampere’s Law everywhere across 
the boundary, we introduced it to reduce the possible spurious modes by finite difference 
scheme. Surprisingly, it is found to be very effective to improve the accuracy and 
convergence of the imaginary part. The same fiber is calculated again with this averaging 
technique and the results are shown in Fig. 5 and Table 1. 
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Fig. 5.  The accuracy and convergence of the complex effective mode index using a more 
reasonable averaging technique. Note that the scale of the right y-axis is at least an order of 
magnitude smaller than the corresponding one in Fig. 2. 
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The convergence and accuracy of the real part shown in the Fig. 5 are similar to those in 
Fig.2 which was obtained using the previous averaging technique. However, the convergence 
and the accuracy of the imaginary part are increased at least by one order of magnitude, with 
an error of 2% for a very coarse 30x30 mesh. The accuracy can be 10-3 for a moderately fine 
mesh.  

Table 1. Calculated mode index of the fundamental mode. The accurate value is 1.445395345 + 
3.15×10-8i (by multipole method in [32]) 

N Real Imaginary N Real Imaginary 
30 1.4453331 3.101×10-8 140 1.4453896 3.169×10-8 
40 1.4453537 3.176×10-8 150 1.4453915 3.176×10-8 
50 1.4453810 3.230×10-8 160 1.4453914 3.172×10-8 
60 1.4453807 3.148×10-8 170 1.4453914 3.174×10-8 
70 1.4453841 3.166×10-8 180 1.4453913 3.170×10-8 
80 1.4453827 3.139×10-8 190 1.4453920 3.174×10-8 
90 1.4453852 3.139×10-8 200 1.4453927 3.173×10-8 
100 1.4453884 3.160×10-8 230 1.4453932 3.177×10-8 
110 1.4453897 3.141×10-8 260 1.4453929 3.173×10-8 
120 1.4453895 3.166×10-8 300 1.4453937 3.178×10-8 
130 1.4453894 3.171×10-8    

 
The converged imaginary part is still 1% larger than the accurate value, and it is due to 

the finite computation region. We have also varied the computation region to 1.8a and 2.0a, 
and the systematic error has been found reduced at the cost of increased computation. 

Figure 6 shows the calculated fundamental mode and 2nd-order mode of the mode class 3 
and 4 in the holey fiber. These modes are well confined by the single ring of the air holes and 
show the symmetries as discussed above. Once Hx and Hy (Ex and Ey) are solved, the other 
components can be obtained directly using Eqs. (6a-b).  
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Fig. 6. The mode field patterns of the fundamental mode (top three) and 2nd-order mode 
(bottom three) in the degenerate mode class 3 and 4. 

3.1 Effect of dispersive and lossy/gain materials 

The effect of dispersive material on the group velocity dispersion can be easily obtained by 
any algorithm including this method that solves eigen-value problems for the mode 
propagation constants at a given wavelength. This is achieved by replacing the dielectric 
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constant with a wavelength dependent one. In addition, the total dispersion can be estimated 
using the sum of material dispersion and waveguide dispersion. 

The propagation loss/gain induced by lossy/gain media is also of interest in a waveguide 
since it is important for long haul transmission or laser applications. The compact-2D FDFD 
method is also capable of solving it, and no additional work is needed except that the real 
dielectric constant is replaced with a complex one whose imaginary part represents the 
loss/gain of the media; the calculated propagation constant would reflect the material loss. To 
separate the leakage loss from the material loss/gain, the PML layers are removed, leaving 
only the zero boundaries outside the computation region. The material loss in PCF has been 
analyzed in [50] using the Hermite-Gauss method and here we just verify their results for a 
standard fiber (a=2.2µm, cladding index=1.458, core index=1.475+ini and λ=1.55µm). The 
results are shown in Table 2. Our FDFD is in excellent agreement with the localized function 
methods. 

Table 2. The complex mode index with a lossy core material 

ni 10-5 10-3 10-2 
Scalar[50] 1.465045+7.4331×10-6i 1.465037+7.4294×10-4i 1.464308+7.6918×10-3i 
Vectorial[50] 1.464993+7.3805×10-6i 1.464985+7.3835×10-4i 1.464256+7.6446×10-3i 
FDFD 1.464981+7.3752×10-6i 1.464972+7.3782×10-4i 1.464241+7.6398×10-3i 

 

3.2 Spurious modes 

One problem encountered in our method is the introduction of spurious modes. It is known 
that some spurious modes are from the lack of tangential continuity for the finite difference of 
the curved dielectric boundaries [28] . However, we did not observe such kind of spurious 
modes using our proper averaging technique. A major cause of the spurious modes in our 
method is the cladding modes due to the zero boundary or PML outside. Since the PML and 
zero boundary still reflect a very small part of energy back to the inside region, an artificial 
waveguide between the boundary and the air holes is formed. These modes are easily 
identified as spurious since they have much higher leakage loss. Figure 7 shows the mode 
patterns of some spurious cladding modes obtained in our calculation. These modes are 
confined between the boundary and air holes and have very small power portions in the core 
region. 
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Fig. 7. Some spurious cladding modes created by the artificial waveguide between the PML + 
zero boundary and the air holes. These modes are weak and highly lossy. 
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4. Conclusions 

In conclusion, we have used the compact-2D FDFD algorithm based on the direct solution of 
Maxwell’s equations to analyze leakage loss by introducing the anisotropic PML layers. It is 
found that the curved interface should be averaged according to Ampere’s Law in order to 
achieve a high accuracy and fast convergence in both the dispersion and leakage loss. 
Spurious modes are generated in the cladding area due to the artificial waveguide between the 
absorption boundary and the air holes. 

Acknowledgments 

The research at Old Dominion University is supported by NASA Langley Research Center 
through NASA-University Photonics Education and Research Consortium (NUPERC). Some 
helpful discussions with Qian Jun at Old Dominion University are acknowledged. 

(C) 2004 OSA 26 July 2004 / Vol. 12,  No. 15 / OPTICS EXPRESS  3352
#4463 - $15.00 US Received 28 May 2004; revised 9 July 2004; accepted 11 July 2004


	Old Dominion University
	ODU Digital Commons
	2004

	Loss and Dispersion Analysis of Microstructured Fibers by Finite-Difference Method
	Shangping Guo
	Feng Wu
	Sacharia Albin
	Hsiang Tai
	Robert S. Rogowski
	Repository Citation
	Original Publication Citation


	Loss and dispersion analysis of microstructured fibers by finite-difference method

