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Abstract

This study investigates loss aversion when the reference point is state-dependent.
Using a state-dependent structure, prospects are more attractive if they depend pos-
itively on the reference point and are less attractive in case of negative dependence.
In addition, the structure is neutral in the sense that it avoids an inherent aversion to
risky prospects and yields no loss when the prospect and the reference point are the
same. Related to this, the preferred personal equilibrium equals the optimal consump-
tion solution when the reference point is selected completely endogenously. Given that
loss aversion is widespread, we conclude that the reference point generally includes an
important exogenously fixed component.

Keywords: Reference-dependent preferences, stochastic reference point, loss aversion,
disappointment theory, regret theory.
JEL Classification: D81, C23, C91, C93.

1 Introduction

A key problem of reference-dependent choice theories is the specification of the relevant

reference point. Traditionally, the reference point is interpreted as an exogenously fixed and

constant value, for example, the current wealth level of the decision maker. Recent studies

have examined risky choice with an endogenous and/or stochastic reference point. Shalev

(2000) allows the reference point to be determined endogenously as part of the decision-

maker’s optimization problem. Sugden (2003) allows the reference point to be a random

variable rather than a constant. Using a stochastic reference point is reminiscent of measuring

the investment performance of a money manager relative to a risky benchmark portfolio like

the S&P 500 index rather than a fixed target return. Köszegi and Rabin (2006, 2007)

combine both ideas and use a reference point that is both endogenous and stochastic. This

paper analyzes an alternative model of stochastic reference points. To simplify the exposition

and discussion, we adhere to the assumptions and terminology of Köszegi and Rabin (2006,
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2007), but our conclusions apply more generally.

The Köszegi and Rabin (2006) model basically builds on disappointment theory (see,

for example, Bell 1985, Loomes and Sugden 1986, Gul 1991, Cillo and Delquié 2006). It

assumes that the decision maker compares every possible outcome of a given prospect with

every possible outcome of the reference point. The decision maker therefore experiences loss

(disappointment) when the outcome of the prospect in a given state-of-the-world falls below

the outcome of the reference point in other states. By contrast, the Sugden (2003) model

builds on regret theory (Loomes and Sugden 1982, Bell 1982, 1983). The decision maker

compares the prospect and the reference point only in the same state and not across states

and experiences loss (regret) only if the outcome of the prospect falls below the outcome of

the reference point in the same state. For the applications that we have in mind, the latter,

state-dependent preference structure seems more plausible than the former, disappointment-

based structure. For example, for the money manager who benchmarks against the market

index, the most relevant reference point for the realized portfolio value in a given period

seems to be the realized value of the market index in the same period, and the value in other

states-of-the-world seems less relevant. This study therefore examines loss aversion with a

state-dependent reference point and the endogenous selection of the reference point. The

model yields a number of surprising insights.

First, the disappointment-based structure implies that the decision maker is indifferent

to the statistical dependency between the prospect and the reference point. A prospect that

is positively correlated with the reference point is seen as equally risky as an uncorrelated
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or negatively correlated prospect. Intuitively, it seems that a prospect is more attractive if

it depends positively on the reference point and is less attractive in case of negative depen-

dence. For example, for the money manager who benchmarks against the market index, long

positions in stocks generally will feel safer and entail smaller gains and losses than holding

short positions in the same stocks, although the two positions yield a comparable univariate

risk profile. In fact, perfectly replicating the market index creates a perfectly positive de-

pendence with the reference point and avoids all possible losses. The state-dependent model

captures this intuition, and a prospect that is positively correlated with the reference point

will appear to be safer and causes smaller losses, while a negative correlation will feel riskier

and yield larger losses.

Second, across-state comparison introduces an aversion to risky prospects, which will

yield losses even when the prospect and the reference point are the same. In many cases,

the reference point is exogenously fixed (in part or in whole), for example, because it is

set by an external principal (as is true for a benchmark in an investment mandate) or,

alternatively, the decision makers adjusts slowly to new information or surprise events. In

these cases, it seems natural that loss aversion influences behavior and leads to different

behavior than a reference-independent model. By contrast, when the reference point is

completely endogenous, we may expect that it equals the optimal solution to the reference-

independent choice problem and therefore does not influence behavior. However, is not true

for the disappointment-based model: reference-dependent behavior generally deviates from

reference-independent behavior, even if the reference point is completely endogenous. By
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contrast, the optimal solution in the state-dependent model equals the reference-independent

solution if the reference point is fully endogenous. Loss aversion influences behavior only if

the reference point includes an exogenous component and the decision maker is not entirely

free to select the reference-independent solution as her reference point.

Like Köszegi and Rabin (2006), our analysis does not account for subjective probability

weighting. Since probability weighting is known to be strong even for simple fifty-fifty

gambles with a constant reference point, it seems unlikely that a model with a stochastic

reference point is complete without accounting for this phenomenon. Unfortunately, it is

not immediately clear how probability weighting would enter in the computations with a

stochastic reference point. This makes it difficult to analyze the precise predictions of the

models. However, our arguments in favor of a state-dependent reference point structure do

not critically depend on probability weighting.

The outline of this paper is as follows. Section 2 discusses the stochastic reference point

model proposed by Köszegi and Rabin (2006). Section 3 introduces the state-dependent

stochastic reference point model and discusses its properties. Section 4 applies the two

stochastic reference point models to US investment benchmark data. Section 5 concludes.

All the proofs are in the Appendix.

2 The Stochastic Reference Point Model

Throughout the text, we will use Ω for the state-space, P [A] for the probability that event

A ⊆ Ω occurs, and X is the collection of feasible prospects X : Ω→ R (for instance, budget
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feasible portfolio payoffs).

Köszegi and Rabin (2006) define the reference-dependent utility of X ∈ X given the ref-

erence point Y ∈ X as follows:

Definition 2.1.

(2.1) U(X|Y ) =

∫ ∫
u(x|y) dFY (y) dFX(x)

where FX(x) = P [X ≤ x] and FY (y) = P [Y ≤ y] are the distribution functions of X and Y ,
respectively, and

(2.2) u(x|y) = η1m(x) + η2 µ(m(x)−m(y)),

m : R → R is a continuously differentiable, strictly increasing “consumption” utility func-
tion, and µ : R → R is a “universal” gain-loss utility function which satisfies the following
properties:

A0. µ(x) is continuous for all x and twice differentiable for x 6= 0;

A1. µ(x) is strictly increasing;

A2. If y > x > 0, then µ(y) + µ(−y) < µ(x) + µ(−x);

A3. µ′′(x) ≤ 0 for x > 0 and µ′′(x) ≥ 0 for x < 0;

A4. limx→0 µ′(−|x|)
limx→0 µ′(|x|) = λ > 1.

The parameters η1, η2 ∈ R+ give the weights between consumption utility m and gain-

loss utility µ. Köszegi and Rabin (2006) assume η1 = 1. Our analysis will also use the

expected consumption utility M(X) =
∫
m(x) dFX and the consumption certainty equivalent

C(X) = m−1(M(X)). If m(x) = x for all x and η1 = 0, the piecewise-power value function

of Tversky and Kahneman (1992) arises as a special case of Equation (2.1). Note that

for this specification of gain-loss utility, the curvature in the domain of losses should be
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equal to the curvature in the domain of gains in order to obey Assumption A2, as shown

by Köbberling and Wakker (2005). As discussed by Köszegi and Rabin (2007), the model

allows for consumption utility to dominate gain-loss utility for large-stake prospects. Hence,

the model can reconcile loss aversion for modest stakes with risk aversion for large stakes.

Definition 2.1 does not account for subjective probability weighting. Since probability

weighting is known to be strong even for simple fifty-fifty gambles with a constant reference

point, it seems unlikely that the model is complete without accounting for this phenomenon.

Unfortunately, it is not immediately clear how probability weighting would enter in the

computations. Is consumption utility affected in the same way as gain-loss utility? Are the

probabilities of the evaluated prospect, FX , affected in the same way as the probabilities

of the reference point, FY ? Since our arguments do not critically depend on probability

weighting, we leave these questions for further research.

It will be useful for our analysis to consider a stronger version of assumption A3:

A3′. µ′′(x) = 0 for x 6= 0.1

This assumption does not allow for the piecewise-power function of Tversky and Kahne-

man (1992). However, it does allow for a piecewise-linear gain-loss function. Note that a

piecewise-linear gain-loss utility µ does not imply piecewise-linear reference-dependent utility

u, because consumption utility m is not restricted.

In case of discrete distributions with S states of nature, i.e., Ω = {1, . . . , S} and ps =
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P [{s}], reference-dependent utility corresponds to:

(2.3) U(X|Y ) =
S∑
s=1

S∑
s′=1

u(X(s)|Y (s′)) ps ps′ .

The model combines every possible outcome of the prospect with every possible outcome

of the reference point and evaluates every combination at the product of the two marginal

probabilities. The double summation implies that the decision maker considers a total of

S2 combinations of outcomes for every pair of evaluated prospect and reference point. As

in disappointment theory, the decision maker experiences a loss (disappointment) when the

outcome of the prospect in a given state falls below the outcome of the reference point in

another state. The decision maker is therefore predicted to be indifferent to the statistical

dependence between the prospect X and the reference point Y :

(2.4) U(X|Y ) = U(X̃|Ỹ )

for any X̃ and Ỹ which have the same marginal distributions as X and Y , irrespective of the

dependence structure. However, our intuition says that a prospect would appear less risky in

case of positive dependence and more risky in case of negative dependence, in the same way

as an investment portfolio with a positive market beta appears less risky than a negative-beta

portfolio to an investor who benchmarks against a market index. Indeed, indifference to the

dependence structure can lead to counterintuitive choices, as shown in the following example:

Example 2.1. Let Ω = {1, 2} and P [{1}] = 1/2. We define the risky prospects X and Y as
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follows:

X(1) = 0, X(2) = 101

Y (1) = 0, Y (2) = 100.

Suppose that m(x) = x, µ(x) = x if x ≥ 0 and µ(x) = λx, λ > 1, if x < 0, and η1 =
η2 = 1. The decision maker faces the exogenous stochastic reference point Y . Faced with this
reference point, she faces a choice between the two risky prospects, Y and X. In this case,
X strictly dominates Y and the preference for X is obvious. Indeed, the relevant values for
expected reference-dependent utility are

U(Y |Y ) = 50 +
1

2

1

2
(0− 0) +

1

2

1

2
(100− 0) +

1

2

1

2
λ (0− 100) +

1

2

1

2
(100− 100) =

100

4
(3− λ)

U(X|Y ) =
101

2
+

1

2

1

2
(0−0)+

1

2

1

2
(101−0)+

1

2

1

2
λ (0−100)+

1

2

1

2
(101−100) =

100

4
(3−λ)+1

and the decision maker is predicted to prefer X to Y . In this case, X and Y have a perfectly
positive dependence. Now assume that a perfectly negative dependence:

X ′(1) = 101, X ′(2) = 0,

Equation (2.3) does not account for dependencies and hence the decision maker is still pre-
dicted to prefer X ′ to Y . However, it seems that a loss-averter would want to avoid the
situation (Y (2), X ′(2)) = (100, 0) by choosing Y .

Indifference to dependence structure is particularly difficult to understand when one eval-

uates a risky prospect that is also used as the reference point – “auto-evaluation”. In this

case, a perfectly positive dependence arises and the decision maker will not experience any

losses in the sense of negative deviations from the reference point. For example, an investor

who benchmarks against a market index experiences no losses when she perfectly replicates

the index. However, the model predicts that the joint probabilities are not relevant and the

decision maker experiences losses (disappointment), even in case of auto-evaluation. This

contrasts with the original interpretation of the reference point as a “neutral” prospect, ac-

cording to which the decision maker experiences no gains or losses when she would selects this
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prospect; see Kahneman and Tversky (1979, Page 274). In general, auto-evaluating a risky

prospect yields losses and implies negative gain-loss utility. By contrast, auto-evaluating a

riskless prospect always avoids losses and yields zero gain-loss utility. This introduces an

inherent aversion to risky prospects and implies, among other things, that auto-evaluating a

risky prospect is always less favorable than auto-evaluating its consumption certainty equiv-

alent:

Lemma 2.1. For any Y ∈ X we have

U(Y |Y ) ≤ η1M(Y ), and(2.5)

U(Y |Y ) = η1M(Y ) if and only if Y is riskless.(2.6)

Consequently, if Y is stochastic and η2 > 0 then

U(Y |Y ) < U(C(Y )|C(Y )).

Thus far, the reference point was exogenously given. Köszegi and Rabin (2006) develop

a framework to endogenously determine the reference point. They introduce the following

definitions:

Definition 2.2. A personal equilibrium (PE) is a prospect Y ∈ X such that

U(Y |Y ) ≥ U(X|Y )

for all X ∈ X . We denote by XPE ⊂ X the set of personal equilibria.
A preferred personal equilibrium (PPE) is a personal equilibrium with maximal reference-
dependent utility:

X ∈ arg max{U(Z|Z) : Z ∈ XPE}.

If Y /∈ XPE is taken as reference point, the decision maker will find a prospect X that

is preferred to Y , and will use X as the new reference point. Under assumption A3′ on the
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gain-loss function, the change of reference point does not cause a preference reversal, i.e.,

X is preferred to Y also with respect to the new reference point (Köszegi and Rabin 2006,

Proposition 1.3). Therefore, the decision maker will replace the reference point with the

preferred prospect as long as a personal equilibrium has not been reached. The preferred

personal equilibrium is the personal equilibrium with maximal reference-dependent utility.

The aversion to risky prospects implies that any riskfree personal equilibrium is also a

preferred personal equilibrium:

Proposition 2.1. Let X ∈ XPE be deterministic. Under assumption A3′, X is a PPE.

This result demonstrates the counterintuitive implications of cross-state comparisons. It

also implies that a preferred personal equilibrium need not maximize consumption utility,

not even on the set of personal equilibria. Consider the following example:

Example 2.2. We assume the same setup of Example 2.1. Consider the choice between the
fifty-fifty gamble Y for 0 or 100, and a sure thing Z that pays z ∈ [0, 100] with full certainty.

Because consumption utility is assumed to be linear, Y is the consumption optimum if
z ≤ 50 and Z is the optimum if z ≥ 50. The first step to implement the stochastic reference
point model is to compute the relevant expected reference-dependent utilities:

U(Y |Y ) =
100

4
(3− λ)

U(Z|Y ) = z +
1

2
(z − 0) +

1

2
λ (z − 100) =

1

2
(3 z + λ z − 100λ)

U(Y |Z) = 50 +
1

2
λ (0− z) +

1

2
(100− z) =

1

2
(200− λ z − z)

U(Z|Z) = z + (z − z) = z.

It follows directly that Y is a personal equilibrium (U(Y |Y ) ≥ U(Z|Y )) if z ≤ 50 and Z is
a personal equilibrium (U(Z|Z ≥ U(Y |Z)) if z ≥ 200/(3 + λ). Thus, for z < 200/(3 + λ)
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and z > 50, there exists a unique personal equilibrium, which is the preferred personal
equilibrium and is equal to the consumption optimum. However, for z ∈ [200/(3+λ), 50], both
alternatives are equilibria. Interestingly, the riskless equilibrium Z is then always preferred
to the risky equilibrium Y , because U(Y |Y ) < U(Z|Z) for z ∈ [200/(3 + λ), 50]. This result
is surprising, because Y rather than Z is the consumption optimum for z ∈ [200/(3 +λ), 50].
This result reflects bias of the model against risky alternatives. The risky personal equilibrium
yields negative gain-loss utility because the decision maker is assumed to derive negative gain-
loss utility from the situation where Y pays 0, while the reference point pays 100, a situation
that has zero probability of occurring since the reference point equals Y .

The purpose of this example is to demonstrate the divergence between the preferred

personal equilibrium and the consumption optimum under simplifying assumptions. In a

real-life choice experiment, many subjects would deviate from the consumption optimum in

the example by choosing the riskless alternative even if it has the lowest expected outcome

(for example, z = 45). One possible explanation for these choices is that the subjects do

not endogenously select their reference point, but simply fix it at, for example, their normal

hourly wage, introducing loss aversion. An alternative explanation is probability weighting,

which generally is strong even for fifty-fifty gambles and introduces a “certainty effect”.

To account for this effect, we may use a rank-dependent consumption utility model as the

benchmark. Using the same reasoning as in the example, the reference-dependent model

would then predict a stronger aversion to the risky alternative than the consumption model.

The preferred personal equilibrium characterizes risk preferences before making an an-

ticipated risky choice. Köszegi and Rabin (2007) also introduce the concept of choice-

acclimating personal equilibrium (CPE) to describe risk preferences after the choice has

been made. The CPE maximizes reference-dependent utility U(Z|Z) over all risky prospects
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rather than over personal equilibria (as in Definition 2.2), that is, the CPE corresponds to

X ∈ arg max{U(Z|Z) : Z from X}. This paper focuses on pre-choice risk preferences and

the preferred personal equilibrium. However, it follows directly from Proposition 3.2 below

that the post-choice CPE in our framework simply reduces to the consumption optimum,

that is, X ∈ arg max{M(Z) : Z from X}.

3 The State-dependent Reference Point Model

In the spirit of regret theory, we consider the following alternative, state-dependent structure:

Definition 3.1. For risky prospects X, Y ∈ X , the state-dependent reference-dependent
utility of X given Y is defined as

(3.7) Ũ(X|Y ) =

∫ ∫
u(x|y) d2HX,Y (x, y).

where HX,Y (x, y) = P [X ≤ x, Y ≤ y] is the joint cumulative distribution function of X and
Y , and u is defined as in Equation (2.2).

The state-dependent model evaluates the outcome of the prospect and the reference point

at their joint probabilities, rather than the product of the marginal probabilities, and thus

also incorporates the statistical dependence between the prospect and the reference point.

In case of a discrete probability distribution with S states of nature, this boils down to

comparing the outcomes of the prospect with those of the reference point in the same state

of nature and not with outcomes in other states:

(3.8) Ũ(X|Y ) =
S∑
s=1

u(X(s)|Y (s)) ps.
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Using a state-dependent reference point, the decision maker does not experience negative

gain-loss utility (disappointment) from the fact that bad states yield worse outcomes than

good states, as Equation (2.3) would predict. Rather, she derives negative gain-loss utility

(regret) when the chosen prospect falls below the reference point in the same state.

If two random variables X and Y are independent, then the joint cumulative distribution

function of X and Y is the product of the corresponding marginal distributions:

HX,Y (x, y) = FX(x)FY (y).

In this case, the two specifications of reference-dependent utility coincide:

(3.9) Ũ(X|Y ) =

∫ ∫
u(x|y) dFY (y) dFX(x) = U(X|Y ).

However, the two models generally diverge if the prospect and the reference point are de-

pendent. Compared to the state-dependent model, the Köszegi and Rabin (2006) model

generally overestimates the true joint probabilities of gains or losses in case of positive de-

pendence between X and Y and underestimates the joint probabilities in case of negative

dependence. In fact, the decision maker may even experience illusionary gains and losses

that have a zero probability of occurring. In contrast to the disappointment specification, the

regret specification is not invariant with respect to the dependence structure. We formalize

this observation using the concept of positively and negatively associated random variables.

Definition 3.2. Two random variables X and Y are said to be positively associated if

Cov(f(X), g(Y )) ≥ 0
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for every pair of non-decreasing functions f and g such that the above covariance exists.2

Negative association holds if the above inequality is reversed.

Using the state-dependent function, decision makers generally have a preference for

prospects that are positively associated with the reference point and an aversion to prospects

with a negative association:

Proposition 3.1. Let X, Y ∈ X be a pair of prospects and consider a second pair of prospects
X̃, Ỹ with same marginal distributions as the first pair, i.e., FX̃ ≡ FX and FỸ ≡ FY , and
such that X̃ is independent from Ỹ . If u satisfies assumption A3′ then

(i) Ũ(X|Y ) ≥ Ũ(X̃|Ỹ ) if X and Y are positively associated.

(ii) Ũ(X|Y ) ≤ Ũ(X̃|Ỹ ) if X and Y are negatively associated.

The following example illustrates the implications of Proposition 3.1:

Example 3.1. We assume the same setup of Example 2.1. Assuming a perfectly positive
dependence, the relevant values of expected reference-dependent utility are

Ũ(Y |Y ) = 50,

Ũ(X|Y ) =
101

2
+

1

2
(0− 0) +

1

2
(101− 100) = 51

and X is preferred to Y . However, assuming a perfect negative correlation, expected state-
dependent reference-dependent utility for X ′ given Y is

Ũ(X ′|Y ) =
101

2
+ λ

1

2
(0− 100) +

1

2
(101− 0) =

100

2
(2− λ) + 1

and the loss averter prefers Y to X ′ in order to avoid the loss situation (Y (2), X ′(2)) =
(100, 0).
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By accounting for the dependence structure, the inherent aversion to risky prospects dis-

appears:

Proposition 3.2. Ũ(X|X) = η1M(X) for all X ∈ X and therefore Ũ(X|X) = Ũ(c(X)|c(X)).

Similar to Proposition 1.3 in Köszegi and Rabin (2006), but under more general condi-

tions, if a prospect is preferred to the reference point, then the same preference relationship

holds if the prospect is taken as reference point:

Proposition 3.3. Let X, Y ∈ X with P [X 6= Y ] > 0. If Ũ(X|Y ) ≥ Ũ(Y |Y ) then Ũ(X|X) >
Ũ(Y |X).

This result motivates the following definitions of state-dependent personal equilibrium

and state-dependent preferred personal equilibrium:

Definition 3.3. A element Y ∈ X is a state-dependent personal equilibrium (SPE) if

Ũ(Y |Y ) ≥ Ũ(X|Y )

for all X ∈ X . We denote the set of state-dependent personal equilibria in X by XSPE.
A state-dependent preferred personal equilibrium (SPPE) is a risky prospect X ∈ XSPE such
that

X ∈ arg max{Ũ(Y |Y ) : Y ∈ XSPE}.

Recall that the disappointment-based model and the regret-based model generally differ,

unless the prospect and the reference point are statistically independent. Therefore, the

stochastic model and the state-dependent model generally yield different sets of personal

equilibria and different preferred personal equilibria. This occurs even when all prospects
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are statistically independent, because the definition of personal equilibrium requires auto-

evaluation – a case with perfectly positive dependence. The following example shows that

not every state-dependent personal equilibrium is a personal equilibrium:

Example 3.2. We assume the same setup of Examples 2.1 and 2.2. The state-dependent
model computes the reference-dependent utilities as follows:

Ũ(Y |Y ) = 50 +
1

2
(0− 0) +

1

2
(100− 100) = 50

Ũ(Z|Y ) = U(Z|Y ) = z +
1

2
(z − 0) +

1

2
λ (z − 100) =

1

2
(3 z + λ z − 100λ)

Ũ(Y |Z) = U(Y |Z) = 50 +
1

2
λ (0− z) +

1

2
(100− z) =

1

2
(200− λ z − z)

Ũ(Z|Z) = U(Z|Z) = z.

Therefore Y is a state-dependent personal equilibrium (Ũ(Y |Y ) ≥ Ũ(Z|Y )) if Ũ(Z|Y ) ≤
50, or z ≤ 100 (1 + λ)/(3 + λ). Similarly, Z is a state-dependent personal equilibrium
(Ũ(Z|Z) ≥ Ũ(Y |Z)) if Ũ(Y |Z) ≤ z, or z ≥ 200/(3 + λ). Thus, for z < 100 (1 + λ)/(3 + λ)
and z > 200/(3+λ), there exists a unique state-dependent personal equilibrium, which equals
the state-dependent preferred personal equilibrium and the consumption optimum. However,
for z ∈ [200/(3 + λ), 100 (1 + λ)/(3 + λ)], we have two state-dependent personal equilibria
and the state-dependent preferred personal equilibrium is the consumption optimum. By
contrast, Example 2.2 shows that for z ∈ [50, 100 (1 + λ)/(3 + λ)] the risky prospect Y is
not a personal equilibrium. In contrast to Proposition 2.1, the example also shows that a
riskfree state-dependent personal equilibrium is not necessarily a state-dependent preferred
personal equilibrium. Indeed, for z ∈ [200/(3 + λ), 50] the riskfree prospect Z is a state-
dependent personal equilibrium, but not a preferred personal equilibrium. Table 1 summarizes
the comparison given in Examples 2.1, 2.2 and 3.2 between the stochastic reference point
model and the state-dependent model.

[Table 1 about here.]

Under the general assumptions about risk preferences used thus far, we can also find

examples where not every personal equilibrium is a state-dependent personal equilibrium.3

However, if we impose more structure on risk preferences, such examples are excluded, and
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every personal equilibrium is a state-dependent personal equilibrium:

Proposition 3.4. Suppose that m is bounded and µ satisfies assumption A3′. Then every
personal equilibrium is a state-dependent personal equilibrium, i.e., XPE ⊂ XSPE.

While comparison across states of nature generally moves the PPE away from the op-

timal solution to the reference-independent choice problem, the SPPE generally equals the

consumption optimum:

Proposition 3.5. Let X ∈ X be a state-dependent preferred personal equilibrium and let
η1 > 0.

(i) X ∈ arg max{M(Y ) : Y ∈ XSPE}.

(ii) Under assumption A3′, X ∈ arg max{M(Y ) : Y ∈ X}. Moreover, any prospect in
arg max{M(Y ) : Y ∈ X} is a SPPE.

Loss-aversion in our model generally does not affect choice behavior if the reference point

is completely endogenous and adjusts immediately to new information or unexpected events.

The decision maker is then free to select any choice alternative and reference point, and she

may select the consumption optimum for both. This combination maximizes both compo-

nents of expected reference-dependent utility: (i) the consumption optimum by definition

maximizes expected consumption utility and (ii) expected gain-loss utility achieves its max-

imal value of zero in case of auto-evaluation. Thus, the reference-dependent solution equals

the consumption optimum when the reference point is completely endogenous. Given the

wealth of evidence showing that loss aversion affects choice behavior, this finding suggests
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that the reference point generally includes an important exogenous component. The decision

maker generally deviates from the consumption optimum in order to reduce her exposure

to losses relative to the exogenous component of her reference point. Prospects that are

positively correlated with the exogenous component will look more attractive, because these

involve smaller losses than uncorrelated or negatively correlated prospects. This is consistent

with the prediction of Köszegi and Rabin (2007) that a prior expectation to take on a risk

will decrease the willingness to pay for insurance against that risk.

4 Empirical application

We analyze historical returns to the CRSP stock market portfolio (“stocks”) and the one-

month US Treasury bill (“bills”) with a daily, weekly and monthly return frequency. The

sample period ranges from July 1, 1963 to January 31, 2008, a 45 year period with a total

of 11,223 daily observations, 2,386 weekly observations and 535 monthly observations. Un-

fortunately, the number of annual observations (45) is too small to allow for a meaningful

analysis using an annual frequency. Returns are evaluated in excess of the T-bill rate, so

that the bills have an excess return of zero and are assumed to be completely risk free. The

stock series are from Kenneth French’ online data library; the T-bill series are from Ibbotson

Associates.

As in the examples in the main text, we assume risk-neutral, linear consumption utility

(m(x) = x) and use a piecewise-linear gain-loss utility function (µ(x) = x if x ≥ 0 and

µ(x) = 2x if x < 0). We also considered risk averse, logarithmic consumption utility
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(m(x) = ln(100 + x)) and the Tversky and Kahneman (1992) value function µ(x) = xα if

x ≥ 0 and µ(x) = −λ (−x)α if x < 0, using the Tversky and Kahneman (1992) parameters

(α = 0.88, λ = 2.25). However, the specification of the preference parameters proved to

be less important than the specification of the reference point and the choice of the return

frequency.

We use the historical returns as equally likely states-of-the-world. We estimate the ex-

pected consumption utility and gain-loss utility using the sample average over all states.

These averages are then used to identify the personal equilibriums and preferred personal

equilibriums. Given the high average excess return to stocks, it is not surprising that the

consumption optimum is to invest in stocks for every return frequency in our sample. Since

the excess returns on bills is always zero, consumption utility of bills is always zero too.

Stocks by contrast have positive consumption utility on average.

To account for sampling error, we estimate the probability that stocks or bills represent

a personal equilibrium or a preferred personal equilibrium using bootstrapping. We generate

10,000 pseudo-samples through random sampling with replacement from the original sample,

and compute average consumption utility and gain-loss utility in every pseudo-sample. Next,

we compute the fraction of the pseudo-samples where stocks or bills represent a personal

equilibrium or a preferred personal equilibrium. The results suggest that the full-sample

results are robust to sampling variation.

The first three columns of Table 2 show results for the disappointment-based model of

Köszegi and Rabin (2006). For every return frequency, investing in bills is a personal equi-
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librium. When the reference point equals the riskless rate, investing in bills achieves a sub-

stantially higher average reference-dependent utility than investing in stocks. Consumption

utility and gain-loss utility of bills are always zero and hence average reference-dependent

utility equals zero. Stocks have positive consumption utility, but the large possible loss (dis-

appointment) relative to the riskless rate introduces negative average gain-loss utility and

reference-dependent utility takes a negative value on average.

Investing in stocks is not a personal equilibrium using daily and weekly returns. Accord-

ing to the model, stocks may cause loss even to investors who use stock returns as their

reference point. A prospective stock investor is assumed to be afraid that stocks would go

down, while the reference point goes up, a situation that will never occur when stock returns

are the reference point. For example, the largest weekly “loss” in the sample occurs by

comparing the stock market return of minus 13.82 percent in the week of October 19-23,

1987 with the stock market return of plus 16 percent in the week of October 7-11, 1974.

For monthly returns, the average returns are higher and stocks do represent a personal

equilibrium; bills achieve a significantly lower average reference-dependent utility than stocks

when stock returns are the reference point. Thus, investing in bills is optimal for investors

who desire the risk profile of bills and investing in stocks makes sense for an investor who

seeks the risk profile of stocks. However, when the reference point is endogenous, the investor

selects the preferred personal equilibrium, or the personal equilibrium with the highest ex-

pected reference-dependent utility. The preferred personal equilibrium in this case is bills

and does not equal the optimal solution to the investment problem - stocks. The preference
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for bills reflects the inherent aversion to risky choices discussed in Section 2; while bills by

definition yields zero gain-loss utility when compared to the riskless rate, auto-evaluation of

stocks yields negative gain-loss utility.

The last three columns of Table 2 show results for the state-dependent model, which

avoids comparing outcomes across states-of-the world and focuses on within-state comparison

only. For every return frequency, both bills and stocks are a personal equilibrium; bills are

optimal for investors who benchmark against the riskless rate and stocks are best when stock

returns are the reference point. The state-dependent model is identical to the disappoint-

based model when the prospect or the reference point is riskless; differences arise only when

the prospect and the reference point are both stochastic. Hence, the two models yield

identical utility levels for bills relative to the riskless rate, stocks relative to the riskless rate,

and bills relative to stock returns. However, evaluating stocks relative to stock returns now

looks more favorable. Since holding stocks avoids a possible loss (regret) relative to stock

returns, gain-loss utility is zero and reference-dependent utility equals consumption utility

and is positive on average. Bills by contrast still introduce possible losses relative to stock

returns and negative gain-loss utility. The state-dependent preferred personal equilibrium

in this case is stocks, or the consumption optimum.

[Table 2 about here.]

This empirical application illustrates the point that loss aversion does not affect optimal

choice if state-dependent reference point is fully endogenous. Of course, loss aversion will
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affect investment by making bills appear more attractive, if the reference point is fixed at a

given target rate of return, especially to myopic investors with a short investment horizon.

5 Conclusion

While the typical implementation of reference-dependent choice theories exogenously fixes

the reference point at a given constant, recent research has dealt with the possibility that the

reference point is a random variable and that the reference point is endogenously determined

as part of the decision maker’s optimization problem. We add to this literature by examining

loss aversion with a state-dependent reference point. The model essentially extends the Sug-

den (2003) model for an exogenous stochastic reference point to the case where the reference

point is endogenous, and it modifies the Köszegi and Rabin (2006) model by changing the

underlying reference-dependent preference structure.

The Köszegi and Rabin (2006) model compares every possible outcome of the prospect

with every possible outcome of the reference point, as in disappointment theory. The decision

maker experiences losses when the outcome of the prospect in a given state falls below the

outcome of the reference point in other states. She is indifferent to the statistical dependency

between the prospect and the reference point. Comparing across states also introduces an

aversion to risky prospects, which yield negative gain-loss utility (disappointment), even in

the case of auto-evaluation. This aversion generally moves the preferred personal equilibrium

away from the decision maker’s consumption optimum. For example, in our empirical appli-

cation, investors are predicted to invest in riskless bills, while investing in stocks maximizes
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their expected consumption utility.

The state-dependent reference point model leads to different results. The decision-maker

experiences negative gain-loss utility (regret) when the prospect falls below her reference

point in the same state. Therefore, prospects are more attractive if they depend positively

on the reference point and are less attractive in case of negative dependence. The state-

dependent model is neutral in the sense that it avoids an inherent aversion to risky prospects

and yields no loss when the prospect and the reference point are the same. In addition, the

model ensures that the preferred personal equilibrium equals the consumption optimum

under general conditions. Indeed, in the empirical application, investing in stocks emerges

as the state-dependent preferred personal equilibrium.

In the state-dependent model, loss aversion influences behavior only if the decision maker

is not free to select the consumption optimum as her reference point. Given that loss aversion

is widespread, we conclude that the reference point generally includes an important exoge-

nously fixed component or adjust slowly to new information or unexpected events. Further

research could focus on the dynamics of the reference point.
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Notes

1Assumption A3′ implies that (x, y) 7→ u(u|y) is supermodular. A function φ : R2 → R
is supermodular if for all (x1, y1), (x2, y2) ∈ R2 we have

φ(min{x1, x2},min{y1, y2}) + φ(max{x1, x2},max{y1, y2}) ≥ φ(x1, y1) + φ(x2, y2).

On R2, supermodularity is equivalent to the property of having increasing differences, i.e.,
the function φ(·, y) − φ(·, y′) is nondecreasing for all y ≥ y′; see Topkis (1998). Under
assumption A3′, the function

u(x|y)− u(x|y′) = η2


m(y′)−m(y) , x ≥ y ≥ y′

(λ− 1)m(x)− λ (m(y)−m(y′)) , y ≥ x ≥ y′

λ (m(y′)−m(y)) , y ≥ y′ ≥ x.

is nondecreasing in x for all y ≥ y′.

2Note that each random variableX is positively associated with itself (Joe 1997, Lemma 2.1).
Moreover, two random variables X and Y are positively (negatively) associated if and only
if they are positive (negative) quadrant dependent, i.e.,

HX,Y (x, y) ≥ (≤)FX(x)FY (y)

for all x, y ∈ R2 (see Joag-Dev and Proschan 1983, Property P1).

3Let Ω = {1, 2, 3} and P [{s}] = 1
3

for s = 1, . . . , 3. We define the risky prospects X and
Y as follows:

X(1) = 111.1, X(2) = 100, X(3) = 89

Y (1) = 110, Y (2) = 100, Y (3) = 90.

Suppose that m(x) = x, µ(x) = 1 − exp(−0.1x) if x ≥ 0 and µ(x) = 20 (exp(0.01x) − 1)
if x < 0 (the index of loss aversion is λ = 2), and η1 = η2 = 1. Then XSPE = {X} while
XPE = {X, Y }. The example exploits the different curvatures of the value function over gains
and losses. We use a piecewise-exponential function, since a piecewise-power function with
different powers for gains and losses violates assumption A2, as demonstrated in Köbberling
and Wakker (2005).
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A Proofs

A.1 Proof of Lemma 2.1

Let Y ∈ X then

U(Y |Y ) =

∫ ∫
u(y|z) dFY (z) dFY (y)

= η1

∫ ∫
m(y) dFY (z) dFY (y) + η2

∫ ∫
µ(m(y)−m(z)) dFY (z) dFY (y)

= η1

∫
m(y) dFY (y) + η2

∫ ∫
z>y

µ(m(y)−m(z)) dFY (z) dFY (y)

+η2

∫ ∫
z<y

µ(m(y)−m(z)) dFY (z) dFY (y)

= η1

∫
m(y) dFY (y) + η2

∫ ∫
y>z

µ(m(z)−m(y)) dFY (y) dFY (z)

+η2

∫ ∫
z>y

µ(m(z)−m(y)) dFY (z) dFY (y)

= η1M(Y ) + η2

∫ ∫
z>y

µ(m(y)−m(z)) dFY (y) dFY (z)

+η2

∫ ∫
z>y

µ(m(z)−m(y)) dFY (z) dFY (y)

= η1M(Y ) + η2

∫ ∫
z>y

[µ(m(y)−m(z)) + µ(m(z)−m(y))] dFY (z) dFY (y)

= η1M(Y ) + η2

∫ ∫
z>y

[µ(−(m(z)−m(y))) + µ(m(z)−m(y))] dFY (z) dFY (y).

The second term vanishes if Y is riskless. If Y is stochastic, i.e., P [Y = a] < 1 for all a ∈ R,

and since m is strictly increasing, we have

∫ ∫
z>y

[µ(m(y)−m(z)) + µ(m(z)−m(y))] dFY (z) dFY (y) < 0

by property A2. This proves the statement of the Lemma.
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A.2 Proof of Proposition 2.1

Without loss of generality η2 > 0. Let

GL(Z|Y ) = (1/η2) (U(Z|X)− η1M(Z))

be the gain-loss utility. If η1 = 0 the statement is clear, since GL(Z|Z) ≤ 0 for all Z ∈ X .

Let η1 > 0. We prove the statement by contradiction. Assume that X = x is not a PPE.

Then it exists Z ∈ XPE with

U(Z|Z) > U(X|X).

It follows:

U(Z|X) = η1M(Z) + η2GL(Z|X) = η1M(Z) + η2GL(Z|Z)− η2GL(Z|Z) + η2GL(Z|X)

= U(Z|Z) + η2 (GL(Z|X)−GL(Z|Z))

> U(X|X) + η2 (GL(Z|X)−GL(Z|Z)).

If we prove GL(Z|X)−GL(Z|Z) ≥ 0, then U(Z|X) > U(X|X), a contradiction to X ∈ XPE.

The following properties are satisfied:

(i) M(Z) > M(X).

(ii) There exists z′ ∈ supp(Z), such that z′ > x.

We first prove these two properties:

(i) M(Z) = (1/η1) (U(Z|Z)− η2GL(Z|Z)) ≥ (1/η1)U(Z|Z) > (1/η1)U(X|X) = M(X).
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(ii) Suppose that for all z′ ∈ supp(Z) we have z′ ≤ x. Then x ≥ Z almost surely and

therefore M(X) = M(x) ≥M(Z) since M is monotone. This contradicts property (i).

Thus property (ii) holds.

Property (i) implies:

0 ≤ M(Z)−M(X) =

∫
R
(m(z)−m(x)) dFZ(z)

=

∫
z>x

(m(z)−m(x)) dFZ(z) +

∫
z<x

(m(z)−m(x)) dFZ(z)

and thus ∫
z>x

(m(z)−m(x)) dFZ(x) ≥ −
∫
z<x

(m(z)−m(x)) dFZ .

Property (ii) implies:∫
z>z′

(m(z)−m(z′)) dFZ(z) dFZ(z′) ≥
∫
z>x

(m(z)−m(x)) dFZ(z)

Under assumption A3′ we have

GL(Z|Z) = (1− λ)

∫
z>z′

(m(z)−m(z′)) dFZ(z) dFZ(z′)

(i)

≤ (1− λ)

∫
z>x

(m(z)−m(x)) dFZ(z)

=

∫
z>x

(m(z)−m(x)) dFZ(z)− λ
∫
z>x

(m(z)−m(x)) dFZ(z)

(ii)

≤
∫
z>x

(m(z)−m(x)) dFZ(z) + λ

∫
z<x

(m(z)−m(x)) dFZ(z)

= GL(Z|X).

Therefore GL(Z|X) ≥ GL(Z|Z) and thus U(Z|X) ≥ U(X|X), a contradiction to X ∈ XPE.

This prove the statement.
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A.3 Proof of Proposition 3.1

Christofides and Vaggelatou (2004) show that if X and Y are positively associated then

E [φ(X, Y )] ≥ E
[
φ(X̃, Ỹ )

]
for every supermodular function φ : R2 → R such that the expectations exist (we say that

the pair (X, Y ) dominates the pair (X̃, Ỹ ) by supermodular order). The inequality sign is

reverted in the latter equation if X and Y are negatively associated. Under Assumption A3′

the function φ : (x, y) 7→ u(x|y) is supermodular. Consequently,

Ũ(X|Y ) = E [φ(X, Y )] ≥ E
[
φ(X̃, Ỹ )

]
= Ũ(X̃|Ỹ )

if X and Y are positively associated. Similarly,

Ũ(X|Y ) ≤ Ũ(X̃|Ỹ )

if X and Y are negatively associated.

A.4 Proof of Proposition 3.2

Let If X = Y , then HX,X(x, y) = FX(min{x, y}). We have:

∫ ∫
µ(m(x)−m(y)) d2H(x, y) =

∫ ∫
µ(m(x)−m(y)) d2FX(min{x, y}) = 0

since d2FX(min{x, y}) = 0 for x 6= y. Therefore, the gain-loss utility is zero and this proves

the statement.
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A.5 Proof of Proposition 3.3

Let X, Y ∈ X , then

Ũ(Y |X) + Ũ(X|Y ) =

= η1M(X) + η1M(Y )

+η2

∫ ∫
µ(m(y)−m(x)) d2H(x, y) + η2

∫ ∫
µ(m(x)−m(y)) d2H(x, y)

Since Ũ(X|X) + Ũ(Y |Y ) = η1M(X) + η1M(Y ) by (i), it is sufficient to show that∫ ∫
µ(m(y)−m(x)) d2H(x, y) +

∫ ∫
µ(m(x)−m(y)) d2H(x, y) < 0.

We have∫ ∫
µ(m(y)−m(x)) d2H(x, y) +

∫ ∫
µ(m(x)−m(y)) d2H(x, y)

=

∫ ∫
µ(−(m(x)−m(y))) d2H(x, y) +

∫ ∫
µ(m(x)−m(y)) d2H(x, y)

Property A2 implies that µ(−(m(x)−m(y))) +µ(m(x)−m(y)) < 0 for all x 6= y (also using

that m is strictly increasing). Thus, if P [X 6= Y ] > 0, then∫ ∫
µ(−(m(x)−m(y))) d2H(x, y) +

∫ ∫
µ(m(x)−m(y)) d2H(x, y) < 0

and this proves the statement.

A.6 Proof of Proposition 3.4

Let X ∈ XPE. If X is riskless, than the statement is obvious since U(Y |X) = Ũ(Y |X) for

all Y ∈ X . Therefore we assume that X is stochastic (and thus its cumulative distribution

function is not degenerated).
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Let Y ∈ X . If Y is riskless, then

Ũ(X|X) ≥ U(X|X) ≥ U(Y |X) = Ũ(Y |X),

and Y is not preferred to X if X is the reference point. Therefore, we also assume that Y is

stochastic (and thus its cumulative distribution function is not degenerated).

Let Y ∗ be a random variable with the same marginal distribution of Y , and X and Y ∗

have joint distribution min{FX(x), FY (y)} (it corresponds to the upper Fréchet bound; see

Joe 1997). By Property (2.4), U(Y ∗|X) = U(Y |X).

Let φ : (x, y) 7→ u(x|y). Since φ is continuous, bounded and supermodular, then by

Tchen (1980, Corollary 2.2)

Ũ(Y ∗|X) = E [φ(Y ∗, X)] ≥ E [φ(Y,X)] = Ũ(Y |X).

Therefore, if we prove that Ũ(Y ∗|X) ≤ Ũ(X|X) then also Ũ(Y |X) ≤ Ũ(X|X), and the

statement follows. For the sake of simplicity, we denote Y ∗ by Y .

For any function g we have∫ x1

x0

g(t) dt =

∫
R

1{x1>t} g(t) dt−
∫

R
1{x0>t} g(t) dt.

From this property and assumption A3′, for any x, y ∈ R we obtain:

φ(x, y)− φ(x0, y) =

∫ x

x0

g(t, y) dm(t) =

∫
R

1{x>t} g(t, y) dm(t)−
∫

R
1{x0>t} g(t, y) dm(t)

where g(t, y) = η1 + η2 λy(t),

λy(t) =


λ , y > t

1 , y ≤ t

,
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and λ > 1 is defined in A4.

Let X̃ and Ỹ be independent copies of X and Y , i.e., X̃ and Ỹ have the same marginal

distributions of X and Y , respectively, and are both independent from X and Y . Using the

formula for φ(x, y)− φ(x0, y), we have:

φ(Ỹ , X)− φ(X̃,X) =

∫
R
(1{Ỹ >t} − 1{X̃>t}) g(t,X) dm(t)

φ(Y,X)− φ(X,X) =

∫
R

(1{Y >t} − 1{X>t}) g(t,X) dm(t).

We take the expectations and we apply Fubini’s theorem; it follows:

U(Y |X)− U(X|X) = E
[
φ(Ỹ , X)

]
− E

[
φ(X̃,X)

]
=

∫
R
(FX(t)− FY (t)) E [g(t,X)] dm(t)

Ũ(Y |X)− Ũ(X|X) = E [φ(Y,X)]− E [φ(X,X)] =

∫
R

E
[
(1{Y >t} − 1{X>t}) g(t,X)

]
dm(t).

Using that g(t,X) = η1 +η2 λ 1{X>t}+η2 1{X≤t} we derive the expected values of g(t,X) and

(1{Y >t} − 1{X>t}) g(t,X):

U(Y |X)− U(X|X) = (η1 + λ η2)

∫
R

(FX(t)− FY (t)) dm(t)

−(λ− 1)η2

∫
R
(FX(t)− FY (t))FX(t) dm(t)

Ũ(Y |X)− Ũ(X|X) = (η1 + λ η2)

∫
R

(FX(t)− FY (t)) dm(t)

−(λ− 1)η2

∫
R
(FX(t)−HX,Y (t, t)) dm(t)
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and therefore

Ũ(Y |X)− Ũ(X|X) =

= U(Y |X)− U(X|X)− η2(λ− 1)

∫
R

[(FX(t)−HX,Y (t, t))− (FX(t)− FY (t))FX(t)] dm(t).

The first term is negative since X ∈ XPE; the second term is also negative since HX,Y (t, t) =

min{FX(t), FY (t)}:

FX(t)−HX,Y (t, t)−(FX(t)−FY (t))FX(t) =


(FY (t)− FX(t))FX(t) , FX(t) ≤ FY (t)

(FX(t)− FY (t)) (1− FX(t)) , FX(t) > FY (t)

.

Thus Ũ(Y |X) ≤ Ũ(X|X) and since this is true for all Y ∈ X , X is a state-dependent

personal equilibrium, i.e., X ∈ XSPE.

A.7 Proof of Proposition 3.5

(i) Follows directly from the definition of PPE and Proposition 3.2.

(ii) Let X be a SPPE and suppose that there exists Z ∈ X such that M(Z) > M(X).

Without loss of generality, we take Z ∈ arg max{M(Y ) : Y ∈ X}. Let Y ∈ X , then

M(Z) ≥ M(Y ). Under assumption A3′, the function µ is concave, thus by Jensen’s

inequality we have:

E [µ(m(Y )−m(Z))] ≤ µ (E [m(Y )−m(Z)]) = µ(M(Y )−M(Z)) ≤ 0.

Therefore,

Ũ(Y |Z) = η1m(Y ) + η2 E [µ(m(Y )−m(Z))] ≤ η1m(Y ) ≤ η1M(Z) = Ũ(Z|Z),
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i.e., Z is a personal equilibrium. By (i), the SPPE has maximal consumption utility

over the set of SPE’s, which contradicts M(Z) > M(Y ). This also shows that Z ∈

arg max{M(Y ) : Y ∈ X} is a SPPE.
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z
[
0, 200

3+λ

] [
200
3+λ

, 50
] [

50, 100 (1+λ)
3+λ

] [
100 (1+λ)

3+λ
, 100

]
CO Y Y Z Z

PE Y Y, Z Z Z

PPE Y Z Z Z

SPE Y Y, Z Y, Z Z

SPPE Y Y Z Z

Table 1: The table shows consumption optimum (CO), personal equilibria (PE), preferred
personal equilibria (PPE), state-dependent personal equilibria (SPE) and state-dependent
preferred personal equilibria (SPPE) for a risk neutral decision maker who face the choice
between a fifty-fifty gamble Y for 0 or 100, and a sure thing that pays z ∈ [0, 100].
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Köeszegi and Rabin model State-dependent model

Daily Weekly Monthly Daily Weekly Monthly

U(Stocks|Bills) -0.252 -0.526 -0.540 -0.252 -0.526 -0.540

U(Bills|Bills) 0.000 0.000 0.000 0.000 0.000 0.000

U(Stocks|Stocks) -0.435 -1.001 -1.917 -0.021 0.094 0.459

U(Bills|Stocks) -0.340 -0.901 -2.375 -0.340 -0.901 -2.375

Bills are (S)PE 1.000 1.000 0.877 1.000 1.000 0.877

Stocks are (S)PE 0.000 0.188 0.847 1.000 1.000 1.000

Bills are (S)PPE 1.000 1.000 0.877 0.001 0.012 0.008

Stocks are (S)PPE 0.000 0.000 0.123 0.999 0.988 0.992

Table 2: The table shows the results from applying reference-dependent utility models to
daily, weekly and monthly excess returns to stocks and bills from July 1, 1963, to January 21,
2008. The first three columns show the results for the Köszegi and Rabin model, while the
last three columns show the results for our state-dependent model. The first four rows give
the average of reference-dependent utility U(Stocks|Bills), U(Bills|Bills), U(Stocks|Stocks)
and U(Bills|Stocks), assuming risk neutral consumption utility (m(x) = x) and a piecewise-
linear value function (µ(x) = x for x ≥ 0 and µ(x) = 2 x for x < 0). The last four rows
contain bootstrap results. We generated 10,000 pseudo-samples through random sampling
with replacement from the original sample, and computed average reference-dependent utility
in every pseudo-sample. Next, we computed the fraction of the pseudo-samples where stocks
or bills represent a (S)PE or (S)PPE. The stock series are from Kenneth French’ online data
library; the T-bill series are from Ibbotson Associates.
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