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Abstract

Although attention mechanisms have been widely used in
deep learning for many tasks, they are rarely utilized to solve
multiple instance learning (MIL) problems, where only a gen-
eral category label is given for multiple instances contained
in one bag. Additionally, previous deep MIL methods firstly
utilize the attention mechanism to learn instance weights and
then employ a fully connected layer to predict the bag la-
bel, so that the bag prediction is largely determined by the
effectiveness of learned instance weights. To alleviate this is-
sue, in this paper, we propose a novel loss based attention
mechanism, which simultaneously learns instance weights
and predictions, and bag predictions for deep multiple in-
stance learning. Specifically, it calculates instance weights
based on the loss function, e.g. softmax+cross-entropy, and
shares the parameters with the fully connected layer, which
is to predict instance and bag predictions. Additionally, a
regularization term consisting of learned weights and cross-
entropy functions is utilized to boost the recall of instances,
and a consistency cost is used to smooth the training pro-
cess of neural networks for boosting the model generaliza-
tion performance. Extensive experiments on multiple types
of benchmark databases demonstrate that the proposed atten-
tion mechanism is a general, effective and efficient frame-
work, which can achieve superior bag and image classifica-
tion performance over other state-of-the-art MIL methods,
with obtaining higher instance precision and recall than pre-
vious attention mechanisms. Source codes are available on
https://github.com/xsshi2015/Loss-Attention.

Introduction
Multiple instance learning is a significant research topic in
machine learning and computer vision communities, and it
has been widely used in many real-world applications, such
as image categorization or retrieval, gene expression, face
detection and medical imaging (Wei and Zhou 2016) (Wang
et al. 2018) (Hou et al. 2016) (Shi et al. 2017) (Shi et al.
2018) , where only a general statement of the category is
given for multiple instances (Ilse, Tomczak, and Welling
2018), e.g. one bag contains tens or hundreds of instances,
while it is usually described by a single bag label and there
is no label information associated with instances.
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The main goal of MIL is to learn a classification model
with training bag labels in order to predict a test bag la-
bel. An additional challenge task is to interpret the signif-
icance of each instance for bag classification. Numerous al-
gorithms have been applied to MIL, and they can be roughly
classified into three paradigms (Amores 2013): bag-space,
instance-space and embedded-space. Bag-space paradigm
(Cheplygina, Tax, and Loog 2015) treats each bag as a whole
and exploits their relations for classification. Instance-space
paradigm (Ramon and De Raedt 2000) trains instance-level
classifiers and aggregates their responses for bag classifica-
tion. Embedded-space paradigm (Andrews, Tsochantaridis,
and Hofmann 2003) (Chen, Bi, and Wang 2006) first embeds
all instances in one bag into a compact low-dimensional rep-
resentation and then feeds it to a bag-level classifier. Among
these three paradigms, only instance-space paradigm (Ra-
mon and De Raedt 2000) (Zhang, Platt, and Viola 2006)
is able to interpret the contribution of each instance to bag
classification. Unfortunately, instance-space paradigm often
exhibits inferior performance to the other paradigms (Kan-
demir and Hamprecht 2015).

In oder to interpret the significance of instances and mean-
while achieve desired bag classification accuracy, several at-
tention based MIL algorithms (Pappas and Popescu-Belis
2017) (Ilse, Tomczak, and Welling 2018) embed attention
mechanisms into neural networks to learn instance weights
and classify bags. These algorithms usually introduce auxil-
iary layers to learn instance weights and then utilize another
fully connected layer to produce bag predictions, and thus
the bag prediction is largely determined by the effective-
ness of learned instance weights. Unfortunately, the atten-
tion mechanism often assigns a large weight to the instance,
which has a different label from that of the bag, thereby mis-
leading the network and decreasing its performance on bag
prediction and instance interpretation.

To alleviate this issue, in this paper, we propose a novel
loss based attention mechanism, which connects the atten-
tion mechanism with the loss function to simultaneously
learn instance weights and predictions, and bag predictions.
To the best of our knowledge, the proposed method is the
first work to directly connect the attention mechanism with
the loss function for multiple instance learning. The major
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Figure 1: An example of the structure pass of the proposed loss based attention mechanism. Given a bag with multiple instances,
1© represents the layers of a traditional or convolutional neural network in order to obtain instance features, 2© denotes a fully-

connected layer and then an exponential function. Note that the instance and bag features utilize the same parameters to obtain
their exponents. The fused bag features is the sum of dot products between instance features and their corresponding attention
probabilities, and similar definitions are used for the fused instance loss. Bag loss is obtained by the softmax+cross-entropy
functions to predict bag labels, fused instance loss is a regularization term to predict instance labels, and square loss is the
consistency cost to smooth the training process.

contributions of this paper are summarized as follows:

• We connect the attention mechanism with the loss func-
tion, e.g. softmax+cross-entropy, by calculating the in-
stance weights based on the loss function and sharing
the same parameters with the fully connected layer, to si-
multaneously learn instance weights and predictions, and
bag predictions. Additionally, we propose a regularization
term composed of learned instance weights and cross-
entropy functions to further enhance the connection be-
tween instance weights and the loss, and introduce a con-
sistency cost to smooth the training process. For clarity,
we show an example of bag classification to illustrate the
main structure pass of the proposed attention mechanism
in Figure 1.

• We theoretically prove: (i) Only using the attention mech-
anism with the softmax and cross-entropy functions for
bag classification will produce low instance recall; (ii)
The newly introduced regularization term can boost the
instance recall. These two statements have also been ver-
ified in our experiments (please refer to Figure 3).

• Extensive experiments on multiple types of datasets
demonstrate the generality, effectiveness and efficiency of
the proposed loss based attention mechanism, which not
only outperforms recent state-of-the-art MIL methods on
bag and image classification, but also achieves higher pre-
cision and recall of instances with large weights than pre-
vious approaches.

Related Work

In this section we briefly introduce the related work: MIL-
based neural networks including traditional neural networks

and convolutional neural networks (CNNs), and attention al-
gorithms for MIL.

MIL based neural networks. MIL-based traditional neu-
ral networks (Li, Gondra, and Liu 2012) usually utilize the
feature representation as instance given, while MIL-based
CNNs (Pathak et al. 2014) (Pinheiro and Collobert 2015)
can learn feature representations through multiple convo-
lutional layers to further improve the prediction accuracy.
Most of MIL-based neural networks (Feng and Zhou 2017)
adopt max-pooling to perform back propagation along the
instance with the maximum response. BP-MIP (Zhou and
Zhang 2002) performs the back propagation on the instance
with the maximum training error, (Oquab et al. 2014) uses
global max-pooling to search the best-scoring candidate ob-
ject position, and (Pathak et al. 2014) computes the multi-
class logistic loss at maximum predictions for semantic seg-
mentation. Since max-pooling leads to one instance per
bag being trained in one iteration, it might be not robust
to search the significant instance and even predict bag la-
bels. To alleviate this issue, some alternative pooling func-
tions, such as Noisy-or (Zhang, Platt, and Viola 2006), ISR
(Keeler, Rumelhart, and Leow 1991), generalized mean and
LSE (Ramon and De Raedt 2000) (Kraus, Ba, and Frey
2016), have been embedded into neural networks. How-
ever, the flexibility of these functions is restricted, because
they are pre-defined and not trainable. To attain learnable
pooling, adaptive pooling function (Zhou et al. 2017) and
a fully-connect CRF (Chen et al. 2014) have been devel-
oped to smooth the prediction. In addition to the pooling
functions, expectation-maximization (EM) methods (Papan-
dreou et al. 2015) (Hou et al. 2016) combining with CNNs
have been used for weakly supervised semantic segmenta-

5743



tion and whole slide pathology image classification.

Attention for MIL. The attention mechanism with deep
learning has been widely applied to many tasks, such as
image captioning (Xu et al. 2015) (Zhang et al. 2019),
classification (Wang et al. 2017), and model interpretation
(Zhang and Zhu 2018) (Xu et al. 2018) (Xu et al. 2019).
However, very little effort focuses on attention mechanisms
for MIL. Multiple instance regression (MIR) (Pappas and
Popescu-Belis 2014) learns the weight of instances by using
them as parameters of an auxiliary linear regression model.
Weighted multiple instance regression (WMIR) (Pappas and
Popescu-Belis 2017) follows the idea in MIR but learns in-
stance weights via a single neural network layer. Attention
based deep multiple instance learning (ADMIL) (Ilse, Tom-
czak, and Welling 2018) proposes a two-layered neural net-
work to learn instance weights and uses the sigmoid function
to predict bag probability. Unlike previous methods using
the parameters of auxiliary layers to learn instance weights
and then employing another layers to learn bag predictions,
our proposed attention mechanism directly exploits the pa-
rameters in a fully connected layer to connect with the loss
function, for learning instance weights and predictions, and
bag predictions simultaneously.

Loss-based Attention Mechanism

for Deep MIL

In this section, we present the proposed loss based atten-
tion mechanism derived from the softmax and cross-entropy
functions, and then theoretically analyze its several impor-
tant characteristics.

Cross-entropy in Neural Networks

Given one training image x and its corresponding label y ∈
{0, 1, · · · ,K − 1}, where K is the number of classes. Let
f(·) represent a neural network and z = f(x) ∈ R

K be the
final output, i.e. the prediction class vector of x. By using
the softmax function, the estimated class probability of x
belonging to the k-th class is:

qk =
exp(zk)

∑K−1
c=0 exp(zc)

, (1)

where exp(·) represents the exponential function.

Suppose that pc ∈ {0, 1} denotes the true class proba-
bility of x belonging to the c-th class, we utilize the cross-
entropy function to measure the dissimilarity between the

true class probability p ∈ {0, 1}
K

and the estimated class

probability q ∈ {0, 1}
K

(De Boer et al. 2005):

L(p,q) = −
∑K−1

c=0 pc log qc. (2)

Because of p ∈ {0, 1}
K

and
∑K−1

c=0 pc = 1, when x belongs

to the k-th class, i.e. pk = 1 and
∑K−1

c=0,c �=k pc = 0, Eq. (2)

equals:

L(p,q) = −log
exp(zk)

∑K−1
c=0 exp(zc)

. (3)

Loss-based Attention Mechanism

Given a set of training images X = {X1,X2, · · · ,Xn}
representing n bags, each bag Xi = {xi,1,xi,2, · · · ,xi,ni

}
consists of ni instances and yi ∈ {0, 1, · · · ,K − 1} is the
corresponding bag label, where xi,t is the t-th instance in
the i-th bag and yi,t ∈ {0, 1, · · · ,K − 1} is the correspond-
ing instance label. Similar to (Ilse, Tomczak, and Welling
2018), we suppose that a bag contains at most two kinds of
instance labels including yi,t = 0 and one kind of other la-
bels yi,t ∈ {1, · · · ,K − 1}, and the relationship between yi
and yi,t is:

yi = max
1≤t≤ni

yi,t. (4)

Suppose that each instance of the i-th bag has the same
significance, and an L-layer neural network applies a mean
operator to low-dimensional representations of instances.
Given an instance xi,t, let hl

i,t (1 ≤ l ≤ L − 1) be its fea-

ture representation at the l-th layer. For example, hL−1
i,t =

g(hL−2
i,t ) ∈ R

d is the output of the L − 1-th layer and the

input of the L-th layer, where g(·) is an activation function

and hL−2
i,t is the input of the L − 1-th layer. Suppose that

W ∈ R
d×K is a projection matrix and b ∈ R

K is a bias
vector in the L-th layer, the final output of the neural net-

work is zi = hL−1
i W + b, where hL−1

i is obtained by a

mean operator, e.g. hL−1
i = 1

ni

∑ni

t=1 h
L−1
i,t , and zi ∈ R

K

represents the prediction class vector of the i-th bag. After
obtaining zi, the loss function Eq. (3) can be utilized to learn
model parameters.

When the significance of instances in the i-th bag is dif-
ferent, we introduce the proposed attention mechanism as
follows:

αi,j =
∑K−1

c=0
exp(hL−1

i,j
wc+bc)

∑ni
t=1

∑K−1

c=0
exp(hL−1

i,t
wc+bc)

hL−1
i,j ← αi,jh

L−1
i,j

hL−1
i =

∑ni

t=1 h
L−1
i,t ,

(5)

where αi,j is the weight of the j-th (1 ≤ j ≤ ni) instance in

the i-th bag, wc ∈ R
d is the c-th column vector of W and

bc ⊂ b is a bias. After calculating hL−1
i by using Eq. (5), zi

can be calculated by using zi = hL−1
i W+b. Based on Eq.

(3), suppose that the i-th bag belongs to the k-th class, we
present the following loss function:

L = L1 + L2

= −log
exp(hL−1

i
wk+bk)

∑K−1

c=0
exp(hL−1

i
wc+bc)

−λ
∑ni

t=1 αi,tlog
exp(hL−1

i,t
wk+bk)

∑K−1

c=0
exp(hL−1

i,t
wc+bc)

,

(6)

where the first term (bag loss) is the main objective func-
tion L1 to predict bag labels, the second term (fused instance
loss) is the regularization term L2 to predict instance labels,
and λ is a non-negative constant to balance the bag and in-

stance predictions. Note that because of zi = hL−1
i W + b

and hL−1
i =

∑ni

t=1 h
L−1
i,t , we have zi,k = hL−1

i wk + bk,
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zi,t,k = hL−1
i,t wk + bk and zi,k =

∑ni

t=1 zi,t,k. Simi-
lar definitions are applied to zi,c and zi,t,c for any t ∈
{1, 2, · · · , ni} and c ∈ {0, 1, 2, · · · ,K − 1}.

Eqs. (5)-(6) are mainly inspired by: (i) The weights of in-
stances with different labels from the bag label should be ap-
proximately equal to zeros; (ii) When the loss of the regular-
ization term in Eq. (6) is close to zero, i.e. L2 → 0, if the j-th
instance has a large weight (αi,j >> 0) and belongs to the

k-th class, there must exist exp(zi,j,k) ≈
∑K−1

c=0 exp(zi,j,c).
Additionally, if the r-th instance has a very small weight

(αi,r → 0), i.e.
∑K−1

c=0
exp(zi,r,c)

∑ni
t=1

∑K−1

c=0
exp(zi,t,c)

≈ 0, which means that
∑K−1

c=0 exp(zi,r,c) and exp(zi,r,k) can be neglected. They
suggest that for the j-th instance with a weight αi,j >> 0,

it can be calculated by: αi,j =
∑K−1

c=0
exp(zi,j,c)

∑ni
t=1

∑K−1

c=0
exp(zi,t,c)

≈

exp(zi,j,k)∑ni
t=1

exp(zi,t,k)
.

Recently, many self-ensembling based semi-supervised
deep classification methods (Laine and Aila 2016) (Miyato
et al. 2018) illustrate that smoothing the training process of
neural networks can boost the model generalization perfor-
mance. To smooth the training process, similar to (Laine and
Aila 2016), we first create an ensemble target for each in-
stance weight. Specifically, for αi,t, we accumulate it into
an ensemble weight α̃i,t by α̃i,t = βα̃i,t + (1 − β)αi,t in
each training epoch, where β ≥ 0 is to determine how far the
ensemble weight reaches into training history. Then we uti-

lize a consistency cost (square loss) ‖αi,t − α̃i,t‖
2
2 to form

a consensus prediction of the t-th instance weight in the i-th
bag. Combining the consistency cost with Eq. (6), we obtain
the proposed loss function as follows:

Lp = L1 + L2 + L3

= −log
exp(hL−1

i
wk+bk)

∑K−1

c=0
exp(hL−1

i
wc+bc)

−λ
∑ni

t=1 αi,tlog
exp(hL−1

i,t
wk+bk)

∑K−1

c=0
exp(hL−1

i,t
wc+bc)

+ω(m)
∑ni

t=1 ‖αi,t − α̃i,t‖
2
2 .

(7)

where ω(m) is an unsupervised ramp-up function depending
on the epoch number m to gradually enhance the weight of
the consistency cost L3.

Attention Mechanism Analysis

In this subsection, we first analyze the relationship between
the proposed attention mechanism and the popular max-
pooling operator in Theorem 1. Next, we discuss a lower
bound of the main objective function L1 of Eq. (7) in Theo-
rem 2 and explain the motivation of adding a regularization
term L2. Finally, we present a lower bound of the regular-
ization term L2 in Theorem 3 and show the relationship be-
tween the instance weight and the loss of the regularization
term in Theorem 4, which demonstrates that the regulariza-
tion term can boost the instance recall. All proofs of Theo-
rems 1-4 are provided in the supplemental material.

Theorem 1. In one bag, when the weight of one instance
is close to 1, e.g. αi,j → 1, the probability of a bag being
the k-th class is approximately equal to that of this instance
belonging to the k-th class.

Theorem 1 suggests that when the weight of one instance
is close to 1 in one bag, the attention mechanism can have
almost the same effect as max-pooling to select only one
instance. However, different from the max-pooling operator
that usually updates parameters through only one instance,
the attention mechanism updates the weight and model pa-
rameters through all instances, and thus it is more smooth
than the max-pooling operator, thereby yielding better pre-
diction performance. .

Theorem 2. Suppose that the i-th bag belongs to the k-th

class and contains ni instances, qi,t,k =
exp(zi,t,k)

∑K−1

c=0
exp(zi,t,c)

denotes the estimated class probability of the t-th instance
belonging to the k-th class. For the main objective function
L1 in Eq. (7), there exists:

L1 ≥

∑K−1

c=0,c �=k

∏ni
t=1

(
qi,t,c

qi,t,k
)αi,t

1+
∑K−1

c=0,c �=k

∏ni
t=1

(
qi,t,c

qi,t,k
)αi,t

. (8)

Eq. (8) suggests that when L1 → 0, at least one instance
in a bag belongs to the k-th class. Specifically, for any one
of instances, if it has

qi,t,c
qi,t,k

→ 0 (c ∈ {0, 1, 2, · · · ,K − 1}

and c �= k) and αi,t >> 0, then L1 → 0. However, L1 → 0
cannot theoretically guarantee that more than one instance
belong to the k-th class, thereby leading to the low recall
of instances. To address this issue, i.e. to ensure that more
instances with large weights share the labels with the bag,
we propose the attention mechanism and add a regulariza-
tion term L2 in Eq. (7). Because the effect of the term L2

depends on the value of λ, we analyze the relations between
its value and the instance recall by the following theorems.

Theorem 3. Suppose that the i-th bag belongs to the k-th
class and contains ni instances, for the regularization term
L2 in Eq. (7), there exists:

L2 ≥ λ

∑ni
t=1

∑K−1

c=0, c �=k
exp(zi,t,c)

∑ni
t=1

∑K−1

c=0
exp(zi,t,c)

. (9)

Theorem 4. Suppose that αi,j is the j-th instance weight in

the i-th bag, which belongs to the k-th class, if αi,j > 2L2

λ
,

the j-th instance will be predicted to the k-th class.

Theorem 4 suggests that λ plays a significant role in ad-
justing the number of instances, which share the labels with
its corresponding bag. Specifically, given fixed values of L2

and αi,j , the larger λ, the more instances belonging to the
same class as its bag, i.e. the higher recall of instances.

Experiments

We evaluate the proposed method, referred to as Loss-
Attention, on multiple benchmark MIL datasets (MUSK1,
MUSK2, FOX, TIGER and ELEPHANT), MNIST-based
and CIFAR-10-based MIL datasets, CIFAR-10 and Tiny
ImageNet image databases. Following (Ilse, Tomczak, and
Welling 2018) (Wang et al. 2018), we adopt 10-fold-cross-
validation and repeat five times per experiment for MIL
and histopathology datasets. For experiments on MNIST-
bags, we utilize a fixed division into training and test sets.
We compare Loss-Attention to recent state-of-the-art meth-
ods and basic algorithms: “Instance+max/mean” and “Em-
bedding+max/mean’. They denote the instance-level and
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Table 1: Results on benchmark MIL databases. We run each experiment five times and report the average classification accuracy
(mean ± standard deviation). We bold the best accuracy on each database and highlight the second best results via underlines.

Method MUSK1 MUSK2 FOX TIGER ELEPHANT

mi-SVM 0.874±N/A 0.836±N/A 0.582±N/A 0.784±N/A 0.822±N/A
MI-SVM 0.779±N/A 0.843±N/A 0.578±N/A 0.840±N/A 0.843±N/A

MI-Kernel 0.880±N/A 0.893±N/A 0.603±N/A 0.842±N/A 0.843±N/A
EM-DD 0.849±0.098 0.869±0.108 0.609±0.101 0.730±0.096 0.771±0.097

mi-Graph 0.889±0.073 0.903±0.086 0.620±0.098 0.860±0.083 0.869±0.078
miVLAD 0.871±0.097 0.872±0.095 0.620±0.098 0.811±0.087 0.850±0.080

miFV 0.909±0.089 0.884±0.094 0.621±0.109 0.813±0.083 0.852±0.081

mi-Net 0.889±0.088 0.858±0.110 0.613±0.078 0.824±0.076 0.858±0.083
MI-Net 0.887±0.091 0.859±0.102 0.622±0.084 0.830±0.072 0.862±0.077

MI-Net with DS 0.894±0.093 0.874±0.097 0.630±0.080 0.845±0.087 0.872±0.072
MI-Net with RC 0.898±0.097 0.873±0.098 0.619±0.104 0.836±0.083 0.857±0.089

Attention 0.892±0.090 0.858±0.106 0.615±0.096 0.839±0.054 0.868±0.054
Gated-Attention 0.900±0.088 0.863±0.094 0.603±0.068 0.845±0.046 0.857±0.064

Loss-Attention 0.917±0.066 0.911±0.063 0.712±0.074 0.897±0.065 0.900±0.069

embedding-level neural networks with MIL pooling layers
using the max or mean operator, respectively. For fairness,
they utilize the same architectures as the proposed method.
To evaluate the performance of MIL methods, we adopt the
following metrics: classification accuracy, precision, recall,
F-score, and the area under the receiver operator operating
characteristic curve (AUC).

MIL datasets classification

We conduct experiments on five popular MIL datasets:
MUSK1, MUSK2, FOX, TIGER and ELEPHANT. Because
these databases contain precomputed features belonging to
two classes and only a small number of instances and bags,
it is usually difficult for neural networks to attain the same
good performance as traditional state-of-the-art methods.
The detailed information about features, instances and bags
in each dataset is shown in Table A1 of the supplemental
material. MUSK1 and MUSK2 are used to predict drug ac-
tivity, and the molecule has the drug effect if and only if one
or more of the conformations of one molecule bind to the tar-
get binding site. One molecule contains multiple shapes, and
a bag is composed of shapes belonging to the same molecule
(Dietterich, Lathrop, and Lozano-Pérez 1997). The remain-
ing three datasets, FOX, TIGER and ELEPHANT, consist of
features extracted from images. Each bag contains a set of
segments obtained from one image. Positive bags are con-
stituted by images with the animal of interest, and negative
bags are made up of images with other animals (Andrews,
Tsochantaridis, and Hofmann 2003). Following (Ilse, Tom-
czak, and Welling 2018) (Wang et al. 2018), we utilize the
same architecture as the MI-NET model (Wang et al. 2018)
except the attention layer and the final layer for the proposed
loss function. The details of architectures, the parameter λ,
ramp-up function ω(m), optimizer and hyperparameters are
shown in the supplemental material (Tables A2, A3 and A4).

Results and discussion: Table 1 shows the classification
accuracy of Mi-SVM and MI-SVM (Andrews, Tsochan-
taridis, and Hofmann 2003), MI-Kernel (Gärtner et al.
2002), EM-DD (Zhang and Goldman 2002), mi Graph
(Zhou, Sun, and Li 2009), miVLDA and miFV (Wei, Wu,
and Zhou 2017), mi-Net, MI-Net, MI-Net with DS, MI-Net

Table 2: Results on MNIST-bags with different numbers of
training bags. Each experiment is repeated 50 times and av-
erage results are reported.

# of training bags 50 100 150 200

Binary (AUC)

Attention+sigmoid 0.858 0.901 0.942 0.961
Gated-Attention+sigmoid 0.869 0.912 0.966 0.968

Instance+max 0.904 0.947 0.952 0.954
Instance+mean 0.800 0.851 0.913 0.939

Embedding+max 0.805 0.943 0.962 0.975
Embedding+mean 0.794 0.847 0.904 0.934

Attention+softmax 0.914 0.963 0.977 0.984
Gated-Attention+softmax 0.908 0.959 0.973 0.979

Loss-Attention 0.931 0.969 0.978 0.984

Multi-class (Accuracy)

Instance+max 0.477 0.750 0.846 0.887
Instance+mean 0.587 0.774 0.865 0.917

Embedding+max 0.635 0.796 0.879 0.918
Embedding+mean 0.582 0.774 0.869 0.920

Attention+softmax 0.753 0.885 0.923 0.938
Gated-Attention+softmax 0.720 0.869 0.911 0.930

Loss-Attention 0.765 0.892 0.917 0.939

with RC (Wang et al. 2018), Attention and Gated-Attention
(Ilse, Tomczak, and Welling 2018), and the proposed Loss-
Attention method. It illustrates that Loss-Attention consis-
tently achieves the best average accuracy among all algo-
rithms on the five datasets. These results demonstrate the
effectiveness and efficiency of the proposed method.

MNIST-based MIL datasets classification

Here, we create challenging datasets for binary and multi-
class classification using images from the popular MNIST
dataset to evaluate Loss-Attention, the basic algorithms: In-
stance+max/mean and Embedding+max/mean, and the com-
parative ones: Attention and Gated-Attention (Ilse, Tom-
czak, and Welling 2018). Note that all basic algorithms uti-
lize the softmax+cross-entropy functions for bag classifica-
tion. Unlike classic MIL datasets using precomputed fea-
tures to represent instances, created bags consist of a ran-
dom number of 28× 28 grayscale images selected from the
MNIST dataset. The number of images in a bag is Gaussian-
distributed, with the mean bag size and the variance being 10
and 2, respectively. We build training sets with 50, 100, 150
and 200 bags, respectively, and a test set containing 1,000
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Figure 2: The instance precision, recall and F-score of different attention based MIL algorithms using 50 training bags from
MNIST-based MIL datasets for binary and multi-class classification.
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Figure 3: The instance precision, recall and F-score of Loss-Attention with different values of λ on MNIST-bags for binary and
multi-class classification.

bags. For a binary classification scenario, following (Ilse,
Tomczak, and Welling 2018), a bag is labeled as positive
if it contains one or more images with the digit ‘9’, other-
wise negative. For a multi-class classification scenario, tar-
get numbers are the digits ‘3’, ’5’ and ’9’ and one bag at
most contains one of these three digits. The bags contain-
ing these digits of ‘3’, ’5’ and ’9’ are given labels ‘1’, ‘2’
and ‘3’, respectively. If one bag is not composed of any-
one of these three digits, the bag is labeled as ‘0’. For bi-
nary and multi-class classification experiments, we utilize
AUC and classification accuracy as evaluation metrics, re-
spectively. To evaluate the models’ interpretation capability,
we quantitatively investigate their retrieval performance on
target digits using precision, recall and F-score metrics. The
architectures used in this experiment are on the basis of a
LeNet5 model (LeCun et al. 1998). The details of architec-
tures, the parameter λ, ramp-up function ω(m), optimizer
and hyperparameters are shown in the supplemental mate-
rial (Tables A8 and A9).

Results and discussion: Table 2 displays the AUC and
classification accuracy of the basic algorithms and three at-
tention mechanisms on MNIST-bags. Attention and Gated-
Attention using the softmax function can obtain higher AUC
than that using the sigmoid function. Additionally, all atten-
tion mechanisms have superior performance over the ba-
sic algorithms. Moreover, Loss-Attention performs better
than Attention and Gated-Attention on binary and multi-
class classification tasks in most of the cases. To evaluate
the interpretation capability of attention based MIL algo-
rithms, Figure 2 presents their instance precision, recall and
F-score on different values of α with 50 training bags, where
α denotes the weight of instances. When α > 0.5, Loss-
Attention can achieve higher precision, recall and F-score
of instances than Attention and Gated-Attention. It suggests
that Loss-Attention can better interpret the instance with a

large weight, e.g. α > 0.5, which are more attractive in
practice. When using other numbers of training bags, we can
observe similar findings.

Ablation study and parameter analysis: Because λ in
Loss-Attention plays a significant role in instance interpreta-
tion, here we present the influence of different values of λ on
instance interpretation and verify the proposed theorems. We
conduct binary and multi-class classification experiments on
MNIST based MIL datasets, by using a training set with
50 bags and a test set with 1,000 bags. Figure 3 displays
the instance precision, recall and F-score of Loss-Attention
with λ ∈

[

0, 10−4, 10−3, 10−2, 10−1, 1, 10, 102
]

. Note that
when λ = 0, it means that the regularization term L2 is re-
moved. Figure 3(a)-(b) and (d)-(e) show that for large α, e.g.
α > 0.5, the smaller value of λ, the higher precision but the
much lower recall. Because the loss of the main objective in
Eq. (7) can be decreasing to small even when only one in-
stance is predicted to share the label with the bag. We have
theoretically proved this statement in Theorem 2. Figure 3(c)
and (f) illustrate that Loss-Attention with λ > 0 can achieve
higher F-score than that with λ = 0. They demonstrate the
effectiveness of the regularization term, which can boost the
recall of instances with large α, e.g. α > 0.5, by increasing
the value of λ (please refer to Theorem 4). Similar findings
can be observed when using other numbers of training bags.
Additionally, here we do not analyze ω(m), because it is of-
ten used on large-scale databases and deep neural networks,
upon which its effectiveness has been demonstrated by pre-
vious literature (Laine and Aila 2016).

CIFAR-10-based MIL datasets

To better evaluate Loss-Attention, we create more challeng-
ing MIL datasets for multi-class classification using images
selected from the CIFAR-10 database, whose images belong
to 10 categories. Similar to Section 4.3, we build training
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Table 3: Results on CIFAR10-bags with different numbers
of training bags. Each experiment is repeated 20 times and
average results are reported.

Mean bag size 10 50

# of training bags 500 5000 500 5000

Attention+softmax 0.384 0.507 0.610 0.823
Gated-Attention+softmax 0.370 0.476 0.596 0.769

Loss-Attention 0.395 0.519 0.615 0.839

sets with 500 and 5,000 bags, respectively, and a test set
consisting of 1,000 bags. The training and test sets contain
two types of bags, one type is with the mean bag size and
the variance being 10 and 2, respectively, the second type is
with the mean bag size and the variance being 50 and 10,
respectively. Additionally, the target classes are ‘3’, ’5’ and
’9’ and one bag at most contains images from one of these
three classes. The details of architectures, the parameter λ,
ramp-up function ω(m), optimizer and hyperparameters are
shown in the supplemental material (Tables A10 and A11).
We present the bag classification results of Attention, Gated-
Attention and Loss-Attention in Table 3. It further suggests
that Loss-Attention can achieve superior classification accu-
racy over Attention and Gated-Attention on multi-class MIL
tasks.

Image classification and localization

Here, we conduct experiments on two popular multi-class
single-label databases, CIFAR-10 and tiny ImageNet (Le
and Yang 2015), to evaluate the performance of Loss-
Attention on image classification and localization only us-
ing image labels. The CIFAR-10 database consists of a
training set with 50,000 images and a test set containing
10,000 images. The tiny ImageNet database has 200 cate-
gories and each class contains 500 training images, 50 val-
idation images and 50 test images. We adopt training im-
ages for training and validation images for test. We compare
Loss-Attention against mean-pooling, max-pooling, Atten-
tion and Gated-Attention. We adopt them to replace the
global average pooling (mean-pooling) layer in ResNet18
(He et al. 2016), because each point in the feature map ob-
tained by convolutional layers can be viewed as an instance.
To evaluate the localization ability, we first rescale the fea-
ture map to the original image size, and then each point in
the feature map will correspond to one patch in the origi-
nal image. If half of the patch with the maximum weight
falls within the ground truth bounding box of an object, we
label the predicted location as correct; otherwise, we count
the prediction as wrong. Then we calculate the average pre-
cision (AP) to describe the localization prediction accuracy.
The details of architectures, the parameter λ, ramp-up func-
tion ω(m), optimizer and hyperparameters are displayed in
the supplemental material (Tables A12 and A13).

Table 4 presents the image classification accuracy of five
methods on the CIFAR-10 database with 1,000, 5,000 and
all images selected from the training set. As we can see,
Loss-Attention can achieve 2.1%, 1.1% and 0.2% higher
accuracy than the best competitor mean-pooling when us-
ing 1,000, 5,000 and all training images, respectively. Ta-
ble 5 shows their image classification and localization accu-

Table 4: Image average classification accuracy on the
CIFAR-10 database with 1000, 5000 and all training images
selected (10 runs for 1000 and 5000 training images, and 5
runs for all training images).

Methods 1000 5000 All

max-pooling 0.571 0.815 0.944
mean-pooling 0.584 0.819 0.946

Attention+softmax 0.557 0.791 0.933
Gated-Attention+softmax 0.557 0.794 0.933

Loss-Attention 0.605 0.830 0.948

Table 5: Image and localization classification accuracy of
five methods on the tiny ImageNet database.

Methods
classification localization

top-1 top-5 AP

max-pooling 0.575 0.780 0.748
mean-pooling 0.592 0.791 0.704

Attention+softmax 0.554 0.776 0.499
Gated-Attention+softmax 0.557 0.777 0.499

Loss-Attention 0.598 0.785 0.756

racy on the tiny ImageNet database. It suggests that Loss-
Attention can achieve the best top-1 classification accuracy
and localization accuracy among five methods. Although
mean-pooling can obtain the best top-5 classification ac-
curacy, its localization accuracy is significantly worse than
Loss-Attention. Tables 4-5 illustrate that Loss-Attention can
obtain better classification and localization accuracy than
Attention and Gated-Attention. This might be caused by that
Loss-Attention can learn patch (instance) weights and pre-
dictions, and image (bag) predictions simultaneously, and
smooth the training process, thereby largely reducing the
possibility and effect of assigning large weights to wrong
instances, which are out of the bounding box.

Conclusions

In this paper, we present a novel loss based attention mech-
anism to simultaneously learn instance weights and predic-
tions, and bag predictions for deep multiple instance learn-
ing, by connecting the attention mechanism with the soft-
max and cross-entropy loss functions. The proposed atten-
tion mechanism learns instance weights by using the param-
eters of the fully connected layer for bag predictions, and di-
rectly calculates instance weights based on the loss function.
Additionally, a regularization term, consisting of instance
weights and cross-entropy functions, is proposed to further
boost the instance recall. And a consistency cost, forming
a consensus prediction of learned instance weights, is in-
troduced into the final loss to smooth the training process
of neural networks. Furthermore, we theoretically analyze
the proposed loss based attention mechanism and prove that
the regularization term can boost the instance recall. Exper-
iments on multiple small and large-scale databases demon-
strate that the proposed method outperforms state-of-the-art
methods. Although our method can achieve promising per-
formance on multi-class single-label tasks, it cannot be di-
rectly applied to multi-label tasks because of the inferior per-
formance of the softmax function. Therefore, we will extend
the proposed method to handle multi-label tasks in the fu-
ture.
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