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ABSTRACT The properties of giant magnetostrictive material (GMM) are very sensitive to external 
compressive stress. Knowledge of these key properties is of essential importance in practical applications 
such as high-power underwater transducers. Although the parameters of GMM have been extensively 
studied, characterization and analysis of magnetic, elastic, and piezoelectric losses under different 
compressive stresses are rarely reported due to the difficulty in experimentally realizing the ideal 
mechanical free or clamped boundary conditions. In this study, we designed a longitudinal transducer for 
complex parameters characterization of GMM. We successfully characterize the key three losses in GMM 
using a multi-degree-of-freedom (MDOF) lumped parameter equivalent circuit model (LECM), 
meticulously incorporating the surface contact damping, stiffness, and structural losses. MDOF LECM 
provides a novel idea for loss characterization of GMM under compressive stress. In contrast to prior-art 
parameters characterization based on the distributed parameter equivalent circuit model (DECM), the 
proposed characterization based on MDOF LECM shows apparent superiority in terms of global sensitivity. 
The intensive losses of GMM for ten-time characterizations show high stability and are all positive. 
Statistical analysis of intensive losses’ dependency on the compressive stress is performed. A longitudinal 
transducer is designed for experimental verification. Finally, 95% prediction and confidence intervals for 
the variation trend of the intensive losses in relationship with compressive stress are obtained. 

INDEX TERMS Giant magnetostrictive material (GMM); Intensive Loss; Compressive Stress; Multi-
degree-of-freedom (MDOF); Lumped-parameter Equivalent Circuit Model (LECM)

I. INTRODUCTION 
High-power giant magnetostrictive devices, such as 
underwater transducers and smart actuators, have been 
widely used in marine engineering and aerospace in recent 
years [1]–[5]. Evaluating the heat generated by a device has 
become a crucial part of practical applications [6]–[8]. The 
main factor that generates heat is the losses of GMM: 
magnetic losses, elastic losses, and piezoelectric losses [9]. 
Similar to piezoelectric materials, according to the 
magnetic and mechanical boundary conditions of GMMs 
[2], the losses of GMM are further divided into “intensive” 
and “extensive” losses [7], [9], and the corresponding 
material complex parameters are shown in equations (1) 
and (2). 
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In Equation (1), *  is stress (σ)-constant complex 

permeability, H *S is magnetic field (H)-constant elastic 

compliance, d* is complex piezoelectric coefficient. tan ' ,

tan ' and tan '  are the magnetic, elastic and piezoelectric 

loss tangents, respectively, which are “intensive” losses. In 

Equation (2), s*  is strain (s)-constant inverse complex 

permeability ， B*c is magnetic induction (B)-constant 
elastic stiffness, h* is the inverse complex piezoelectric 
constant d*.And tan , tan and tan  are “extensive” 

losses.  
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The “intensive” and “extensive” losses correspond to two 
distinct magnetic and mechanical boundary conditions. 
According to the direction of the loss hysteresis loop, 
intensive losses are negative signs and extensive losses are 
positive signs, which is also a mathematical convention 
[10]. Usually, intensive losses could be used in finite 
element model (FEM) simulation for response analysis of 
transducers [11][12].  

The parameters of GMM considering losses are very 
sensitive to compressive stress, which is required in 
practical applications [13]. Although many researchers have 
explored the relationship between the permeability, 
compliance coefficient, and piezomagnetic coefficient (real 
parts) of GMM with compressive stress [13], [14], the three 
types of losses (imaginary parts) are rarely discussed. 
Greenough and Reed et al. [15], [16] first characterized 
three losses of GMMs by complex material quantities. They 
measured the impedance curve of a “free-stand” GMM rod 
without compressive stress, established a plane wave model 
(PWM) under the boundary of σ-constant and B-constant, 
and extracted the real and imaginary parts (losses) of the 
complex parameters of the GMM rod through intelligent 
algorithms. However, the losses obtained by this method 
are under zero compressive stress, which greatly deviates 
from the application. Greenough et al. [17] then applied 
disc springs to apply compressive stress to a GMM rod, and 
used the same PWM to extract the material losses at 5 Mpa. 
However, the signs of obtained imaginary parts appear to 
be abnormal, which contradicts the theoretical expectation. 
This is because all the losses of the device are “integrated” 
into the material losses. When investigating on the effect of 
compressive stress on material properties, it is inevitable to 
introduce compressive stress-applying devices (e.g., disc 
springs, stress rods, and masses) [18], so the measured 
impedance is the performance of the entire device, instead 
of individual material properties [17], [19], [20]. Therefore, 
such a transducer for material parameter characterization 
not only has material loss, but also the structural damping 
losses of the mechanical components and the friction losses 
of the contact surface [21], [22]. In [21], structural losses 
and friction losses account for 45.7% and 45.3% of the total 
transducer losses, respectively, so these losses cannot be 
ignored. When studying material losses under compressive 
pressure, it is necessary to separate the properties of 
materials and devices [17], [18], [21]. 

In the field of piezoelectric materials which are also 
widely used in marine and aerospace[23]–[26], there have 
been a variety of methods to characterize the losses of 
materials [19], [20], [27]. Some researchers have measured 
the impedance curves of piezoelectric materials and 
constructed equivalent circuits, which are an effective way 
to study piezoelectric materials[28]–[30]. The difference 
between 1D model [31]–[34] or the 2D and 3D FEM data 
[35], [36] between experimental data is then minimized by 
intelligent algorithms. This kind of methods is also called 

the iterative method. Other researchers have designed non-
iterative methods to measure and calculate complex 
parameters at characteristic frequencies[10], [37], [38]. In 
addition, some researchers combine iterative and non-
iterative methods to characterize all the complex parameters 
of materials [39], [40].  

However, most studies on piezoelectric materials are still 
carried out under the mechanical free boundary of the 
material without compressive stress, which means that the 
losses under zero compressive stress are characterized [21]-
[34]. This is mainly due to the requirement to eliminate the 
clamping effect caused by the compressive stress from the 
applying device, which increases the complexity of the 
experiment and makes it difficult to achieve ideal σ-
constant boundary conditions [18], [41]. In the latest 
research, Daneshpajooh et al.[18] has made great progress 
in the study of the piezoelectric losses under compressive 
stress. A piezoelectric transducer is carefully designed to 
overcome the clamping effect so that both ends of the 
transducer have σ-constant boundaries. Based on PWM, the 
effects of compressive stress on dielectric, elastic, and 
piezoelectric losses are more accurately characterized. In 
[42], a longitudinal vibration transducer with a free 
boundary at one end and a clamped boundary at the other is 
developed. The structural damping of the transducer and the 
contact damping of the interface are measured and 
calculated to thus separate the device losses and material 
losses. However, only a single-degree-of-freedom lumped-
parameter model is used. The GMM rod, magnetic column, 
and displacement plunger of the transducer are assumed to 
move at the same velocity. As a result, the accuracy of the 
scheme is greatly undermined. 

In this study, an MDOF LECM that meticulously 
incorporates the surface contact damping and stiffness is 
innovatively established to improve the accuracy of the 
impedance simulation. The model can reflect the effect of 
contact damping and stiffness on the motion state of each 
degree of freedom in the transducer. The global sensitivity 
and stability of parameter characterization by using the 
newly proposed MDOF LECM and the classical DECM 
(also known as the PWM) were compared. The proposed 
MDOF LECM performs well in terms of global sensitivity 
of parameters and stability of characterization. Finally, 
through statistical analysis, 95% prediction and confidence 
intervals are calculated for the variation trend of the 
intensive losses under different compressive stress. 
II. DEVICES AND EXPERIMENTS 
Herein, a longitudinal transducer with one end bounded 
and one end free was designed and fabricated as the 
material characterization device. The impedance test, the 
contact damping and stiffness test of the main contact 
surface, and the structural damping test of the 
displacement plunger were carried out. 

A. THE LONGITUDINAL TRANSDUCER DESIGN 
A screw-clamped longitudinal vibration transducer is 
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designed to characterize the material parameters of the k33 

mode under different compressive stress, the schematic 
diagram of which is shown in Fig. 2(a). To remove the 
clamping effect [18], eight spring washers between the 
stainless steel pre-tightening end cover and the 
displacement plunger are placed. Compressive stress is 
applied through pre-stress adjusting screws while the free 
vibration boundary condition for the GMM rod can be 
maintained. A 20×100 mm GMM rod with a high 
length/radius ratio is used as the characterization sample. 
On one hand, samples with a high length/radius ratio can 
keep the fundamental longitudinally resonance away from 
higher resonance frequencies; on the other hand, it can 
more easily eliminate the clamping effect, so that the k33 
vibration mode can be obtained without interference or 
spurious modes.  

FEM is used to analyze the magnetic field distribution 
inside the GMM rod. The DC solenoid is 1540 turns, the 
DC is 2 A, the AC solenoid is 940 turns, the effective value 
of the AC is 0.02 A, and the frequency is 1600 Hz. It can be 
seen from Fig. 1(a) that most of the magnetic lines form a 
closed magnetic circuit through the magnet block, the 
GMM rod, the magnetic return path disc, the magnetic 
return path cylinder, and the housing base. Due to the low 
magnetic permeability of the GMM, part of the leakage 
magnetic lines pass through the gap between the coil and 
the GMM rod, as shown in Fig.1(a). The magnetic field 
must be corrected. According to [43], the magnetic flux 
leakage coefficient 2

mk =0.9205 is calculated. 

 

(a)                                        (b) 

FIGURE 1. (a)The distribution of B and magnetic lines; (b)The value of 
the H and B of the central axis of the GMM rod 

The magnetic field strength (H) and magnetic induction 
intensity (B) of the central axis of the GMM rod (red dotted 
line in Fig. 1(a)) are calculated, and both H and B are 
distributed symmetrically about the center point of the 
GMM rod (Fig. 1(b)). The difference between the 
maximum and minimum H is 8.7% and that for B is 8.9%. 
Therefore, the magnetic field in the axial direction of the 
GMM rod can be approximately regarded as a uniform 
distribution. So that the spatial distribution of the magnetic 
field is ignored in this study. Based on the assumption that 
the magnetic field is uniformly distributed, H=NI/lG is used 
to calculate the equivalent magnetic field of the GMM rod 
in the modeling in Section Ⅲ, where H represents the axial 
magnetic field strength, N represents the number of turns of 

the solenoid, I represents the excitation current, and lG 
represents the length of the GMM rod. 

B. EXPERIMENTAL MEASUREMENT 
The base of the longitudinal transducer is fixed on the 
shock-absorbing table, so the end of the GMM rod 
connected to the base is the clamped boundary condition, 
and the other end is the free boundary condition. Use an 
impedance analyzer (KEYSIGHT E4990A) to connect the 
AC solenoid (940 turns) to measure the impedance/phase 
data of the longitudinal transducer. The programmable DC 
power supply (RIGOL DP832) is connected to the DC 
solenoid (1540 turns) and provides 2 A DC. The 
compressive stress is applied by turning the screws, and the 
values of the compressive stress are precisely measured 
using a ring pressure sensor (YAOHUA XK3190). The 
impedance/phase curves of six groups of different 
compressive stresses were measured respectively. The 
detailed measurement procedure of the structural damping 
of the displacement plunger and the detailed calculation 
formulas for the contact damping and stiffness were 
described in a previous study [42]. 

III. MODELS AND METHOD 
A MDOF mechanical model and a distributed mechanical 
model are both constructed for the longitudinal transducer, 
and then the parameters and losses of the GMM rod are 
characterized based on the two aforementioned models by 
particle swarm optimization (PSO) algorithm. 

A. MDOF MECHANICAL MODEL AND MDOF LECM 
There are multiple contact surfaces in the transducer. For 
the longitudinal transducer with one end clamped and one 
end free in this study, the most important contact surfaces 
are the contact surfaces of the GMM rod and the magnetic 
column (G-M surface), and the contact surfaces of the 
magnetic column and the displacement plunger (M-D 
surface) as shown in Fig. 2 (a) indicated by the red circle. 
Their surface morphology was measured using Bruker's 
Contour Elite 3D microscope and is shown on the left of 
Fig. 2(a). The normal contact model of the contact surface 
is equivalent to a spring and a viscous damper [44]–[48]. 
This means that there is energy storage and dissipation at 
the contact surfaces [44]–[48], and the two rough surfaces 
that make up the contact surface have unequal velocities.  

Considering the normal stiffness and contact damping of 
the contact surface, an MDOF mechanical model as shown 
in Fig. 2(b) is established. KC-M and KM-D represent the 
normal equivalent stiffness of the G-M surface and the M-D 
surface, respectively. RC-M and RM-D represent the contact 
damping of G-M surface and M-D surface. MD, MC, and MG 
are the actual mass of the displacement plunger, magnetic 
column, and GMM. Kspr and KGMM represent the stiffness of 
the spring washers and GMM. RG is the mechanical 
damping of the GMM. x1, x2, and x3 are the displacements 
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of the GMM rod, magnetic column and displacement 
plunger, respectively. Therefore, the velocities at both ends 
of the G-M surface are x1̇and x2̇.The velocities at both ends 
of the M-D surface are respectively for x2̇ and x3̇. 

In this transducer device, the stiffness of the magnetic 
column and the displacement plunger are much greater than 
that of the GMM rod, so in the MDOF mechanical model, 
the magnetic column and the displacement plunger are 
equivalent to ideal rigid bodies without compression and 

bending. One end of the GMM connected to the bass is 
clamped, and the velocity is zero. According to the kinetic 
energy conservation law, the equivalent mass of the GMM 
rod is calculated to be one-third of the actual mass. At the 
same time, there are non-negligible mechanical losses of 
GMM, so in the MDOF mechanical model, the GMM rod is 
equivalent to a spring with mass and damping. 
 

 

FIGURE 2. The structural diagram of the longitudinal transducer and two mechanical models. 
Based on the MDOF mechanical model shown in Fig. 

2(b), the equation of motion is established as follows [49]: 
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According to the impedance analogy: mass is analogous 
to inductance, and velocity is analogous to current. So the 
equivalent circuit equation of the mechanical part is as 
follows: 
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Combined with the theory of electro-mechanical 
conversion [2], [50], the MDOF LECM is obtained as 
shown in Fig.3. Among them, the permeability 

33
σ* , 

compliance coefficient H*
33S  and coupling coefficient *

33d  of 

GMM rod are all complex numbers [9].  

 

FIGURE 3. The Schematic of MDOF LECM for the longitudinal 
transducer 

The left side of the circuit represents the electrical part 
and the right side represents the mechanical part. Electrical 
elements and mechanical elements can be converted to each 
other by the conversion factor Tem/Tme. The expression for 
the conversion factor is: 

* H*
em me G 33 33 G/T T NA d S l                        (4) 

Among them, N, A, and lG represent the number of turns 
of the excitation solenoid, the cross-sectional area and 
length of the GMM rod, respectively. 

The impedance Ze1 of the electrical part is expressed as: 

e1 0 1 GMM(( ) / )Z R j R j L j                 (5) 

where R0 represents the DC impedance of the solenoid, R1 
represents the frequency-dependent impedance caused by 
magnetic losses of GMM, and its expression is Eq. (6). 

GMM r b=L L  , Lb represents the inductance of the wound 

solenoid when the GMM is clamped, and its expression is 
Eq. (6). 

'
1 i 33 b= ( tan  )R L                         (6) 

* 2 ' 2
b 33 33 G G=(1 ( ) ) /L k N A l-                   (7) 

where χr and χi are the real and imaginary parts of the 
eddy factor, respectively [51]. 

* 2 * * H*
33 33 33( ) / ( )k d S

  respects the magneto-mechanical 

coupling. 
The impedance Zt1 of the mechanical part is expressed as: 
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(8) 
The transducer’s electrical impedance frequency 

response function Z1 is given as follows:  
1 e1 em me t1= /Z Z T T Z                                (9) 

The equation of phase P1 is: 

 1
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P
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Z 
                          (10) 

B. DISTRIBUTED MECHANICAL MODEL AND DECM 
Fig.2(c) shows a distributed mechanical model of the 
transducer. In the distributed model, the displacement 
plunger, magnetic column, and GMM rod are divided into n 
adjacent small lumped elements Δ Z, Δ Z=L/n. L 
represents the length of the object. Since the element ΔZ is 
much smaller than the wavelength, it can be represented as 
a mass and a spring. MGx and KGx

* （x=1,2,···n）represent 
the mass and complex stiffness of each element in the 
GMM rod, and ξ x represents the longitudinal displacement 
of the xth element of the GMM rod. MCx and K

Cx

*

（x=1,2,···n）are the mass and complex stiffness of each 
element in the magnetic column, respectively. τx represents 
the longitudinal displacement of the xth element of the 
magnetic column. MDx and K

Dx

* (x=1,2,···n)represent the 
mass and complex stiffness of each element in the 
displacement plunger, and ζx represents the longitudinal 
displacement of the xth element of the displacement 
plunger. 

In the distributed parameter model, the contact surface is 
rarely considered [2]. The velocities at both ends of the 
contact surface are normally treated to be equal, so the 
displacement plunger, magnetic column, and GMM rod are 
directly connected in series within the distributed 
mechanical model [2]. 

The corresponding DECM is shown in Fig.4. The detailed 
derivation process is shown in Appendix A [2]. Based on 
algebraic operations, the equivalent circuit of the 
mechanical side is usually represented by a "T network". 
The expressions for each element are shown in (11)-(15). 

GG G G G G- cotZ j c A k L                        (11) 

C1 c c c c ctan( /2)Z j c A k l                      (12) 

C2 c c c c c- /sin( )Z j c A k l                         (13) 

D1 d d d d dtan( /2)Z j c A k l                      (14) 

D2 d d d d d- /sin( )Z j c A k l                      (15) 

The subscript “G” stands for GMM rod, the subscript “C” 
stands for the magnetic column, the subscript “D” for the 
displacement plunger, and ρ, c, k, A, and L stand for density, 
wave velocity, wave number, cross-section, and length, 

respectively. The wave speed is expressed as H*
331/c S , 

and the wave number is /k c . 

The impedance Zt2 of the mechanical part is expressed as: 
2

t2 D1 D2 D1 C1 C2 C1 G 1 GMM( // )// ( )Z Z Z Z Z Z LRZ Z        (16) 

The transducer’s electrical impedance frequency 
response function Z2 is given as follows: 

 2
2 0 1 GMM t2 em GMM( ) / /[ / ( / ) ]Z R R j L Z T L     (17) 

The equation of phase P2 is: 
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FIGURE 4. The Schematic of DECM for the longitudinal transducer 

C. THE CHARACTERIZATION METHOD 
In this paper, the material parameters and losses are 
characterized by parameter identification. The PSO 
algorithm is used iteratively to find the unknowns that 
minimize the value of fitness function. Three different 
parameter characterization methods are compared.  

Method A is based on the MDOF LECM, and the process 
of characterization can be divided into two steps. The first 
step determines the real parts of the three complex 
parameters, and sets the unknowns to be identified as 

' ' ' T
1 33 33 33=[   ]  d S and ' ' ' T

2 33 33 33[tan  tan  tan ]    . Eq. (9) is used 

to generate the simulated electrical impedance, denoted as 

A 1 2
ˆ ( , , )Z i   , and the experimentally measured impedance 

modulus value is denoted as ( )Z i . The fitness function 

zA( )F i of PSO is shown in Eq. (19), which is the root mean 

square error (RMSE) between experimental impedance data 
and simulated impedance data. I represent the total number 
of sampling points, and i represent the ith sampling point. 
The identified 1  is the real part of the complex parameter 

and is used as the known number in the second step, and the 
identified 2 is discarded. The second step determines the 

three losses of the material. Setting the unknown in the 
model as ' ' ' T

33 33 33=[ tan tan  tan ]    , Eq.(10) is used to 

generate the simulated phase, denoted as 
Â ( , )P i  , and the 

experimentally measured impedance modulus value as 

pA ( )F i . The fitness function of parameter identification is 

shown in Eq. (20), which is the RMSE between the 
experimental phase and the simulated phase data. 

Method B is based on the DECM, which is also the same 
as method A to determine the complex parameters of the 
material in two steps. Equations (17) and (18) are used to 
generate the simulated electrical impedance and simulated 

phase, denoted as 
B 1 2

ˆ ( , , )Z i   and B̂( , )P i  , respectively. 
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The fitness function of the first step is zB ( )F i , as shown in 

Eq. (21), and the fitness function of the second step is 

pB ( )F i , as shown in Eq. (22).  

Method C is also based on the DECM, but the complex 
parameters are determined in only one step of identification, 
which is also a classic method. That is, 1  and 2  are 

identified by the fitness function zC zB( ) ( )F i F i , are used 

as the final result for the real and imaginary parts of the 
complex parameters, respectively. 

2
zA A 1 2

1 ˆ( )= (Z( ) ( , , ))
I

i

F i i Z i
I

               (19) 

2
pA A

1 ˆ( )= ( ( ) ( , ))
I

i

F i P i P i
I

                   (20) 

2
zB 1 2

1 ˆ( )= (Z ( ) ( , , ))
I

B B
i

F i i Z i
I

              (21) 

2
pB B

1 ˆ( )= ( ( ) ( , ))
I

i

F i P i P i
I

                   (22) 

IV. EXPERIMENT RESULTS 
The impedance curves of longitudinal vibration 

transducers under 6 groups of compressive stress (6.0Mpa, 
10.0Mpa, 17.5Mpa, 20.8Mpa, 25.3Mpa, 30.0Mpa) were 
measured respectively. The real and imaginary parts (losses) 
of the complex parameters were characterized by methods 
A-C, respectively. To compare the three methods, the data 
of 10.0 Mpa is selected as an example, and the global 

sensitivity analysis and stability analysis of parameter 
characterization are carried out. 

A. GLOBAL SENSITIVITIES ANALYSIS 
For comparison, the characterization results based on the 
two fitness functions were normalized, and all parameter 
values were divided by the corresponding minimum of 
fitness. And the width ΔF is used to quantify the sensitivity 
when the normalized fitness value =1.1. 

The effects of methods A-C were assessed by global 
sensitivity analysis. If the fitness function value is more 
sensitive to one parameter, the identified parameter is closer 
to its true value. Therefore, sensitivity analysis helps in 
rational selection and judgment of parameter identification 
results when the true value is unknown [52], [53]. Usually, 
a scatter plot of the parameter distribution during the 
algorithm iteration is drawn to show the sensitivity. The 
sharpness at the bottom of the scatterplot reflects the 
sensitivity of the fitness function to the parameters [34]. 

Fig. 5 shows the scatter plots of the three methods to 
identify material parameters and losses at 10.0 Mpa. The 
red, blue, and black scatter represent Methods A-C, 
respectively. To facilitate comparison, normalization is 
performed: all fitness values are divided by the minimum 
fitness value, and the parameter value to be determined is 
divided by the average number of the search range. The 
abscissa and ordinate represent the normalized parameter 
value and fitness value, respectively. 
 

 
(a)                                                             (b)                                                                (c) 

 
(d)                                                             (e)                                                                (f) 

FIGURE 5. Sensitivities of six parameters in methods A-C. ΔF is defined in the text and is used to quantify global sensitivity. 
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Red triangles are used to represent local minima. And 
using the width ΔF at normalized fitness value = 1.1 to 
quantify the sensitivity, the quantified value is written in 
Fig. 5. The smaller the ΔF, the higher the sensitivity of the 
fitness function to this parameter. 

It can be seen from Fig.5 (a-c) that the fitness functions 
of methods A-C are all highly sensitive to μ33', S33', and d33', 
and ΔF of the three methods are similar. This shows that all 
three methods can extract the real part of the parameter that 
is closer to the true value. In addition, methods B and C are 
the same way to characterize the real part of material 
parameters, so their scatter points are coincident. 

However, the sensitivities of the fitness functions of the 

three methods to '
33tan , '

33tan  and '
33tan are quite 

different (Fig. 5(d-f)). Among them, method C has the 
lowest sensitivity, and the basin of the scatter plot is almost 
flat, indicating that the loss value represented by method C 
is less reliable. The fitness value of method B has a high 

sensitivity to '
33tan , which is greatly improved compared 

to method C, but the sensitivity to '
33tan  and '

33tan is still 

very low, indicating that method B cannot obtain reliable 
values. Note that the fitness function of Method A is much 
more sensitive to all three losses, and ΔF of each parameter 
is ten times smaller than that of method C. Therefore, 
Method A characterizes more reliable three losses of GMM 
under compressive stress. 

B. STABILITY AND REPEATABILITY 
Based on methods A-C, 10 random parameter extractions 
were performed, and the stability of the three methods was 
analyzed [54]. This is a commonly used way to analyze the 
effect of parameter identification. The parameter settings of 
the PSO algorithm in the three methods remain the same, in 
which the learning factor c1=c2=2, and the inertia weight 
w=0.5, the particle swarm size is 12. 

 
(a)                                                             (b)                                                                (c) 

FIGURE 6. Comparison of the results of ten extractions with the three different methods at 10 Mpa. 
TABLE I 

EXTRACTION RESULTS AND THE COEFFICIENTS OF VARIATION FOR SIX PARAMETERS 

Parameter Search Range 
Method A Method B Method C 

xത |cv|% xത |cv|% xത |cv|% 
µ33

'  [2,3] 2.842 9.523 × 10−5 2.822 0.006 2.822 0.006 
S33

'  [1 × 10−12, 1 × 10−10] 2.552 × 10−11 1.499 × 10−4 2.445 × 10−11 0.002 2.445 × 10−11 0.002 
d33

'  [5 × 10−10, 5 × 10−9] 1.673 × 10−9 6.231 × 10−4 1.652 × 10−9 0.005 1.654 × 10−9 0.007 
'
33tan  [−0.1, 0.1] 0.045 0.005 0.014 0.505 −0.043 1.560 
'
33tan  [−0.1, 0.1] 0.018 0.003 −0.002 5.334 0.015 2.706 
'
33tan  [−0.1, 0.1] 0.016 0.008 −0.015 1.202 0.009 3.937 

Fig.6 shows the results of 10 parameter identifications 
for methods A-C. The results show that the stability of the 
real part of the parameters identified by the three methods 
is relatively high. However, the elastic losses and 
piezomagnetic losses identified by methods B and C have 
poor stability, and the loss value fluctuates between positive 
and negative values. This is untrue, particularly under 
small-signal excitation. The three losses extracted by 
Method A have the highest stability. Stability is quantified 
using the coefficient of variation, calculated as 

( / ) 100%cv    .ψ represents the standard deviation, 

and η represents the mean of the set of data. 

The mean value of 10 identifications of the complex 
parameters of the material at 10.0 Mpa, the absolute value 
of the coefficient of variation, and the parameter search 
range are all listed in Table 1. Method A has the lowest 
coefficient of variation for 10 times of loss identification, 
indicating the highest stability. The coefficient of variation 
corresponding to methods A-C also has a similar law to the 
sensitivity. The smaller the sensitivity ΔF, the smaller the 
coefficient of variation, indicating that the extracted 
parameters are more reliable and closer to the true value. 
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C. SIMULATION AND EXPERIMENTS 
Fig. 7 shows the comparison between the simulation data 
and the experimental data at 10 Mpa. Fig.8 is the RMSE 
between the simulated data and the experimental data under 
different compressive stresses. 

 
FIGURE 7. Comparison of the experimental data and simulation data 
under compressive stresses of 10.0 Mpa  

 

 
FIGURE 8. RMSE of parameter extraction under different compressive 
stresses 

Simulations were performed using the parameters 
characterized by method A. The simulated impedance 
modulus and phase obtained were in excellent agreement 
with the experimental curves (Fig. 7), and RMSEs is 1.06 
and 1.53, respectively (Fig. 8). Similarly, for simulations 
using the parameters characterized by method B, the model 
data and experimental data also have a high degree of 
similarity, and almost coincide with the curves obtained by 
method A (Fig. 7). However, according to Fig. 6 and 
TABLE I, it can be seen that the material losses represented 
by method B have negative values and poor stability. This 

shows that although method B makes the model fit well, the 
loss value of the characterization is abnormal. 

For method C, the simulated impedance data were 
consistent with the experimental data (Fig.7) with an RMSE 
of 1.08 (Fig.8). But the simulated phase data are 
significantly different from the experimental data and the 
simulated data are smaller than the experimental phase data 
(Fig.7), and the RMSE between them is 2.81 (Fig.8). This 
also illustrates that Method C cannot reliably characterize 
the losses of the GMM.  

The above results show that we need to comprehensively 
consider sensitivity, stability, and simulation to judge the 
quality of the three methods, and the best method is method 
A as expected. In addition, Fig.8 shows that the RMSEs 
under different compressive stresses all satisfy the above 
rules. 

D. PARAMETER CHARACTERIZATION RESULTS 
Based on method A, material parameters and loss tangent 
values under different compressive stress were identified, 
and polynomial fitting was performed on the extracted 
results. 

 The goodness of fit R2 was used to evaluate how well 
the model fits the experimental values. R2=SSR/SST, where: 
SST is the total sum of squares, and SSR is the regression 
sum of squares. 

Let Y(P) represent the complex parameter of the GMM 
and P represent the pressure, the possible models of Y(P) 
are: 

Y(P)= B0+B1×P+ B2×P2+ B2×P3                 (23) 
where Bi is the coefficients of the polynomial model. 

TABLE Ⅱ lists the model coefficients of the polynomial 
corresponding to each parameter and the model goodness of 
fit R2. 

TABLE Ⅱ 
COEFFICIENTS (Bi) AND GOODNESS OF FIT (R2) IN THE FITTED MODEL 

Parameter B0 B1 B2 B3 R2 
μ33

 ' (P) 2.5308 0.0625 -0.0038 6.1175e-5 0.9957 

S33
 ' (P) 

3.1579e-
11 

-4.4633e-
13 

-2.6327e-
14 

8.2555e-
16 

0.9904 

d33
 ' (P) 1.8080e-9 

4.0171e-
11 

-6.6146e-
12 

1.3233e-
13 

0.9991 

'
33tan (P)  -0.0431 -0.0013 1.2373e-4 

-2.0833e-
6 

0.9942 

'
33tan (P)  -0.0772 0.0093 -4.1132e-4 5.9555e-6 0.9973 
'
33tan (P)  -0.0372 0.0033 -1.5028e-4 2.2872e-6 0.9833 
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(a)                                                         (b)                                                             (c) 

FIGURE 9. Variation of real part of parameters with different compressive stress and fitting model 

 

 
        (a)                                                         (b)                                                             (c) 

FIGURE 10. Variation of losses tangent with different compressive stress and fitting model 

Figures 9 and 10 plot the material real parameters and 
losses at different compressive stresses, the fitted model 
curves, and the 95% confidence and prediction intervals 
calculated from the standard error of the polynomial fit. 
This means that there is a 95% confidence that the average 
complex parameters of the GMM rod are within the 
confidence interval. Likewise, 95 out of 100 times, the 
complex parameters of any individual GMM will lie within 
the prediction interval. 

According to Fig. 9, the magnetic permeability of the 
material first increases and then decreases with the 
compressive stress (6-30 Mpa), and both the compliance 
coefficient and the piezomagnetic coupling coefficient 
decrease with the compressive stress, which is consistent 
with that reported in previous measurements [55]. 

Fig.10 reports a model of the relationship between 
material losses and compressive stress, observing that the 
magnetic losses decrease monotonically with compressive 
stress. 

In addition, in the range of 6-15Mpa, the elastic and the 
piezomagnetic coupling losses decrease monotonically. 
When the compressive stress is greater than 15Mpa, the 
elastic and the piezomagnetic coupling losses gradually 
tend to be stable. 

V. CONCLUSION 
In this paper, to more accurately characterize the losses of 
GMM under compressive stress, an MDOF LECM 
incorporating the equivalent stiffness and contact damping 

of the transducer contact surface and the structural losses is 
newly established. Thus, a novel parameter characterization 
method is proposed based on MDOF LECM. The 
comparative analysis with the classical parameter 
characterization methods based on DECM shows that: 

1) The three losses of GMM are more sensitive to the 
fitness function of the proposed method, and the material 
losses extracted have better stability; 

2) The parametric characterization results under six 
different compressive stresses also demonstrate the 
usefulness of the proposed method. 

3) This study also reports the complex parameters of the 
GMM under compressive stress, with a focus on the 
variation trend of the intensive losses. The magnetic losses 
are shown to decrease monotonically with the compressive 
stress, and the elastic losses decrease monotonically in the 
range of 6-15Mpa, and change little after 15 Mpa. The 
trend of piezomagnetic losses is similar to that of elastic 
losses. 

The proposed parameter characterization method will 
facilitate a more accurate FEM analysis of high-power 
transducers and help us further understand the loss 
mechanism of GMM. 

APPENDIX A 
According to [2], the mechanical impedance of the GMM 
rod, magnetic column, and displacement plunger all can 
be written in the form of the transmission line equation (Eq. 
A1),where the ZL represents the load impedance. 
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0 L L[ tan ] / [ tan ]Z cA Z j cA kl cA jZ kl         (A1)  

According to the electromechanical analogy, the 
equivalent circuit model corresponding to the mechanical 
model of the GMM in Fig.2 (c) can be obtained, as shown 
in Fig.A1(a). In this study, because one end of the GMM is 
a clamped condition, which is equivalent to a very large ZL 
at one end, resulting in Eq. (11) as the impedance at the 
other end of the GMM. After some algebraic and 
trigonometric identities, it can be shown that the "T 
network" shown in Fig.A1 (b) is consistent with Eq. (11). 

Similarly, the equivalent circuit model corresponding to 
the magnetic column and the displacement plunger in 
Fig.2(c) can be obtained, as shown in Fig. A2(a), where the 
subscripts C and D correspond to the magnetic column and 
the output rod, respectively. Because they are free 
conditions at both ends, and FC1/τ1=Z0 (FD1/ζ1=Z0) at port 1 
and FC2/τ2=ZL(FD2/ζ2=ZL) at port 2, where F is the output 
force. Through the calculation, the equivalent "T network" 
of the magnetic column and the displacement plunger is 
obtained as shown in Fig. A2(b), and the corresponding Eq. 
is (11)-(14). 

 
                     (a)                                               (b) 
Fig.A1 Equivalent circuit (a) and Distributed T network circuit (b) of 
GMM 

 
                                 (a)                                        (b)  
Fig.A2 Equivalent circuit (a) and Distributed T network circuit (b) of 
Magnetic column and displacement plunger 

 
In summary, the DECM of the mechanical end of the 

transducer shown in Fig.4 can be obtained. 
 

APPENDIX B 
The parameter identification process of the PSO is the 
process of finding the minimum value of a fitness function. 
Each particle finding the global optimal particle position in 
the solution space by continuously updating its position and 
velocity through iteration [56]. The position update and 
velocity update formula used are (B1) and (B2), 
respectively 

1 1 2() ( ) () ( )i i i i i iv wv c rand pbest x c rand gbest x           (B1) 

1 1i i ix x v                             (B2) 

where i is the i-th particle in the particle swarm of size m 
and m was set as 12 in this study. w is the inertia weight, c1 
and c2 are learning factors. And w was set as 0.5, c1 and c2 

are set as 2. ()rand is a random number between 0-1 

randomly generated by the system, pbesti is the optimal 
solution of the i-th generation particle; gbesti is the number 
of particles in all particles in the group optimal solution.  

In this study, the fitness function of Method A is 
Equations. (19) and (20), the fitness function of Methods B 
and C are (21) and (22), respectively. The parameter 
identification process of the PSO is illustrated in Fig.B1.  

 
Fig. B1. Flowchart of parameter identification process of the PSO 
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