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Abstract

We prove that the empirical risk of most well-

known loss functions factors into a linear term

aggregating all labels with a term that is label

free, and can further be expressed by sums of the

same loss. This holds true even for non-smooth,

non-convex losses and in any RKHS. The first

term is a (kernel) mean operator — the focal

quantity of this work — which we characterize

as the sufficient statistic for the labels. The result

tightens known generalization bounds and sheds

new light on their interpretation.

Factorization has a direct application on weakly

supervised learning. In particular, we demon-

strate that algorithms like SGD and proximal

methods can be adapted with minimal effort to

handle weak supervision, once the mean oper-

ator has been estimated. We apply this idea to

learning with asymmetric noisy labels, connect-

ing and extending prior work. Furthermore, we

show that most losses enjoy a data-dependent (by

the mean operator) form of noise robustness, in

contrast with known negative results.

1. Introduction

Supervised learning is by far the most effective applica-

tion of the machine learning paradigm. However, there is

a growing need of decoupling the success of the field from

its topmost framework, often unrealistic in practice. In fact

while the amount of available data grows continuously, its

relative training labels — often derived by human effort —

become rare, and hence learning is performed with partially

missing, aggregate-level and/or noisy labels. For this rea-

son, weakly supervised learning (WSL) has attracted much
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Figure 1. Loss factorization: ℓ(x) = ℓe(x) + ℓo(x).

research. In this work, we focus on binary classification un-

der weak supervision. Traditionally, WSL problems are at-

tacked by designing ad-hoc loss functions and optimization

algorithms tied to the particular learning setting. Instead,

we advocate to “do not reinvent the wheel” and present an

unifying treatment. In summary, we show that, under a

mild decomposability assumption,

Any loss admitting a minimizing algorithm over fully la-

belled data, can also be minimized in WSL setting with

provable generalization and noise robustness guarantees.

Our proof is constructive: we show that a simple change in

the input and of one line of code is sufficient.

We introduce linear-odd losses (LOLs), a definition not

demanding smoothness or convexity and embracing many

losses of practical interest, e.g. logistic and square. They

decompose into an even and an odd function (Figure 1) as

ℓ(x) = ℓe(x) + ℓo(x) ,

where ℓe(x)
.
= (ℓ(x)+ ℓ(−x))/2 is label-independent. We

term this result Factorization. When we consider linear or

kernel models, the ℓ-risk factors in a label free term with

another incorporating a sufficient statistic of the labels, the

mean operator µ
.
= E[yx]. The interplay of the two com-

ponents is apparent in a new generalization bound, that also

improves Kakade et al. (2009). The result is reminiscent of

Fisher-Neyman’s factorization (Lehmann & Casella, 1998)

of the exponential family that can be seen as a special case.
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Isolating labels is advantageous in applications on WSL,

where training labels are only partially observable due

to a noise process (Garcıa-Garcıa & Williamson, 2011;

Hernandez-Gonzalez et al., 2016). For example, labels may

missing as with semi-supervision (Chapelle et al., 2006)

and positive and unlabelled data (du Plessis et al., 2015),

noisy (Natarajan et al., 2013), or aggregated as it happens

in multiple instance learning (Dietterich et al., 1997) and

learning from label proportions (LLP) (Quadrianto et al.,

2009). As the success of those areas shows, labels are not

strictly needed for learning. However, most WSL methods

implicitly assumes that labels must be recovered in train-

ing, as pointed out by Joulin & Bach (2012). Instead, suf-

ficiency supports a more principled two-step approach: (1)

estimate the mean operator µ from weakly supervised data

and (2) plug it into any LOL and resort to known proce-

dures for empirical risk minimization (ERM). Thus, (1)

becomes the only technical obstacle in adapting an algo-

rithm, although often easy to surpass. Indeed, this 2-step

approach unifies a growing body of literature (Quadrianto

et al., 2009; Patrini et al., 2014; van Rooyen et al., 2015;

Gao et al., 2016). As a showcase, we implement (2) by

adapting stochastic gradient descent (SGD) to WSL. We

only require to transform the input to a “double sample”

S2x — each example is given twice, labelled once with

each label — and to sum µ in the model update. For each

example (xi, yi) in S2x, a constant depending on the choice

of ℓ and η the learning rate, we have:

θt+1 ← θt − η∇ℓ(yi〈θt,xi〉)−
1

2
ηaµ .

We then focus on learning with asymmetric label noise,

with noise rates (p+, p−). We extend the work of Natarajan

et al. (2013) by designing an unbiased estimator of µ:

µ̂
.
= E(x,y)

[
y − (p− − p+)

1− p− − p+
x

]
,

on which we derive a generalization bound not tied to nei-

ther loss or algorithm. Long & Servedio (2010) has shown

that the strongest form of robustness — on any possible

noisy sample — rules out most losses commonly used,

and have drifted research focus on non-convex (Stempfel

& Ralaivola, 2009; Masnadi-Shirazi et al., 2010; Ding &

Vishwanathan, 2010) or linear losses (van Rooyen et al.,

2015). More pragmatically, we show that any LOL enjoys

an approximate form of noise robustness. The mean oper-

ator is still central here, being the data-dependent quantity

that shapes the bound. The theory is validated by experi-

ments in which we call the adapted SGD as a black box.

Next, Section 2 settles notations and background. Section 3

states the Factorization Theorem. Sections 4 and 5 focus on

WSL and noisy labels. Section 6 discusses the paper. Most

proofs and additional results appear in the supplementary

material (SM).

2. Preliminaries

2.1. Learning setting

We denote vectors in bold as x and 1{p} the indicator of

p being TRUE. We define [m]
.
= {1, . . . ,m} and [x]+

.
=

max(0, x). In binary classification, a learning sample S =
{(xi, yi), i ∈ [m]} is a sequence of (observation, label)

pairs, the examples, drawn from an unknown distribution

D over X×Y, with X ⊆ R
d and Y = {−1, 1}. Expectation

(or average) over (x, y) ∼ D (S) is denoted as ED (ES).

Given a hypothesis (or model) h ∈ H, h : X→ R, a loss is

a function ℓ : Y×R→ R. A loss gives a penalty ℓ(y, h(x))
when predicting the value h(x) and the observed label is y.

We consider margin losses, i.e. ℓ(y, h(x)) = ℓ(yh(x))
(Reid & Williamson, 2010), which are implicitly symmet-

ric: ℓ(yh(x)) = ℓ(−y · (−h(x))). For notational conve-

nience, we will often use a generic scalar argument ℓ(x).
Examples are 01 loss 1{x < 0}, logistic loss log(1+ e−x),
square loss (1− x)2 and hinge loss [1− x]+.

The goal of binary classification is to select a hypoth-

esis h ∈ H that generalizes on D. That is, we aim

to minimize the true risk on the 01 loss RD,01(h)
.
=

ED[1{yh(x) < 0}]. In practice, we only learn from a

finite learning sample S and thus minimize the empirical

ℓ-risk RS,ℓ(h)
.
= ES[ℓ(yh(x))] =

1
m

∑
i∈[m] ℓ(yih(xi)),

where ℓ is a tractable upperbound of 01 loss.

Finally, we discuss the meaning of WSL — and in particular

of weakly supervised binary classification. The difference

with the above is at training time: we learn on a sample S̃

drawn from a noisy distribution D̃ that may flip, aggregate

or suppress labels, while observations are the same. Still,

the purpose of learning is unchanged: to minimize the true

risk. A rigorous definition is not relevant in our study.

2.2. Background: exponential family and logistic loss

Some background on the exponential family is to come.

We can learn a binary classifier fitting a model in the con-

ditional exponential family parametrized by θ: pθ(y|x) =
exp(〈θ, yx〉− log

∑
y∈Y

exp〈θ, yx〉), with y random vari-

able. The two terms in the exponent are the log-partition

function and the sufficient statistic yixi, which fully sum-

marizes one example (x, y). The Fisher-Neyman theorem

(Lehmann & Casella, 1998, Theorem 6.5) gives a sufficient

and necessary condition for sufficiency of a statistic T (y):
the probability distribution factors in two functions, such

that θ interacts with the y only through T :

pθ(y) = gθ(T (y))g
′(y) .

In our case, it holds that g′(y|x) = 1, T (y|x) = yx and
gθ(·|x) = exp(〈θ, ·〉 − log

∑
y∈Y

exp(〈θ, yx〉), since the

value of y is not needed to compute gθ . This shows how yx
is indeed sufficient for y. Now, under the i.i.d. assumption,
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the log-likelihood of θ is (the negative of)

m
∑

i=1

log
∑

y∈Y

ey〈θ,xi〉 −
m
∑

i=1

〈θ, yixi〉 (1)

=

m
∑

i=1

log
∑

y∈Y

ey〈θ,xi〉 −
m
∑

i=1

log eyi〈θ,xi〉

=

m
∑

i=1

log

(

e〈θ,xi〉 + e−〈θ,xi〉

eyi〈θ,xi〉

)

=

m
∑

i=1

log
(

1 + e−2yi〈θ,xi〉
)

. (2)

Step (2) is true since y ∈ Y. At last, by re-parameterizing

θ and normalizing, we obtain logistic loss. Equation (1)

shows how the loss splits into a linear term aggregating the

labels and another, label free term. Next, we aim to trans-

late this property for classification with ERM, by transfer-

ring the ideas of sufficiency and factorization to a wide set

of losses including the ones of Patrini et al. (2014).

3. Loss factorization and sufficiency

The linear term just encountered in logistic loss integrates

a well-studied statistical object.

Definition 1 The (empirical) mean operator of a learning

sample S is µS
.
= ES [yx] .

We drop the S when clear by the context. The name mean

operator, or mean map, is borrowed from the theory of

Hilbert space embedding (Quadrianto et al., 2009)1. Its

importance is due to the injectivity of the map — under

conditions on the kernel — which is used in applications

such as two-sample and independence tests, feature extrac-

tion and covariate shift (Smola et al., 2007). Here, µ plays

the role of sufficient statistic for labels w.r.t. a set of losses.

Definition 2 A function T (S) is said to be a sufficient

statistic for a variable z w.r.t. a set of losses L and a hy-

pothesis space H when for any ℓ ∈ L, any h ∈ H and any

two samples S and S′ the empirical ℓ-risk is such that

RS,ℓ(h)−RS′,f (h) does not depend on z ⇔ T (S) = T (S′).

This is motivated by the one in Statistics, taking log-odd ra-

tios (Patrini et al., 2014). With the next results, we establish

sufficiency of mean operators for a large set of losses.

Theorem 3 (Factorization) Let H be the space of linear

hypotheses. Assume that a loss ℓ is such that ℓo(x)
.
=

1We keep the lighter notation of linear classifiers, but nothing
should prevent the extension to non-parametric models, exchang-
ing x with an implicit feature map h(x). See also Theorem 13.

loss ℓ odd term ℓo

LOL ℓ(x) −ax
ρ-loss ρ|x| − ρx+ 1 −ρx (ρ ≥ 0)
unhinged 1− x −x
perceptron max(0,−x) −x
2-hinge max(−x, 1/2max(0, 1− x)) −x
SPL aℓ + ℓ⋆(−x)/bℓ −x/(2bℓ)
logistic log(1 + e−x) −x/2
square (1− x)2 −2x
Matsushita

√
1 + x2 − x −x

Table 1. Factorization of linear-odd losses: SPL (including logis-

tic, square and Matsushita) (Nock & Nielsen, 2009), double “2”-

hinge and perceptron (du Plessis et al., 2015), unhinged (van

Rooyen et al., 2015). For ρ-loss see the text.

(ℓ(x) − ℓ(−x))/2 is linear. Then, for any sample S and

hypothesis h ∈ H the empirical ℓ-risk can be written as

RS,ℓ(h) =
1

2
RS2x,ℓ(h) + ℓo(h(µS)) ,

where S2x
.
= {(xi, σ), i ∈ [m], ∀σ ∈ Y}.

Proof We write RS,ℓ(h) = ES[ℓ(yh(x)) ] as

1

2
ES

[
ℓ(yh(x)) + ℓ(−yh(x)) + ℓ(yh(x))− ℓ(−yh(x))

]

=
1

2
ES

[∑
σ∈Y

ℓ(σh(x))
]
+ ES

[
ℓo(yh(x))

]

=
1

2
ES2x

[
ℓ(σh(x))

]
+ ES

[
ℓo(h(yx))

]
. (3)

Step 3 is due to the definition of S2x and linearity of h. The

Theorem follows by linearity of ℓo and expectation.

Factorization splits ℓ-risk in two parts. A first term is the

ℓ-risk computed on the same loss on the “doubled sample”

S2x that contains each observation twice, labelled with op-

posite signs, and hence it is label free. A second term is a

loss ℓo of h applied to the mean operator µS, which aggre-

gates all sample labels. Also observe that ℓo is by construc-

tion an odd function, i.e. symmetric w.r.t. the origin. We

call the losses satisfying the Theorem linear-odd losses.

Definition 4 A loss ℓ is a-linear-odd (a-LOL) when

ℓo(x) = (ℓ(x)− ℓ(−x))/2 = ax, for any a ∈ R.

Notice how this does not exclude losses that are not

smooth, convex, or proper (Reid & Williamson, 2010).

From now on, we also consider H as the space linear hy-

potheses h(·) = 〈θ, ·〉. (Theorem 12 in Section 6 applies

beyond LOLs and linear models.) As a consequence of The-

orem 3, µ is sufficient for all labels.

Corollary 5 The mean operator µ is a sufficient statistic

for the label y with regard to LOLs and H.
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The corollary is at the core of the applications in the paper:

the single vector µ ∈ R
d summarizes all information con-

cerning the linear relationship between y and x for losses

that are LOL (see also Section 6). Many known losses be-

long to this class; see Table 1. For logistic loss it holds that

(Figure 1(a)):

ℓo(x) =
1

2
log

1 + e−x

1 + ex
=

1

2
log

e−
x

2 (e
x

2 + e−
x

2 )

e
x

2 (e−
x

2 + e
x

2 )
= −x

2

This “symmetrization” is known in the literature (Jaakkola

& Jordan, 2000; Gao et al., 2016). Another case of LOL is

unhinged loss ℓ(x) = 1 − x (van Rooyen et al., 2015) —

while standard hinge loss does not factor in a linear term.

The Factorization Theorem 3 generalizes Patrini et al.

(2014, Lemma 1) that works for symmetric proper losses

(SPLs), e.g. logistic, square and Matsushita losses. Given a

permissible generator ℓ (Kearns & Mansour, 1996; Nock &

Nielsen, 2009), i.e. dom(l) ⊇ [0, 1], ℓ is strongly convex,

differentiable and symmetric with respect to 1/2, SPLs are

defined as ℓ(x) = aℓ + ℓ⋆(−x)/bℓ, where ℓ⋆ is the convex

conjugate of ℓ. Then, since ℓ⋆(−x) = ℓ⋆(x)− x:

ℓo(x) =
1

2

(
al +

ℓ⋆(−x)
bℓ

− al −
ℓ⋆(x)

bℓ

)
= − x

2bℓ
.

A similar result appears in Masnadi-Shirazi (2011, Theo-

rem 11). A natural question is whether the classes SPL and

LOL are equivalent. We answer in the negative.

Lemma 6 The exhaustive class of linear-odd losses is in

1-to-1 mapping with a proper subclass of even functions,

i.e. ℓe(x)− ax, with ℓe any even function.

Interestingly, the proposition also let us engineer losses that

always factor: choose any even function ℓe with desired

properties — it need not be convex nor smooth. The loss is

then ℓ(x) = ℓe(x)− ax, with a to be chosen. For example,

let ℓe(x) = ρ|x| + 1, with ρ > 0. ℓ(x) = ℓe(x) − ρx is

a LOL; furthermore, ℓ upperbounds 01 loss and intercepts

it in ℓ(0) = 1. Non-convex ℓ can be constructed similarly.

Yet, not all non-differentiable losses can be crafted this way

since they are not LOLs. We provide in SM B sufficient

and necessary conditions to bound other known losses, e.g.

hinge and Huber, by LOLs.

From the optimization viewpoint, we may be interested in

keeping properties of ℓ after factorization. The good news

is that we are dealing with the same ℓ plus a linear term.

Thus, if the property of interest is closed under summation

with linear functions, then it will hold true. An example is

convexity: if ℓ is LOL and convex, so is the factored loss.

The next Theorem sheds new light on generalization

bounds on Rademacher complexity with linear hypotheses.

Theorem 7 Assume ℓ is a-LOL and L-Lipschitz. Suppose

R
d ⊇ X = {x : ‖x‖2 ≤ X < ∞} and H = {θ :
‖θ‖2 ≤ B < ∞}. Let c(X,B)

.
= maxy∈Y ℓ(yXB) and

θ̂
.
= argminθ∈H RS,ℓ(θ). Then for any δ > 0, with prob-

ability at least 1− δ:

RD,ℓ(θ̂)− inf
θ∈H

RD,ℓ(θ) ≤
(√

2 + 1

4

)
· XBL√

m
+

c(X,B)L

2
·
√

1

m
log

(
1

δ

)
+ 2|a|B · ‖µD − µS‖2 ,

or more explicity

RD,ℓ(θ̂)− inf
θ∈H

RD,ℓ(θ) ≤
(√

2 + 1

4

)
· XBL√

m
+

c(X,B)L

2

√
1

m
log

(
2

δ

)
+ 2|a|XB

√
d

m
log

(
2d

δ

)
.

The term
√
2+1
4 · XBL√

m
is derived by an improved upper-

bound to the Rademacher complexity of H computed on

S2x (SM A.3, Lemma 1); we call it in short complexity.

The former expression displays the contribution of the non-

linear part of the loss, keeping aside what is missing: a

deviation of the empirical mean operator from its popula-

tion mean. When µS is not known because of partial label

knowledge, the choice of any estimator would affect the

bound only through that norm discrepancy. The second

expression highlights the interplay of the two loss com-

ponents. c(X,B) is the only non-linear term, which may

well be predominant in the bound for fast-growing losses,

e.g. strongly convex. Moreover, we confirm that the linear-

odd part does not change the complexity and only affects

the statistical penalty by a linear factor, with a dependency

on d. A last important remark comes from comparing the

bound with the one due to Kakade et al. (2009, Corollary

4). Our complexity coefficient is (
√
2+1)/4 ≈ 0.6 instead

of 2, that is three times smaller. A similar statement may be

derived for RKHS on top of Bartlett & Mendelson (2002).

4. Weakly supervised learning

In the next two Sections we discuss applications to WSL.

Recall that in this scenario we learn on S̃ with partially

observable labels, but aim to generalize to D. Assume to

know an algorithm that learns on S. By sufficiency, Corol-

lary 5, a principled approach to use S̃ is: (1) estimate µ

from S̃ and (2) run the algorithm with the LOL computed

on the estimated µ. This direction was explored by work

on LLP by Quadrianto et al. (2009, with logistic loss) and

Patrini et al. (2014, SPL), and in the setting of noisy labels

by van Rooyen et al. (2015, unhinged loss) and (Gao et al.,

2016, logistic loss). The approach contrasts with ad-hoc
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Algorithm 1 µSGD

Input: S2x,µ , ℓ is a-LOL; λ > 0; T > 0

m′ ← |S2x|
θ0 ← 0

For any t = 1, . . . , T :

Pick i = it ∈ [m′] uniformly at random

ηt ← (λt)−1

Pick any v ∈ ∂ℓ(yi〈θt,xi〉)
θt+1 ← (1− ηtλ)θt − ηt(v +aµ/2 )

θt+1 ← min
{
θt+1,θt+1

√
λ−1/‖θt+1‖2)

}

Output: θt+1

optimization methods often aiming to recover the latent la-

bels by coordinate descent and EM (Joulin & Bach, 2012).

Instead, the only difficulty here is to come up with a well-

behaved estimator of µ — a statistic independent from both

h and ℓ. Thereom 7 then assures bounded ℓ-risk and, in

turn, true risk. Finite-sample bounds hold under stricter

conditions on ℓ (Altun & Smola, 2006; Patrini et al., 2014).

Algorithm 1, µSGD, adapts SGD to weak supervision. For

the sake of presentation, we work on a simple version of

SGD based on subgradient descent with L2 regularization

inspired by Shalev-Shwartz et al. (2011). Given µ changes

are trivial: (i) construct S2x from S̃ and (ii) sum aµ/2 to

the subgradients of each example of S2x. In Section 6 we

upgrade proximal algorithms with the same minimal-effort

strategy. The next Section shows an estimator of µ in the

case of noisy labels and specializes µSGD. We also analyze

the effect of noise through the lenses of Theorem 7 and

discuss a non-standard notion of robustness.

5. Asymmetric label noise

In learning with noisy labels, S̃ is a sequence of examples

drawn from a distribution D̃, which samples from D and

flips labels at random. Each example (xi, ỹi) is (xi,−yi)
with probability at most 1/2 or it is (xi, yi) otherwise. The

noise rates are label dependent2 by (p+, p−) ∈ [0, 1/2)2

respectively for positive and negative examples, that is,

asymmetric label noise (ALN) (Natarajan et al., 2013).

5.1. Unbiased estimation of µ

Our first result builds on Natarajan et al. (2013, Lemma

1) that provides a recipe for unbiased estimators of losses.

Thanks to the Factorization Theorem 3, instead of estimat-

ing the whole ℓ we act on the sufficient statistic:

µ̂S
.
= ES

[
y − (p− − p+)

1− p− − p+
x

]
. (4)

2While being independent from the observation.

The estimator is unbiased, that is, its expectation over

the noise distribution D̃ is the population mean operator:

µ̂
D̃

= µD. Denote then the risk computed on the estimator

as R̂S,ℓ(θ)
.
= 1

2RS2x,ℓ(θ)+a〈θ, µ̂S〉. Unbiasedness trans-

fers to ℓ-risk: R̂
D̃,ℓ(θ) = RD,ℓ(θ), ∀θ (Proofs in SM A.4).

We have thus obtained a good candidate as input for any

algorithm implementing our 2-step approach, like µSGD.

But there is more. On one hand, the estimators of Natarajan

et al. (2013) may not be convex even when ℓ is so, but this is

never the case with LOLs; in fact, ℓ(x)−ℓ(−x) = 2ax may

be seen as alternative sufficient condition to Natarajan et al.

(2013, Lemma 4) for convexity. On the other hand, we gen-

eralize the approach of van Rooyen et al. (2015) to losses

beyond unhinged and to asymmetric noise. We now prove

that any algorithm minimizing LOLs that uses the estimator

in Equation 4 has a non-trivial generalization bound. We

further assume that ℓ is Lipschitz.

Theorem 8 Consider the setting of Theorem 7, except that

here θ̂ = argminθ∈H R̂
S̃,ℓ(θ). Then for any δ > 0, with

probability at least 1− δ:

RD,ℓ(θ̂)− inf
θ∈H

RD,ℓ(θ) ≤
(√

2 + 1

4

)
· XBL√

m
+

c(X,B)L

2

√
1

m
log

(
2

δ

)
+

2|a|XB

1− p− − p+

√
d

m
log

(
2d

δ

)
.

Again, the complexity term is tighter than prior work.

Natarajan et al. (2013, Theorem 3) proves a factor of

2L/(1 − p− − p+) that may even be unbounded due to

noise, while our estimate shows a constant of about 0.6 < 2
and it is noise free. In fact, LOLs are such that noise af-

fects only the linear component of the bound, as a direct

effect of factorization. Although we are not aware of any

other such results, this is intuitive: Rademacher complex-

ity is computed regardless of sample labels and therefore

is unchanged by label noise. Furthermore, depending on

the loss, the effect of (limited) noise on generalization may

be also be negligible since c(X,B) could be very large for

losses like strongly convex. This last remark fits well with

the property of robustness that we are about to investigate.

5.2. Every LOL is approximately noise-robust

The next result comes in pair with Theorem 8: it holds

regardless of algorithm and (linear-odd) loss of choice.

In particular, we demonstrate that every learner enjoys

a distribution-dependent property of robustness against

asymmetric label noise. No estimate of µ is involved and

hence the theorem applies to any naı̈ve supervised learner

on S̃. We first refine the notion of robustness of Ghosh et al.

(2015) and van Rooyen et al. (2015) in a weaker sense.



Loss factorization and weakly supervised learning

0.0 0.1 0.2 0.3 0.4

p, φ = 10−4
−1.5

−1.0

−0.5

0.0 ×10−3

dclean

dnoisy

10−4 10−3 10−2 10−1 100 101

φ, p = 0.2

−4

−3

−2

−1

0 ×10−2

Figure 2. Behavior of Theorem 10 on synthetic data. Definition

of the axes within the text.

Definition 9 Let (θ⋆, θ̃⋆) respectively be the minimizers of

(RD,ℓ(θ), RD̃,ℓ(θ)) in H. ℓ is said ǫ-ALN robust if for any

D, D̃, R
D̃,ℓ(θ

⋆)−R
D̃,ℓ(θ̃

⋆) ≤ ǫ.

The distance of the two minimizers is measured by empir-

ical ℓ-risk under expected label noise. 0-ALN robust losses

are also ALN robust: in fact if R
D̃,ℓ(θ

⋆) = R
D̃,ℓ(θ̃

⋆)

then θ⋆ ∈ argminθ RD̃,ℓ(θ). And hence if R
D̃,ℓ(θ) has

a unique global minimum, that will be θ⋆. More generally

Theorem 10 Assume {θ ∈ H : ||θ||2 ≤ B}. Then every

a-LOL is ǫ-ALN. That is

R
D̃,ℓ(θ

⋆)−R
D̃,ℓ(θ̃

⋆) ≤ 4|a|Bmax{p+, p−}‖µD‖2

Moreover: (1) If ‖µD‖2 = 0 for D then every LOL is ALN

for any D̃. (2) Suppose that ℓ is also once differentiable

and γ-strongly convex. Then ‖θ⋆ − θ̃⋆‖22 ≤ 2ǫ/γ .

Unlike Theorem 8, this bound holds in expectation over the

noisy risk RD̃,ℓ. Its shape depends on the population mean

operator, a distribution-dependent quantity. There are two

immediate corollaries. When ‖µD‖2 = 0, we obtain op-

timality for all LOLs. The second corollary goes further,

limiting the minimizers’ distance when losses are differen-

tiable and strongly convex. But even more generally, under

proper compactness assumptions on the domain of ℓ, The-

orem 10 tells us much more: in the case R
D̃,ℓ(θ) has a

unique global minimizer, the smaller ‖µD‖2, the closer the

minimizer on noisy data θ̃⋆ will be to the minimizer on

clean data θ⋆. Therefore, assuming an efficient algorithm

that computes a model not far from the global optimum θ̃⋆,

that will be not far from θ⋆ either. This is true in spite of

the presence of local minima and/or saddle points.

Long & Servedio (2010) proves that no convex potential3

is noise tolerant, that is, 0-ALN robust. This is not a

contradiction. To show the negative statement, the au-

thors craft a case of D breaking all such losses. And

in fact that choice of D does not meet optimality in our

bound, because ‖µD‖2 = 1
4 (18γ

2 + 6γ + 1) > 0, with

3A convex potential is a loss l ∈ C1, convex, such that ℓ(0) <
0 and ℓ(x) → 0 for x → ∞. Many convex potentials are LOLs
but not all. An example is e−x.

Algorithm 2 µSGD applied on noisy labels

Input: S̃, ℓ ∈ LOL; λ > 0; T > 0
S2x

.
= {(xi, σ), i ∈ [m], ∀σ ∈ Y}

µ̂
S̃
← Equation 4

θ ← µ-SGD(S2x, µ̂S̃
, λ, T )

Output: θ

γ ∈ (0, 1/6). In contrast, we show that every element

of the broad class of LOLs is approximately robust, as op-

posed to a worst-case statement. Finally, compare our ǫ-
robustness to the one of Ghosh et al. (2015): RD,ℓ(θ̃

∗) ≤
(1−2max(p−, p+))−1RD,ℓ(θ

∗). Such bound, while relat-

ing the (non-noisy) ℓ-risks, is not data-dependent and may

be not much informative for high noise rates.

5.3. Experiments

We analyze experimentally the theory so far developed.

From now on, we assume to know p+ and p− at learning

time. In principle they may be tuned as hyper-parameters

(Natarajan et al., 2013), at least for small |Y| (Sukhbaatar

& Fergus, 2014). While being out of scope, practical noise

estimators are studied (Menon et al., 2015; Scott, 2015).

We begin by building a toy planar dataset to probe the be-

havior of Theorem 10. It is made of four observations:

(0, 1) and (φ/3, 1/3) three times, with the first example

the only negative, repeated 5 times. We consider this the

distribution D so as to calculate ‖µD‖2 = φ2/4. We

fix p+, p− = 0.2 = p and control φ to measure the dis-

crepancy dnoisy
.
= R

D̃,ℓ(θ
⋆) − R

D̃,ℓ(θ̃
⋆), its counterpart

dclean computed on D, and how the two minimizers “dif-

fer in sign” by dmodels
.
= 〈θ⋆, θ̃⋆〉/‖θ⋆‖2‖θ̃⋆‖2. The

same simulation is run varying the noise rates with con-

stant φ = 10−4. We learn with λ = 10−6 by standard

square loss. Results are in Figure 2. The closer the param-

eters to 0, the smaller dclean − dnoisy, while they are equal

when each parameter is individually 0. dmodels is negligi-

ble, which is good news for the 01-risk on sight.

Algorithm 2 learns with noisy labels on the estimator of

Equation 4 and by calling the black box of µSGD. The

next results are based on UCI data. We learn with logis-

tic loss, without model’s intercept and set λ = 10−6 and

T = 4 · 2m (4 epochs). We measure dclean and RD,01, in-

jecting symmetric label noise p ∈ [0, 0.45) and averaging

over 25 runs. Again, we consider the whole distribution so

as to play with the ingredients of Theorem 10. Figure 3(a)

confirms how the combined effect of p‖µD‖2 can explain

most variation of dclean. While this is not strictly implied

by Theorem 10 that only involves dnoisy, the observed be-

havior is expected. A similar picture is given in Figure 3(b)

which displays the true risk RD,01 computed on the min-

imizer θ̃⋆ of S̃. From 3(a) and 3(b) we also deduce that
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Figure 3. How mean operator and noise rate condition risks. dclean
.
= RD,ℓ(θ

⋆)−RD,ℓ(θ̃
⋆).

large ‖µD‖2 is a good proxy for generalization with lin-

ear classifiers; see the relative difference between points at

the same level of noise. Finally, we have also monitored

µ
D̃

. Figure 3(c) shows that large ‖µ
D̃
‖2 indicates small

dclean as well. This remark can be useful in practice, when

the norm can be estimated from S̃, as opposite to p and µD,

and used to anticipate the effect of noise on the task at hand.

We conclude with a systematic study of hold-out error of

µSGD. The same datasets are now split in 1/5 test and

4/5 training sets once at random. In contrast with the pre-

vious experimental setting we perform cross-validation of

λ ∈ 10{−3,...,+3} on 5-folds in the training set. We com-

pare with vanilla SGD run on corrupted sample S̃ and mea-

sure the gain from estimating µ̂
S̃

. The other parameters

l, T, λ are the same for both algorithms; the learning rate

η is untouched from Shalev-Shwartz et al. (2011) and not

tuned for µSGD. The only differences are in input and gra-

dient update. Table 2 reports test error for SGD and its

difference with µSGD, for a range of values of (p−, p+).
µSGD beats systematically SGD with large noise rates, and

yet performs in pair under low or null noise. Interestingly,

in the presence of very intense noise p+ ≈ .5, µSGD still

learns sensible models and improves up to 55% relatively to

the error of SGD, which is often doomed to random guess.

6. Discussion and conclusion

Mean and covariance operators The intuition behind

the relevance of the mean operator becomes clear once we

rewrite it as follows.

Lemma 11 Let π+
.
= ES1{y > 0} be the positive label

proportion of S. Then µS = CovS[x, y]+(2π+−1)ES[x] .

We have come to the unsurprising fact that — when obser-

vations are centered — the covariance CovS[x, y] is what

we need to know about the labels for learning linear mod-

els. The rest of the loss may be seen as a data-dependent

regularizer. However, notice how the condition ‖µD‖2 = 0
does not implies CovD[x, y] = 0, which would make lin-

ear classification hard and limit Theorem 10’s validity to

degenerate cases. A kernelized version of this Lemma is

given in Song et al. (2009).

The generality of factorization Factorization is ubiqui-

tous for any (margin) loss, beyond the theory seen so far.

A basic fact of real analysis supports it: a function ℓ is

(uniquely) the sum of an even function ℓe and an odd ℓo:

ℓ(x) =
1

2
(ℓ(x) + ℓ(−x) + ℓ(x)− ℓ(−x)) = ℓe(x) + ℓo(x)

One can check that ℓe and ℓo are indeed even and odd (Fig-

ure 1). This is actually all we need to factor ℓ.

Theorem 12 (Factorization) For any sample S and hy-

pothesis h the empirical ℓ-risk can be written as

RS,ℓ(h) =
1

2
ES

[∑
σ∈Y

ℓ(σh(x))
]
+ ES

[
ℓo(yh(x))

]

where ℓo(·) is odd and ℓe(·) .
=
∑

σ∈Y
ℓ(σh(·)) is even and

both uniquely defined.

Its range of validity is exemplified by 01 loss, a non-convex

discontinuous piece-wise linear function, which factors as

ℓe(x) =
{ 1

2 x 6= 0
1 otherwise

, ℓo(x) = −1

2
sign(x) .

It follows immediately that ES[ℓo(·)] is sufficient for y.

However, ℓo is a function of model θ. This defeats the

purpose of a sufficient statistic, which we aim to be com-

putable from data only and it is the main reason to define

LOLs. The Factorization Theorem 12 can also be stated for

RKHS. To show that, notice that we satisfy all hypotheses

of the Representer Theorem (Schölkopf & Smola, 2002).

Theorem 13 Let h(x) : X → H be a feature map into

a Reproducing Kernel Hilbert Space (RKHS) H with sym-

metric positive definite kernel k : X × X → R, such that

h : x→ k(·,x). For any learning sample S, the empirical

ℓ-risk RS,ℓ(h) with Ω : ||h||H → R
+ regularization can

be written as

1

2
ES

[∑
σ∈Y

ℓ(σh(x))
]
+ ES

[
ℓo(yh(x))

]
+Ω(||h||H)

and the optimal hypothesis admits a representation of the

form h(x) =
∑

i∈[m] αik(x,xi).
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(p−, p+) → (.00, .00) (.20, .00) (.20, .10) (.20, .20) (.20, .30) (.20, .40) (.20, .49)
dataset SGD µSGD SGD µSGD SGD µSGD SGD µSGD SGD µSGD SGD µSGD SGD µSGD

australian 0.13 +.01 0.15 −.01 0.14 ±.00 0.14 +.01 0.16 −.01 0.26 −.09 0.45 −.25
breast-can. 0.02 +.01 0.03 ±.00 0.03 ±.00 0.03 ±.00 0.05 −.01 0.11 −.06 0.17 −.08
diabetes 0.28 −.03 0.29 −.03 0.29 −.03 0.27 −.02 0.28 −.02 0.39 −.13 0.59 −.22
german 0.27 −.02 0.26 ±.00 0.27 −.02 0.29 −.02 0.31 −.01 0.31 ±.00 0.31 ±.00
heart 0.15 +.01 0.17 −.01 0.16 ±.00 0.17 ±.00 0.18 −.01 0.26 −.08 0.35 −.15
housing 0.17 −.03 0.23 −.05 0.22 −.04 0.20 −.02 0.22 −.03 0.34 −.12 0.41 −.13
ionosphere 0.14 +05 0.19 −.05 0.20 −.05 0.20 −.03 0.21 −.03 0.35 −.13 0.54 −.29
sonar 0.27 ±.00 0.29 +.02 0.29 +.01 0.34 −.04 0.36 −.03 0.43 −.10 0.45 −.05

Table 2. Test error for SGD and µSGD over 25 trials of artificially corrupted datasets.

All paper may be read in the context of non-parametric

models, with the kernel mean operator as sufficient statis-

tic. Finally, we can show factorization for regression with

square loss (SM C), a result that opens further applications.

The linear-odd losses of du Plessis et al. (2015) This

work shows that a linear-odd condition on a convex ℓ al-

lows one to derive a tractable, i.e. still convex, loss for

learning with positive and unlabelled data. The approach

is similar to ours as it isolates a label-free term in the loss,

with the goal of leveraging on the unlabelled examples too.

Interestingly, the linear term of their Equation 4 can be seen

as a mean operator estimated as µ̂
.
= P(y = 1) · ES+

[x],
where S+ is the set of positive examples. Their manipu-

lation of the loss is not equivalent to Theorem 3 though,

as explained with details in (SM D). Beside that, since we

reason at the higher level of WSL, we can frame a solution

for this setting by calling µSGD on µ̂ defined above or by

building on estimators derived from Patrini et al. (2014).

Learning reductions Solving a machine learning problem

by solutions to other learning problems is a learning reduc-

tion (Beygelzimer et al., 2015). Our work does fit into this

framework. Following Beygelzimer et al. (2005), we define

a WSL task as a triple (K,Y, ℓ), with weakly supervised ad-

vice K, predictions space Y and loss ℓ, and we reduce to

binary classification (Y,Y, ℓ). Our reduction is somehow

simple, in the sense that Y does not change and neither

does ℓ. Although, Algorithm 1 modifies the internal code

of the “oracle learner” which contrasts with the concept of

reduction. Anyway, we could as well write subgradients as

1

2

(
∂ℓ(〈θt,xi〉) + ∂ℓ(−〈θt,xi〉) + aµ

)
,

which equals ∂ℓ, and thus the oracle would be untouched.

Beyond µSGD META-µSGD is intimately similar to

stochastic average gradient (SAG) (Schmidt et al., 2013).

Let gi,te (θ) ∈ ∂ℓe(yi〈θ,xi〉) if i = it (example i picked

at time t), otherwise = gi,t−1
e (θ). Define the same for ℓo

accordingly. Then, SAG’s model update is:

θt+1 ← θt − η

m

∑
i∈[m]

gi,te (θt)− η

m

∑
i∈[m]

gi,to (θt) ,

and recalling that aµS = ES[∂ℓo(θ)], µSGD’s update is

θt+1 ← θt − η ∂ℓie(θ
t)− η

m

∑
i∈[m]

∂ℓio(θ
t) .

From this parallel, the two algorithms appear to be vari-

ants of a more general sampling mechanism of examples

and gradient components, at each step. More generally,

stochastic gradient is just one suit of algorithms that fits

into our 2-step learning framework. Proximal methods

(Bach et al., 2012) are another noticeable example. The

same modus operandi leads to a proximal step of the form:

θt+1 ← proxΘ

(
θt + η

(
∂RS2x,ℓ(θ

t) +
a

2
µ
))

with proxg(x) = argminx′ g(x′) + 1
2‖x− x′‖22) and Θ(·)

the regularizer. Once again, the adaptation works by sum-

ming µ in the gradient step and changing the input to S2x.

A better (?) picture of robustness The worst-case result

of Long & Servedio (2010), like any extreme-case argu-

ment, should be handled with care. It does not give the big

picture for all data we may encounter in a real world, but

only the most pessimistic. We present such a global view

which appears better than expected: learning from noisy

data does not necessarily reduce convex losses to a single-

ton (van Rooyen et al., 2015) but depends on the mean op-

erator for a broad set of them. Quite surprisingly, factoriza-

tion also marries two opposite views in one formula4:

ℓ(x) =
1

2
( ℓ(x) + ℓ(−x)︸ ︷︷ ︸

=const ⇒ 0-ALN

+ ℓ(x)− ℓ(−x)︸ ︷︷ ︸
=ax ⇒ ǫ-ALN

)

To conclude, we have seen how losses factor in a way

that we can isolate the contribution of supervision. This

has several implications both on theoretical and practical

grounds: learning theory, formal analysis of label noise ro-

bustness, and adaptation of algorithms to handle poorly la-

belled data. An interesting question is whether factoriza-

tion would let one identify what really matters in learning

that is instead completely unsupervised, and to do so with

more complex models than the ones considered here, as for

example deep architectures.

4See (Ghosh et al., 2015, Theorem 1).
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