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ABSTRACT

Designing proper loss functions for vision tasks has been a long-standing research
direction to advance the capability of existing models. For object detection, the
well-established classification and regression loss functions have been carefully
designed by considering diverse learning challenges (e.g. class imbalance, hard
negative samples, and scale variances). Inspired by the recent progress in network
architecture search, it is interesting to explore the possibility of discovering new
loss function formulations via directly searching the primitive operation combi-
nations. So that the learned losses not only fit for diverse object detection chal-
lenges to alleviate huge human efforts, but also have better alignment with evalu-
ation metric and good mathematical convergence property. Beyond the previous
auto-loss works on face recognition and image classification, our work makes
the first attempt to discover new loss functions for the challenging object detec-
tion from primitive operation levels and finds the searched losses are insightful.
We propose an effective convergence-simulation driven evolutionary search algo-
rithm, called CSE-Autoloss, for speeding up the search progress by regularizing
the mathematical rationality of loss candidates via two progressive convergence
simulation modules: convergence property verification and model optimization
simulation. CSE-Autoloss involves the search space (i.e. 21 mathematical opera-
tors, 3 constant-type inputs, and 3 variable-type inputs) that cover a wide range of
the possible variants of existing losses and discovers best-searched loss function
combination within a short time (around 1.5 wall-clock days with 20x speedup
in comparison to the vanilla evolutionary algorithm). We conduct extensive eval-
uations of loss function search on popular detectors and validate the good gen-
eralization capability of searched losses across diverse architectures and various
datasets. Our experiments show that the best-discovered loss function combina-
tions outperform default combinations (Cross-entropy/Focal loss for classification
and L1 loss for regression) by 1.1% and 0.8% in terms of mAP for two-stage and
one-stage detectors on COCO respectively. Our searched losses are available at
https://github.com/PerdonLiu/CSE-Autoloss.

1 INTRODUCTION

The computer vision community has witnessed substantial progress in object detection in recent
years. The advances for the architecture design, e.g. two-stage detectors (Ren et al., 2015; Cai &
Vasconcelos, 2018) and one-stage detectors (Lin et al., 2017b; Tian et al., 2019), have remarkably
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Figure 1: Computation graphs of loss function examples: (a) Cross-entropy loss; (b, c) Searched
loss candidates with comparable performance to Cross-entropy loss; (d) Searched best-performed
loss named CSE-Autoloss-Acls.

pushed forward the state of the art. The success cannot be separated from the sophisticated design
for training objective, i.e. loss function.

Traditionally, two-stage detectors equip the combination of Cross-entropy loss (CE) and L1
loss/Smooth L1 loss (Girshick, 2015) for bounding box classification and regression respectively.
In contrast, one-stage detectors, suffering from the severe positive-negative sample imbalance due
to dense sampling of possible object locations, introduce Focal loss (FL) (Lin et al., 2017b) to alle-
viate the imbalance issue. However, optimizing object detectors with traditional hand-crafted loss
functions may lead to sub-optimal solutions due to the limited connection with the evaluation met-
ric (e.g. AP). Therefore, IoU-Net (Jiang et al., 2018) proposes to jointly predict Intersection over
Union (IoU) during training. IoU loss series, including IoU loss (Yu et al., 2016), Bounded IoU
loss (Tychsen-Smith & Petersson, 2018), Generalized IoU loss (GIoU) (Rezatofighi et al., 2019),
Distance IoU loss (DIoU), and Complete IoU loss (CIoU) (Zheng et al., 2020), optimize IoU be-
tween predicted and target directly. These works manifest the necessity of developing effective loss
functions towards better alignment with evaluation metric for object detection, while they heavily
rely on careful design and expertise experience.

In this work, we aim to discover novel loss functions for object detection automatically to reduce
human burden, inspired by the recent progress in network architecture search (NAS) and automated
machine learning (AutoML) (Cai et al., 2019; Liu et al., 2020a). Different from Wang et al. (2020)
and Li et al. (2019b) that only search for particular hyper-parameters within the fixed loss formula,
we steer towards finding new forms of the loss function. Notably, AutoML-Zero (Real et al., 2020)
proposes a framework to construct ML algorithm from simple mathematical operations, which mo-
tivates us to design loss functions from primitive mathematical operations with evolutionary algo-
rithm. However, it encounters a severe issue that a slight variation of operations would lead to a
huge performance drop, which is attributed to the sparse action space. Therefore, we propose a
novel Convergence-Simulation driven Evolutionary search algorithm, named CSE-Autoloss, to alle-
viate the sparsity issue. Benefit from the flexibility and effectiveness of the search space, as Figure 1
shows, CSE-Autoloss discovers distinct loss formulas with comparable performance with the Cross-
entropy loss, such as (b) and (c) in the figure. Moreover, the best-searched loss function (d), named
CSE-Autoloss-Acls, outperformed CE loss by a large margin. Specifically, to get preferable loss
functions, CSE-Autoloss contains a well-designed search space, including 20 primitive mathemat-
ical operations, 3 constant-type inputs, and 3 variable-type inputs, which can cover a wide range
of existing popular hand-crafted loss functions. Besides, to tackle the sparsity issue, CSE-Autoloss
puts forward progressive convergence-simulation modules, which verify the evolved loss functions
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from two aspects, including mathematical convergence property and optimization behavior, facilitat-
ing the efficiency of the vanilla evolution algorithm for loss function search without compromising
the accuracy of the best-discovered loss. For different types of detector, CSE-Autoloss is capable of
designing appropriate loss functions automatically without onerous human works.

In summary, our main contributions are as follows: 1) We put forward CSE-Autoloss, an end-to-end
pipeline, which makes the first study to search insightful loss functions towards aligning the evalu-
ation metric for object detection. 2) A well-designed search space, consisting of various primitive
operations and inputs, is proposed as the foundation of the search algorithm to explore novel loss
functions. 3) To handle the inefficiency issue caused by the sparsity of action space, innovative
convergence-simulation modules are raised, which significantly reduces the search overhead with
promising discovered loss functions. 4) Extensive evaluation experiments on various detectors and
different detection benchmarks including COCO, VOC2017, and BDD, demonstrate the effective-
ness and generalization of both CSE-Autoloss and the discovered loss functions.

2 RELATED WORK

Loss Functions in Object Detection. In object detection frameworks, CE loss dominates the two-
stage detectors (Ren et al., 2015; Cai & Vasconcelos, 2018) for classification purpose, while Focal
loss (Lin et al., 2017b) and GHM loss (Li et al., 2019a) are widely equipped in one-stage detec-
tors (Lin et al., 2017b; Tian et al., 2019) for solving imbalance issues between positive and negative
samples. Chen et al. (2019b); Qian et al. (2020) attempt to handle the sample-imbalance problem
from the ranking perspective. However, these works are sensitive to hyper-parameters hence they
cannot generalize well. To further improve classification and localization quality, Jiang et al. (2018);
Tian et al. (2019); Wu et al. (2020) introduce quality estimation, and GFocal (Li et al., 2020) unifies
the quality estimation with classification towards consistent prediction. With regard to regression
loss functions, Smooth L1 Loss (Girshick, 2015) has been commonly performed in the past years
until IoU-based loss series (Yu et al., 2016; Rezatofighi et al., 2019; Zheng et al., 2020) gradually
occupy regression branch for their effectiveness in bounding box distance representation due to the
direct optimization of the evaluation metric. However, these works rely on expert experience on loss
formula construction, which limits the development of the loss function design in object detection.

Automated Loss Function Design. By introducing a unified formulation of loss function, Li et al.
(2019b); Wang et al. (2020) raise automated techniques to adjust loss functions for face recogni-
tion. However, they only search for specific hyper-parameters in the fixed loss formulas, which
limit the search space and fail to discover new forms of loss functions. Real et al. (2020); Liu et al.
(2020b); Ramachandran et al. (2018) attempt to design formulations from basic mathematical oper-
ations to construct building blocks in machine learning such as normalization layers and activation
functions. However, these works cannot directly apply to loss function search since their search
space and search strategies are specialized. Gonzalez & Miikkulainen (2020) proposes a framework
for searching classification loss functions but the searched loss poorly generalizes to large-scale
datasets. Besides, all these works are not suitable for the challenging object detection task due to
the sparsity of the action space and the heavy evaluation cost for training object detectors. Instead,
in this work, we make the first attempt to search for loss function formulations directly on the large-
scale detection dataset via an effective pipeline with novel convergence-simulation modules.

3 METHOD

In this section, we present the CSE-Autoloss pipeline for discovering novel loss functions towards
aligning the evaluation metric for object detection. We first introduce the well-designed search space
in Section 3.1. The detailed CSE-Autoloss pipeline is elaborated in Section 3.2.

3.1 SEARCH SPACE DESIGN

Input Nodes. In object detection, default classification losses (i.e. CE loss and FL loss), take
prediction and label as inputs. Inspired by GFocal loss (Li et al., 2020), to better motivate the loss to
align with the evaluation metric (i.e. AP), we introduce IoU between ground truth and prediction into
the loss formula, where prediction, label, IoU are notated as x, y, w respectively. For the regression
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Figure 2: An overview of the proposed CSE-Autoloss pipeline. Our CSE-AutoLoss first generates
a large amount of candidate loss functions by assembling formulations based on the well-designed
search space. Then CSE-Autoloss filters out more than 99% divergent, training-unfriendly, or poor-
performed loss candidates by evaluating them with the proposed convergence-simulation modules,
i.e. convergence property verification and model optimization simulation, which verifies mathemat-
ical property and optimization quality. After that, K top-performing loss functions are selected to
evaluate on the proxy task to further obtain top-P loss candidates as parents to derive offspring for
the next generation. Please see more details about CSE-Autoloss in Algorithm 1.

branch, to cover the mainstream IoU loss series (i.e. IoU and GIoU), we take the intersection i,
union u, and enclosing area e between the predicted and target box as input tensors. Besides, 3
constant-type inputs (i.e. 1, 2, 3) are brought in to improve the flexibility of the search space.

As mentioned above, for consistent prediction of localization quality and classification score be-
tween training and testing, we simply introduce IoU into the CE and FL loss to get two nuanced loss
variants, namely CEI and FLI respectively:

CEI(x, y, w) = −dot(wy, log(softmax(x))),

FLI(x′
, y

′
, w) = −w[y′(1− σ(x′)) log σ(x′) + (1− y

′)σ(x′) log(1− σ(x′))],

where x, y ∈ R
c+1, x′ ∈ R, c is the number of class. x and x′ are the prediction, y is a one-hot vector

of ground truth class, y′ ∈ {0, 1} is the binary target, and w ∈ R is the IoU value between ground
truth and prediction. As Table 4 shows, CEI and FLI outperform CE and FL by a small margin
in terms of AP, which verifies the effectiveness of introducing IoU into the classification branch.
Note that we apply CEI and FLI loss as the predefined initial loss LI in the search experiment for
two-stage detectors and one-stage detectors, respectively.

Primitive Operators. The primitive operators, including element-wise and aggregation functions
that enable interactions between tensors with different dimensions, are listed as below:

• Unary functions: −x, ex, log(x), |x|, √x, softmax(x), softplus(x), σ(x), gd(x), alf(x),
erf(x), erfc(x), tanh(x), relu(x), sin(x), cos(x)

• Binary functions: x1 + x2, x1 − x2, x1 × x2, x1

x2+ǫ
, dot(x1, x2)

ǫ is a small value to avoid zero division, softplus(x) = ln(1 + ex), σ(x) = 1
1+e−x

is the sig-

moid function. To enlarge the search space, more S-type curves and their variants∗ are included,

i.e. gd(x) = 2 arctan(tanh(x
2
)), alf(x) = x√

1+x2
, erf(x) = 2√

π

∫ x

0
e−t2dt is the error function,

erfc(x) = 1 − erf(x). For binary operations, broadcasting is introduced to ensure the assem-
bling of inputs with different dimensions. dot(x1, x2) is the class-wise dot product of two matrix
x1, x2 ∈ RB×C , where B and C indicate batch size and number of categories respectively. In
practice, regression branch contains fewer primitive operators than classification branch because
introducing more primitive functions for regression branch does not bring performance gain.

∗In the implementation, the output of these functions are re-scaled to obtain the same range as sigmoid
function, i.e. from 0 to 1.
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Loss Function as a Computation Graph. As Figure 1 illustrates, we represent the loss function as
a directed acyclic graph (DAG) computation graph that transforms input nodes into the scalar output
o (i.e. loss value) with multiple primitive operators in the intermediate.

Sparsity of the Action Space. We perform random search for Faster R-CNN classification branch
on COCO and find only one acceptable loss every 105, which indicates the sparsity of the action
space and the challenge for searching the loss function formulations.

3.2 CSE-AUTOLOSS PIPELINE

We propose a novel CSE-Autoloss pipeline with progressive convergence-simulation modules, con-
sisting of two perspectives: 1) convergence property verification module verifies the mathematical
property of the loss candidates. 2) model optimization simulation module estimates the optimiza-
tion quality to further filter out divergent, training-unfriendly, and poor-performed loss functions. An
overview of CSE-Autoloss is illustrated in Figure 2 and the details are shown in Algorithm 1. Our
CSE-Autoloss achieves more than 20x speedup in comparison to the vanilla evolutionary algorithm.

3.2.1 EVOLUTIONARY ALGORITHM

Here we give a short overview of the vanilla evolutionary algorithm, which refers to the traditional
tournament selection (Goldberg & Deb, 1991). We first generate N loss functions from a predefined
initial loss LI as the first generation, where a loss function indicates an individual in the population.
Then these individuals perform cross-over randomly pair by pair with probability p1 and conduct
mutation independently with probability p2. We evaluate all the individuals on the proxy task and
select top-P of them to serve as parents for the next generation. The above process is repeated for
E generations to get the best-searched loss.

The bottleneck of the evolutionary process lies at tons of loss evaluations on the proxy set due to
the highly sparse action space, and it costs approximately half an hour for each evaluation. How to
estimate the quality of individuals in the early stage is crucial for efficiency. Therefore, we apply a
computational validness check for the population. Specifically, invalid values (i.e. NaN, +∞, −∞)
are not allowed. This simple verification accelerates the search process by 10x. But a great number
of divergent, training-unfriendly, and poor-performed loss functions still remain, which yet require
a great amount of computation cost.

3.2.2 CONVERGENCE PROPERTY VERIFICATION

As stated above, the vanilla evolution search suffers from inefficiency issues due to the high sparsity
of the action space and the unawareness of loss mathematical property. Therefore, we introduce the
convergence property verification module into the evolutionary algorithm, which filters out either
non-monotonic or non-convergent loss candidates within a short time.

Classification Loss Function We analyze the property of existing popular classification loss func-
tion (i.e. CE loss). For simplicity, we only consider binary classification scenario, which is known
as binary Cross-entropy loss (BCE):

BCE(x) = −ln(
1

1 + e−x
),

∂BCE(x)

∂x
= −1 +

1

1 + e−x
,

where x indicates positive class score. Further analysis of BCE inspires us that binary classification
loss should meet basic and general mathematical properties to guarantee validness and convergence
in challenging object detection. We summarize these properties as follows:

• Monotonicity. The loss value should monotonically decrease w.r.t positive class score and
increase w.r.t negative class score because large positive score or small negative score im-
plies a well-performed classifier, which should have a small loss penalty.

• Convergence. When the positive class score tends to be +∞, the loss gradient magnitude
should converge to zero to ensure model convergence.

Regression Loss Function For the regression branch, consistency of loss value and distance be-
tween the predicted and target bounding box, named distance-loss consistency, should be confirmed.
Distance-loss consistency claims that loss value is supposed to change consistently with distance,
where loss value increases when the prediction moves away from the ground truth.
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3.2.3 MODEL OPTIMIZATION SIMULATION

Although the convergence property verification module filters out either non-monotonic or non-
convergent losses, it does not guarantee that the loss candidates are suitable for optimization. The
sparse action space demands that there should be other techniques to ensure the quality of optimiza-
tion. To address this issue, we propose the model optimization simulation module that inspects the
optimization capability of the loss.

Specifically, we train and test the loss candidates on a small verification dataset Dverify , which is
constructed by sampling only one image randomly from each category on benchmark dataset like
COCO, to estimate the optimization quality. Then we apply AP performance on Dverify of the
top loss in the previous generation as a threshold to filter out divergent, training-unfriendly, and
poor-performed loss candidates.

Algorithm 1 CSE-Autoloss algorithm.

Input: Search Space S, Number of Generations E, Population Size N , Number of Parents P , Verification
Set Dverify , Proxy Training Set Dtrain, Proxy Validation Set Dval, Initial Predefined Loss Function LI ,
Number of Loss to Evaluate on Verification Set K

1: Evolving N loss functions to generate loss function population from LI

2: for e← 1, E do
3: Check loss function properties with convergence-simulation modules
4: Train and test on Dverify and keep top-K loss candidates
5: Evaluate on Dtrain and Dval, and keep top-P losses as parents
6: Generate N offspring from the parents for the next generation
7: end for

Output: Best-discovered loss function Lbest

4 EXPERIMENTS

Datasets We conduct loss search on large-scale object detection dataset COCO (Lin et al., 2014)
and further evaluate the best-searched loss combinations on datasets with different distribution and
domain, i.e. PASCAL VOC (VOC) (Everingham et al., 2015) and Berkeley Deep Drive (BDD) (Yu
et al., 2020), to verify the generalization of the searched loss functions across datasets. COCO is a
common dataset with 80 object categories for object detection, containing 118K images for training
and 5K minival for validation. In the search experiment, we randomly sample 10k images from the
training set for validation purpose. VOC contains 20 object categories. We use the union of VOC
2007 trainval and VOC 2012 trainval for training and VOC 2007 test for validation and report mAP
using IoU at 0.5. BDD is an autonomous driving dataset with 10 object classes, in which 70k images
are for training and 10k images are for validation.

Experimental Setup We apply Faster R-CNN and FCOS as the representative detectors for two-
stage and one-stage, respectively, in the loss search experiments on COCO for object detection. We
apply ResNet-50 (He et al., 2016) and Feature Pyramid Network (Lin et al., 2017a) as feature ex-
tractor. For FCOS, we employ common tricks such as normalization on bounding box, centerness
on regression, and center sampling. Besides that, we replace centerness branch with the IoU scores
as the target instead of the original design for FCOS and ATSS to better utilize the IoU information,
which has slight AP improvement. Note that loss weights are set default as MMDetection (Chen
et al., 2019a) but the regression weight for ATSS sets to 1 for the search loss combinations. To be
consistent with the authors’ implementation, we use 4 GPUs with 4 images/GPU and 8 GPUs with
2 images/GPU for FCOS and Faster-RCNN. Concerning the proxy task for loss function evaluation,
we perform training on the whole COCO benchmark for only one epoch to trade off performance
and efficiency. Our code for object detection and evolutionary algorithm are based on MMDetec-
tion (Chen et al., 2019a) and DEAP (Fortin et al., 2012).

In the search experiments, regression and classification loss functions are searched independently.
For regression loss search, we take GIoU loss (Rezatofighi et al., 2019) as predefined initial loss LI

to generate the first loss function population, with CE and FL serving as the fixed classification loss
for Faster R-CNN and FCOS, respectively. While for classification branch search, CEI and FLI loss
are served as LI , with GIoU serving as the fixed regression loss.
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4.1 RESULTS ON TWO-STAGE AND ONE-STAGE DETECTORS

We name the best loss combination searched with Faster R-CNN R50 (Ren et al., 2015) and FCOS
R50 (Tian et al., 2019) as CSE-Autoloss-A and CSE-Autoloss-B respectively, with the subscript cls
and reg indicating classification and regression branch. The searched formulations are as follows:

CSE-Autoloss-Acls(x, y, w) = −dot((1 + sin(w))y, log(softmax(x))),

CSE-Autoloss-Areg(i, u, e) = (1−
i

u
) + (1−

i+ 2

e
),

CSE-Autoloss-Bcls(x, y, w) = −[wy(1 + erf(σ(1− y)))logσ(x) + (gd(x)− wy)(σ(x)− wy)log(1− σ(x))],

CSE-Autoloss-Breg(i, u, e) =
3eu+ 12e+ 3i+ 3u+ 18

−3eu+ iu+ u2 − 15e+ 5i+ 5u
.

Table 1: Detection results on the searched loss combination and default loss combination for mul-
tiple popular two-stage and one-stage detectors on COCO val. Column Loss indicates loss for
classification and regression branch in sequence.

Detector Loss AP (%) AP50(%) AP75(%) APS(%) APM(%) APL(%)

Faster R-CNN R50
CE + L1 37.4 58.1 40.4 21.2 41.0 48.1

CE + GIoU 37.6+0.2 58.2+0.1 41.0+0.6 21.5+0.3 41.1+0.1 48.9+0.8

CSE-Autoloss-A 38.5
+1.1 58.6+0.5 41.8+1.4 22.0+0.8 42.2+1.2 50.2+2.1

Faster R-CNN R101
CE + L1 39.4 60.1 43.1 22.4 43.7 51.1

CE + GIoU 39.6+0.2 59.2−0.9 42.9−0.2 22.6+0.2 43.5−0.2 51.5+0.4

CSE-Autoloss-A 40.2
+0.8 60.1+0.0 43.7+0.6 22.6+0.2 44.3+0.6 52.7+1.6

Cascade R-CNN R50
CE + Smooth L1 40.3 58.6 44.0 22.5 43.8 52.9

CE + GIoU 40.2−0.1 58.0−0.6 43.6−0.4 22.4−0.1 43.6−0.2 52.6−0.3

CSE-Autoloss-A 40.5
+0.2 58.8+0.2 44.1+0.1 22.8+0.3 43.9+0.1 53.3+0.4

Mask R-CNN R50
CE + Smooth L1 38.2 58.8 41.4 21.9 40.9 49.5

CE + GIoU 38.5+0.3 58.8+0.0 41.8+0.4 21.9+0.0 42.1+1.2 49.7+0.2

CSE-Autoloss-A 39.1
+0.9 59.3+0.5 42.4+1.0 22.4+0.5 43.0+2.1 51.4+1.9

FCOS R50
FL + GIoU 38.8 56.8 42.2 22.4 42.6 51.1

CSE-Autoloss-B 39.6
+0.8 57.5+0.7 43.1+0.9 22.7+0.3 43.7+1.1 52.6+1.5

ATSS R50
FL + GIoU 40.0 57.9 43.3 23.8 43.7 51.3

CSE-Autoloss-B 40.5
+0.5 58.3+0.4 43.9+0.6 23.3−0.5 44.3+0.6 52.5+1.2

The quantitative results about the gain brought by the searched loss under the same hyper-parameters
for multiple popular two-stage and one-stage detectors are shown in Table 1. Results on Faster
R-CNN R50 and FCOS R50 indicate the generalization of CSE-Autoloss across detectors and the
best-searched loss combination is capable of stimulating the potential of detectors by a large margin.
Take Faster R-CNN R50 for example, CSE-Autoloss-A outperforms the baseline by 1.1% in terms
of AP, which is a great improvement for that two years of expert effort into designing hand-crafted
loss function yields only 0.2% AP improvement from Bounded IoU loss to GIoU loss.

To verify the searched loss can generalize to different detectors, we respectively apply CSE-
Autoloss-A on other two-stage models (i.e. Faster R-CNN R101, Cascade R-CNN R50 (Cai &
Vasconcelos, 2018), and Mask R-CNN R50 (He et al., 2017)), and CSE-Autoloss-B on ATSS (Zhang
et al., 2020). Note that we only replace the classification and regression branch of Mask R-CNN with
CSE-Autoloss-A. Results in Table 1 represent the consistent gain brought by the effective searched
loss without additional overhead.

We further conduct best-searched loss evaluation experiments for Faster R-CNN R50 on VOC and
BDD to validate the loss transferability across datasets. Results are displayed in Table 3, which
indicate the best-searched loss combination enables the detectors to converge well on datasets with
different object distributions and domains.
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Table 2: Efficiency improvement with progressive convergence-simulation modules on searching for
Faster R-CNN classification branch. The proposed modules filter out 99% loss candidates, which
enhances the efficiency to a large extent.

Convergence property verification Model optimization simulation #Evaluated loss

5× 103√
7× 102√ √

50

Table 3: Detection results on searched loss
combination and default loss combination with
Faster R-CNN on PASCAL VOC 2007 test and
BDD val.

Loss VOC mAP (%) BDD AP (%)

CE + L1 79.5 36.5

CE + GIoU 79.6+0.1 36.6+0.1

CSE-Autoloss-A 80.4
+0.9

37.3
+0.8

Table 4: Detection results on predefined ini-
tial loss and default loss for Faster R-CNN and
FCOS classification branch on COCO val.

Detector Loss AP (%)

Faster R-CNN R50
CE + GIoU 37.6

CEI + GIoU 37.7
+0.1

FCOS R50
FL + GIoU 38.8

FLI + GIoU 39.0
+0.2

Table 5: Comparison on the efficiency of search algorithms and distinct branches for Faster R-CNN.

Search algorithm Search branch Another branch #Evaluated loss Wall-clock hours AP (%)

Random search Classification GIoU 1× 104 8× 103 37.8

Evolution search Classification GIoU 5× 103 5× 102 38.2
CSE-Autoloss Classification GIoU 50 26 38.2
CSE-Autoloss Regression CE 15 8 37.9

4.2 ABLATION STUDY

Effectiveness of Convergence-Simulation Modules. Efficiency improvement with progressive
convergence-simulation modules is shown in Table 2 on searching for Faster R-CNN classifica-
tion branch. With our proposed modules, CSE-Autoloss filters out 99% loss candidates with bad
mathematical property and poor performance, which largely increases the efficiency without com-
promising the accuracy of the best-discovered loss.

Individual Loss Contribution. As shown in Table 6 and Table 7, our searched losses match or
outperform the existing popular losses consistently for Faster R-CNN and FCOS. Figure 3 illustrates
the convergence behaviors of popular loss combinations and our CSE-Autoloss-A.

Table 6: Comparison on different loss combina-
tions for Faster R-CNN R50 on COCO val.

Loss AP (%)

CE + L1 37.4

CE + IoU 37.9+0.5

CE + Bounded IoU 37.4+0.0

CE + GIoU 37.6+0.2

CE + DIoU 37.9+0.5

CE + CIoU 37.8+0.4

CE + CSE-Autoloss-Areg 37.9+0.5

CSE-Autoloss-Acls + GIoU 38.2+0.8

CSE-Autoloss-A 38.5
+1.1

Table 7: Comparison on different loss combina-
tions for FCOS R50 on COCO val.

Loss AP (%)

FL + GIoU 38.8

FL + DIoU 38.7−0.1

FL + CIoU 38.8+0.0

GHM (Li et al., 2019a) 38.6−0.2

FL + CSE-Autoloss-Breg 39.1+0.3

CSE-Autoloss-Bcls + GIoU 39.4+0.6

CSE-Autoloss-B 39.6
+0.8
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Figure 3: Evaluation results of popular hand-
crafted loss combinations and CSE-Autoloss-A
with Faster R-CNN R-50 on COCO val. Differ-
ent loss functions have various convergence be-
haviors, and CSE-Autoloss-A achieves the best
performance compared with other loss combi-
nations by a large margin.
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Figure 4: Visualization of the CSE-Autoloss
and vanilla evolution search for FCOS, where
the evaluated loss individuals are scattered
as orange and blue respectively. With our
convergence-simulation modules, the number of
evaluated loss candidates is largely reduced.

Search Algorithm. We compare the efficiency between different search algorithms including ran-
dom search, vanilla evolution search, and CSE-Autoloss. Table 5 shows that the evolution search
is much better than random search. But due to the high sparsity of the action space, the vanilla
evolution search requires hundreds of wall-clock hours for a server with 8 GPUs. CSE-Autoloss
speeds up the search process by 20x because of the effective convergence-simulation modules and
discovers well-performed loss combinations in around 1.5 wall-clock days.

Search Complexity of Different Branches. In our search space, the input nodes of the regres-
sion branch are scalars, while the classification branch contains vectors. Besides, the optimization
of classification branch is more sensitive and difficult than regression, leading to sparse valid indi-
viduals. Therefore, the evolution population required for classification is 104, while only 103 for
regression. The total number of evaluated loss and search overhead for discovering classification
branch is much larger than that for regression as Table 5 shows.

Evolution Behavior Analysis. To validate the effectiveness of CSE-Autoloss, we further compare
the behaviors of CSE-Autoloss and vanilla evolution search with FCOS. The vanilla evolution search
evaluates around 1000 loss candidates in each generation, compared to only about 10 individuals for
CSE-Autoloss. The loss individuals are scattered in Figure 4. Note that we only plot top-100 well-
performed losses in each generation in the vanilla evolutionary search for clear visualization. The
vanilla evolution search is hard to converge because a discrete replacement of the operation could
fail a loss function. With our convergence-simulation modules, the efficiency is largely improved.

5 CONCLUSION

In this work, we propose a convergence-simulation driven evolutionary search pipeline, named CSE-
Autoloss, for loss function search on object detection. It speeds up the search process largely by
regularizing the mathematical property and optimization quality and discovers well-performed loss
functions efficiently without compromising the accuracy. We conduct search experiments on both
two-stage detectors and one-stage detectors and further empirically validate the best-searched loss
functions on different architectures across datasets, which shows the effectiveness and generalization
of both CSE-Autoloss and the best-discovered loss functions. We hope our work could provide
insights for researchers of this field to design novel loss functions for object detection and more
effective frameworks for automated loss function search.
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