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ABSTRACT
In this paper, we consider the problem of inferring per node loss
rates from passive end-to-end measurements in wireless sensor net-
works. Specifically, we consider the case of inferring loss rates dur-
ing the aggregation of data from a collection of sensor nodes to a
sink node. Previous work has studied the general problem of net-
work inference, which considers the cases of inferring link-based
metrics in wireline networks. We show how to adapt previous work
on network inference so that loss rates in wireless sensor networks
may be inferred as well. This includes (1) considering the per-
node, instead of per-link, loss rates; and (2) taking into account the
unique characteristics of wireless sensor networks. We formulate
the problem as a Maximum-Likelihood Estimation (MLE) problem
and show how it can be efficiently solved using the Expectation-
Maximization (EM) algorithm. The results of the inference pro-
cedure may then be utilized in various ways to effectively stream-
line the data collection process. Finally, we validate our analysis
through simulations.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions; C.4 [Performance of Systems]: Fault tolerance, Measure-
ment; G.3 [Probability and Statistics]

General Terms
Measurement, Performance, Reliability

Keywords
Sensor Networks, Tomography, Data Aggregation

1. INTRODUCTION
Recent technological advances have made the development of

low cost sensor nodes possible. This has allowed the deployment
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of large-scale networks of these sensor nodes to become feasible.
The variety of possible uses of these networks has resulted in the
area of sensor networks being actively researched. A survey of the
current research and open challenges in wireless sensor networks
is provided in [1]. Several of the characteristics of wireless sensor
networks create challenging problems. Three of these characteris-
tics are of particular interest:

(1) Sensor nodes are prone to failures. Due to the inherent in-
stability and energy constraints of sensors, sensor nodes are prone
to failures. It would thus be useful to determine which set of nodes
or which areas within the network are experiencing high loss rates.
Such information is potentially valuable to the design of fault tol-
erant protocols or monitoring mechanisms, so that the problem ar-
eas may be re-deployed, and critical data may be rerouted to avoid
these areas (or nodes) suffering high loss rates. These are just a few
of the many possible applications of per node loss rate information
to streamline the data flow or enhance the reliability of large-scale
sensor networks.

(2) Sensor nodes use a broadcast communication paradigm and
have stringent bandwidth constraints. Therefore, one cannot rely
on the use of active acknowledgments, which are not scalable or
bandwidth-efficient, in the design of sensor network protocols. This
renders the direct collection of loss rate data impossible in sensor
networks. Furthermore, it would also be infeasible, due to limited
bandwidth, for individual sensor nodes to collect and transmit loss
rate data to a centralized location for processing.

(3) Sensor nodes have limited resources. Sensor nodes have lim-
ited power, memory and computational power. Therefore, any al-
gorithms developed for wireless sensor networks must not rely on
the assumption of unlimited resources, and must sparingly use the
limited resources that do exist.

Motivated by the needs (fault-tolerance and reliability) and con-
straints (bandwidth and computational power) illustrated above, in
this paper, we concentrate on the problem of efficiently determining
per node loss rates in wireless sensor networks. Particularly, we at-
tempt to efficiently determine per node loss rates based on the data
aggregation communication paradigm. Due to the obvious need of
centralized sensor data processing and monitoring, the paradigm of
data aggregation, also referred to as data fusion, has been critical
to the effective operation of sensor networks. Work in this area has
been previously presented (e.g., [1, 11, 12, 13, 17]) and continues
to be actively researched. In the process of data aggregation, a sub-
set of nodes in the network attempt to forward the sensor data they
have collected back to a sink node via a reverse multicast tree. The
sink node is then able to communicate such collected data to the



user via a task manager node which is connected to the sink via an
Internet or satellite connection.

More specifically, in the process of data aggregation, before a
node sends its data to the next node in the path to the sink, it waits
to receive data from all of its child nodes in the reverse multicast
tree (or until a specified period of time has elapsed). The node then
aggregates its own data with the data it has received from its child
nodes, and forwards this aggregated data to the sink via the reverse
multicast tree. Information about which nodes’ data is present in
the aggregated data must also be sent to the sink. Thus, data fusion
saves communication overhead at the cost of additional computa-
tion and memory resources. Fig. 1 depicts a simple example of a
sensor network using the data aggregation paradigm. To understand
how data aggregation may conserve communication overhead, con-
sider the simple example of the sink collecting data from nodes A,
B and C. Node B sends it data, (B), destined for the sink, to node A.
Node C similarly sends its data, (C), destined for the sink to node A.
Node A then aggregates is own data, (A), with that of nodes B and
C, and sends the fused data, (A,B,C) to the sink. With data aggrega-
tion, each node is only required to transmit once per data collection
round. However, without data aggregation, node A would have to
transmit three times per data collection round: once to send its own
data to the sink, once to forward node B’s data, and once to forward
node C’s data.
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Figure 1: Data aggregation (fusion) in wireless sensor net-
works: an example

The field of network inference, also referred to as network to-
mography, involves estimating network performance parameters
using measurements from only a small subset of nodes. That is,
network tomography is the inference of internal network statis-
tics using only end-to-end path-level measurements. Since the use
of end-to-end or per-hop acknowledgments, or the collection and
transmission of data loss reports by each node is infeasible in sen-
sor networks, due to the limited resources of the nodes, the pro-
posal of performing measurement-based computations only at end
points is particularly appealing. In this paper, we show how the
techniques of network inference may be used to infer internal node
loss rates using only measurements taken at the sink. Our inference
procedure does not require the use of acknowledgments or data loss
reports to be maintained and transmitted by internal sensor nodes.
Therefore, we are able to perform the inference of per node loss
rates without incurring any additional overhead at internal nodes.

The original contributions of this paper are the following:

(1) Adapting basic inference techniques for use in wireless sen-
sor networks. To the best of our knowledge, we believe that this

work is the first to consider applying network tomography tech-
niques in wireless sensor networks. Past research in network to-
mography has concentrated solely on wide-area wireline networks,
and no previous work has yet attempted to address how the funda-
mental differences between wireline and wireless communications
affect the problem and process of network inference. As a result of
these differences, we have adapted network inference techniques
to infer per node instead of per link statistics. In link based to-
mography, links with a common sender or receiver are treated in-
dependently. However, in wireless communications, all data being
sent from or to the same node cannot be treated independently as it
uses the same communication medium. Therefore, inferring node
statistics requires considering all data flows into and out of each
node instead of just the data flow between two nodes. For example,
in Fig. 2 (a), a single loss rate is used to represent the probability
that data sent from either node 2 or node 3 is successfully received
by node 1. In contrast, in a wireline network, separate loss rates
would be used to represent the probability that data is successfully
received from each node. Also, although there is an apparent need
for internal node loss rate data in sensor networks, we are unaware
of any efficient solutions to this problem. This paper shows that
network tomography can be used in wireless sensor networks and
that it can be used to provide a good estimate of internal node loss
rates with minimal overhead.

(2) The use of tomography on reverse multicast trees. We be-
lieve that there does not exist previous work that considers net-
work tomography using reverse multicast trees for data aggrega-
tion. All network tomography research has dealt with the tradi-
tional multicast and unicast communication paradigms where data
is sent from a single source to one or several receivers. In the re-
verse multicast case we consider, multiple sources are sending data
to a single receiver. We show how network tomography can be effi-
ciently adapted to work when the data aggregation communication
paradigm employing reverse multicast trees is used.

The remainder of the paper is organized as follows. Section 2
presents the network model that will be used throughout the paper.
It also discusses how we model the loss of data. Section 3 formu-
lates the problem of inferring per node loss rates as a Maximum-
Likelihood Estimation (MLE) problem and shows how this prob-
lem can be efficiently solved using the EM algorithm. Section 4
presents the results of several model simulations that were con-
ducted. A discussion of the results is also provided. Section 5
discusses related work in network tomography and wireless sensor
networks. Finally, Section 6 concludes the paper.

2. NETWORK AND LOSS MODELS

2.1 Reverse Multicast Trees
Let T = (V, E) denote the reverse multicast tree from all nodes

to the sink for a given data collection task. T consists of a set
of nodes, V , and a set of links, E. The set V contains scattered
sensor nodes that are involved in a particular data collection task.
Each node has the capability of collecting and routing data back to
the sink via a wireless multi-hop infrastructureless routing protocol.
The special node referred to as the sink, denoted by s, is responsible
for collecting all of the data for a given operation and is assumed
to have greater resources available than the other nodes. The set of
links, E, contains ordered pairs (i, j) ∈ V × V such that node i
sends its data, destined for the sink, directly to node j. An example
of a simple 4 node reverse multicast tree is provided in Fig. 2(a). In
this reverse multicast tree, nodes 1, 2 and 3 are attempting to route
data to node s.
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(a) A simple 4 node reverse multicast tree
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Figure 2: Reverse multicast trees: Two examples

Let c(j) denote the set of children of node j. That is c(j) =
{k ∈ V |(k, j) ∈ E}. For each node j ∈ V \ {s}, there is a unique
parent node k = π(j) such that (j, k) ∈ E. Consider a node j.
Any node k on the path from j to s is referred to as an ancestor of
j. Similarly, j is referred to as a descendant of k. If j �= k then
j is a proper descendant of k, and k is proper ancestor of j. We
may also recursively define the notion of a node j being a proper
descendant of node k as follows. Let πn(j) = π(πn−1(j)). It then
follows that j is a proper descendant of k if ∃n > 0 : k = πn(j).
Denote the set of proper descendants of a node j by d(j). That
is d(j) = {k ∈ V |∃n > 0 : j = πn(k)}. Denote the set of
descendants of a node j by d(j). That is, d(j) = d(j) ∪ {j}
Finally, denote the set of leaf nodes in the tree by l(T ). That is,
l(T ) = {k ∈ V |c(k) = ∅}. For example, in the tree depicted in
Fig. 2(b), the proper descendants of node 2 are nodes 4, 5 and 6
(d(2) = {4, 5, 6}). Similarly, the descendants of node 2 are nodes
2, 4, 5, and 6 (d(2) = {2, 4, 5, 6}). In this case, the leaf nodes are
nodes 4, 5, 6, 7 and 8 (l(T ) = {4, 5, 6, 7, 8}).

It is assumed that T is known and remains static for the entire
loss rate inference process. That is, the topology of the reverse
multicast tree is known and remains relatively static. This is a rea-
sonable assumption even if the topology is not known a priori since
it is also possible to infer the topology of a network using end-to-
end measurements. This process is presented in [4], [7], [9] and
[15].

Further, it is reasonable to assume that nodes remain relatively
stationary in a wireless sensor network (refer to [1]). The topology
of the network need only remain static long enough to collect suffi-
cient data for the loss rate inference process. Our simulations have
shown that it is possible to obtain reasonable results using only a
small number of data collection rounds. It is also likely that planned
movement of a node will be the result of an order from the task
manager which was sent through the sink. This means that the sink

will likely be aware of when the topology is about to change. With
this knowledge, the sink can ensure that the correctness of the loss
inference process is maintained. The new topology can be consid-
ered as a separate reverse multicast tree with possible overlapping
regions with the previous tree. Using the techniques presented in
[2], it is possible to combine the loss rate data collected under the
previous topology with the data that will be collected from the new
topology. This combined data may then be used to infer the loss
rates of each node that is present in at least one of the trees.

2.2 Data Loss Model
In wireline loss rate inference, the loss of data in the reverse mul-

ticast tree is modeled by a set of independent Bernoulli processes,
one for each link ∈ E. For example, in Fig. 2(a), consider the case
of node 3 sending data to node 1. In a wireline network, node 3’s
data may be lost due to a buffer overflow at node 1. However, in
a wireless network there are several additional causes of data loss.
Data may be lost due to interference at node 1, which may be the
result of another node attempting to send data to node 1, node 1
sending data to its parent node, or communication between two en-
tirely different nodes in the neighborhood. Since sensor nodes are
prone to failures, data may also be lost due to the temporary failure
of either node 1 or node 3.

Associate with every node j ∈ V a probability αj ∈ [0, 1]. Let
αj be the probability that data sent from node k, k ∈ c(j)∪{j}, to
node j is received successfully by node j. The Loss Rate of node j
is therefore defined to be αj = 1 − αj . Notice that this definition
includes the possibility that a node j does not receive data from
itself. This corresponds to the case where node j is experiencing
a failure and is unable to even forward its own data to its parent
node. This case is not considered in wireline network tomography
but must be considered for wireless sensor network tomography
since sensor nodes are prone to failures. Finally, let α = (αj)j∈V

denote the set of probabilities for all nodes.
The flow of data through a reverse multicast tree is modeled by

a stochastic process X = (Xi,j)i∈V,j∈d(i), where each Xi,j ∈
{0, 1}. Xi,j = 1 means that data sent from node j was success-
fully received by intermediate node i in the path j � s. Similarly,
Xi,j = 0 means that data sent from node j did not successfully
reach intermediate node i. Since a node i aggregates its data with
that of all of its descendants before sending it to the sink, Xi,j = 0
implies that Xi,k = 0, ∀k ∈ d(j). That is, if the sink does not
receive data from a node, then it also will not receive data from all
of the descendants of that node. For example, in Fig. 2(b) if the
sink does not receive data from node 3 then it will also not receive
data from nodes 7 and 8. If Xi,j = 1, then ∀k ∈ c(j), Xi,k = 1
with probability αj . Notice that since Xi,i is defined, the loss rate
of a node will also include data lost because node i failed and was
unable to transmit its own data. This case is not considered in wire-
line network tomography where nodes are assumed to never fail
and hence are always able to send their own data.

2.3 Data Collection For Loss Rate Inference
Consider the collection of data by the sink to be an experiment.

Each round of data collection will be considered a trial within this
experiment. The outcome of each trial will be a record of which
nodes the sink received data from in that round. In terms of the
stochastic process X defined in the previous subsection, each trial
outcome is a random value Xd = (Xs,j)j∈V ∈ Ω = {0, 1}N−1,
where N is the number of nodes in the reverse multicast tree. Let
Pα denote the distribution of the outcomes Xd for a given set of
node probabilities α = (αj)j∈V . Finally, let p(x; α) = P (Xd =
x) denote the probability mass function for a single outcome x∈Ω.



Let the experiment consist of n data collection rounds. For each
possible outcome x ∈ Ω, let n(x) be the number of data collection
rounds for which x was the outcome. The probability of observing
x1, . . . , xn in n data collection rounds is given by:

p(x1, . . . , xn) =

n∏
m=1

p(xm; α) =
∏
x∈Ω

p(x; α)n(x) (1)

where each xi = (xi
j)j∈V and each xi

j = Xs,j in data collection
round i.

Section 3 will show how to use the record of which data was
collected by the sink to infer the internal node loss rates.

3. LOSS RATE INFERENCE
In this section, we show how to formulate the problem of in-

ferring internal node loss rates from end-point measurements as a
Maximum-Likelihood Estimation (MLE) problem. We then show
how the problem can be efficiently solved using the EM algorithm.
Table 1 summarizes the important mathematical notations intro-
duced in Section 2 as well as some which will be introduced in
this section.

Table 1: List of Mathematical Notations
Parameter Definition

c(j) Set of node j’s child nodes
d(j) Set of node j’s proper descendants
d(j) Set of node j’s descendants
l(T ) Set of leaf nodes
Ω Set of possible outcomes which the sink may

observe
αj Probability of successfully sending data directly

to node j
αj Loss rate of node j, i.e., 1 − αj

N number of nodes in the reverse multicast tree
n number of data collection rounds
n(x) number of data collection rounds outcome x ∈

Ω was observed by the sink
nj,k number of data collection rounds node j re-

ceived data from descendant node k

Recall that the sink must keep a record of which nodes it received
data from in each data collection round. It is clear that these are end
point measurements and require no additional data transmission or
collection by internal nodes. All that is required is additional space
at the sink to store the record of data received. It is possible to store
this data in a small one-dimensional array (or similar dynamic data
structures), since it is only necessary to keep a count of how often
each of the finite number of outcomes has occurred.

For example, for the network in Fig. 2(a), there are eight possi-
ble outcomes, i.e., |Ω| = 23 = 8, with each x ∈ Ω = {0, 1}3.
Let the first bit of Ω represent whether the sink received data from
node 1. Similarly, the second and third bits represent the record of
the data received from nodes 2 and 3 respectively. However, only
a small number of these outcomes can possibly occur. Clearly, the
outcomes (011), (010) and (001) cannot occur since the sink can-
not receive data from nodes 2 and 3 without also receiving data
from node 1. In practice, dynamic storage, such as a linked list,
is used to keep track of the number of times each outcome is ob-
served during a data collection period. This limits the number of
outcomes which must be stored to the number of data collection

rounds, since at most n unique outcomes may occur in any n data
collection rounds. The amount of storage required will likely be
even less since each outcome is likely to occur more than once.
Therefore, the amount of memory needed to store the frequency
of the outcomes will be relatively small for most networks and data
collection scenarios. Further, only the sink node is required to store
this information, and its small size should not pose a burden on the
expanded resources available to the sink. Therefore, the loss rate
inference procedure presented in this section does not deplete the
already scarce resources present in a sensor network.

As discussed in Section 2, p(x; α) is the probability mass func-
tion of a single outcome x ∈ Ω. In our case, α is unknown and
is the quantity we wish to estimate. If there are n data collection
rounds, let x1

s, . . . , x
n
s be the n outcomes that are observed at the

sink. Maximum likelihood estimation consists of estimating α by α̂
such that α̂ maximizes the likelihood of observing the n outcomes.
That is, we wish to choose α̂ such that p(x1

s, . . . , x
n
s ; α̂) is max-

imized. If sufficient data can be observed, it may be possible to
analytically solve the MLE problem and find an expression for the
values we wish to infer which uses only observed data. However,
in general, more sophisticated estimation techniques are required.
Loss rate inference in wireless sensor networks is one such case
which requires the use of an advanced estimation technique.

The EM Algorithm is a general algorithm that provides an ef-
ficient iterative procedure for performing maximum-likelihood es-
timation for situations in which missing data makes an analytical
solution to the maximum-likelihood estimation overly complex or
impossible. That is, the algorithm attempts to find an estimate,
α̂, of α from the complete data Xc. The EM algorithm considers
the observed data to be incomplete and an observable function of
the complete data. Consider the reverse multicast tree depicted in
Fig. 2(a). If the sink receives data from node 1, but does not receive
data from either node 2 or 3, it is impossible for the sink to deter-
mine whether nodes 2 and 3 failed or if their data was dropped by
node 1. Similarly, if the sink does not receive data from any of the
nodes, this does not imply that all of the interior nodes failed. In
fact, nodes 2 and 3 may have successfully transmitted their data to
node 1 but the aggregated data of all three nodes was lost during
the transmission from node 1 to the sink. Complete information
of the data collection process would include knowledge of which
data was received by each node for each data collection round. If
complete information regarding how far data from each node tra-
versed up the reverse multicast tree was available, then the loss rate
inference problem would be trivial to solve.

The equation for calculating the estimated loss rate of a node,
α̂j , with complete information would simply be

α̂j =




∑
k∈d(j)

nj,k

/ ∑
k∈d(j)

n if j is a leaf node

∑
k∈d(j)

nj,k

/ ∑
k∈d(j)

nr,k otherwise
(2)

where nj,k represents the number of data collection rounds for
which node j received data from node k, n is the total number of
data collection rounds, and r is the child node of j from which
node j receives nodes k’s data. We also define nr,j

.
= n. That is,

the success rate for a node is the ratio of the amount of data that
was received from itself and its descendant nodes to the amount
of data that it should have received from itself and its descendant
nodes. If complete information regarding how far data from each
node traversed up the reverse multicast tree was available, then the
loss rate inference problem would be trivial to solve. However,
obtaining complete information would require each sensor node



to record which descendants it received data from in each round.
These records would then need to be transmitted to the sink for cen-
tralized processing to determine the loss rates. This in an unattrac-
tive solution in a wireless sensor network environment, as it wastes
precious bandwidth and power resources. In practice, it is only fea-
sible to determine which nodes the sink received data from in each
round and then use the information to infer per node loss rates.

We follow the approach used in [2] and [5] and employ the EM
algorithm by augmenting the incomplete observable data with un-
observable, but complete data. Fig. 3 shows the data that is observ-
able and unobservable by the sink at each node in the path 5 � s.
For example, n1,5 is a count of how many rounds data from node
5 reached node 1. Node 1 would also have similar counts for all of
its descendants. Complete knowledge of the observable and unob-
servable data makes it possible to determine where the data from
a node was lost if it did not reach the sink. However, as discussed
previously, it is only feasible to record data at the sink. That is, we
only know ns,j ; j ∈ V \ {s}.
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n

s,5

5,5

2,5

1,5

(Unobservable)

(Unobservable)

(Unobservable)

(Observable)

Figure 3: Observable and unobservable data in the path from
node 5 to the sink

Since the complete counts, nj,k; k ∈ d(j)∪{j}, are not known,
the EM algorithm iteratively augments the observed data with an
estimate of the unobserved data. These estimated counts are then
used to compute an estimate of the per node loss rates, α̂(l), where
α̂(l) is the estimate for the loss rates after iteration l.

Let Xs = (x1
s, . . . , x

n
s ), with xi

s representing the observed data
at the sink for data collection round i, be the set of data received
at the sink. The probability of the n independent data observations
Xs is therefore

p(Xs; α) =
n∏

i=1

p(xi
s; α)

=
∏
x∈Ω

p(x; α)n(x) (3)

The goal of loss rate inference is to estimate α by the maximizer
of (3). That is,

α̂ = arg max
α

p(Xs; α) (4)

However, it is more convenient to work with the log-likelihood
function of the complete data. Let Xc be the set of complete data
and xi

c be the complete data for data collection round i. The log-
likelihood equation then becomes

L(Xc; α) = log p(Xc; α) (5)

The probability of observing x1
c , . . . , x

n
c in n data collection

rounds is therefore

p(x1
c , . . . , x

n
c ; α) =

∏
(j,k)

k∈d(j)∧j /∈l(T )

α
nj,k

j · αnr,k−nj,k

j

·
∏

(j,j)j∈l(T )

α
nj,j

j · αn−nj,j

j (6)

where r is the child node from which node j receives node k’s data.
That is, r is the child of j in the path k � j, which implies that the
data from node k follows the path k � r → j � s.

Combining Equations (5) and (6) we obtain an expression for
the log-likelihood function for loss rate inference in wireless sensor
networks. To allow the log-likelihood to be easily maximized, we
split the log-likelihood equation into two cases and consider them
separately. In one case we consider only leaf nodes while in the
other we consider only non-leaf nodes. This results in the following
expressions for leaf nodes

L(Xc; α) =
∑

j∈l(T )

[nj,j log αj + n log αj − nj,j log αj ] (7)

and non-leaf nodes

L(Xc; α)=
∑

(j,k)
k∈d(j)

[nj,k log αj + nr,k log αj − nj,k log αj ] (8)

Maximizing Equations (7) and (8) yields the following two equa-
tions. The first is for the leaf node case

0 =
∑

j∈l(T )

[
nj,j

αj
− n

αj
+

nj,j

αj

]
(9)

while the second is for non leaf nodes

0 =
∑

(j,k)
k∈d(j)∧j /∈l(T )

[
nj,k

αj
− nr,k

αj
+

nj,k

αj

]
(10)

Solving Equations (9) and (10) for α̂j produces the expected ex-
pression

α̂j =




nj,j

/
n j ∈ l(T )∑

k∈d(j)

nj,k

/ ∑
k∈d(j)

nr,k j /∈ l(T ) (11)

Using the expressions we have just developed we may now em-
ploy the EM algorithm to solve the loss rate inference problem. The
EM Algorithm has four steps:

1) Initialization: Select initial node loss rates α̂(0).

2) Expectation: Estimate the unobservable nj,k counts using
the conditional expectation under the probabilities α̂(l) and
the observable data.

3) Maximization: Compute the new estimate α̂(l+1) using the
estimated nj,k values.



4) Iteration: Iterate steps 2 and 3 until a termination criterion is
met.

Steps 1 and 4 are implementation details that are not specific to
wireless sensor network tomography. They will be explained in
more detail in Section 4. Steps 2 and 3 for use in loss rate inference
in wireless sensor networks will now be explained in more detail.

For iteration l +1, Step 2 requires estimating the nj,k counts us-
ing the observed data, Xs, and the probabilities, α(l), from iteration
l. Let n̂j,k denote the estimated counts for the current iteration.

n̂j,k = Eα̂(l) [nj,k|Xs]

=
n∑

i=1

Pα̂(l) [Xj,k = 1|Xs = xi
s]

=
∑
x∈Ω

n(x) · Pα̂(l) [Xj,k = 1|Xs = xi
s] (12)

where

Pα̂(l) [Xj,k = 1|Xs = xi
s] =




if xi
s indicates

1 that the sink
received data
from node k

if xi
s indicates

that the sink did
not receive data∏

m∈k�j

α̂m from node k

(13)
For example, in the network depicted in Fig. 2(b), n̂1,5 = n(x) ·

α̂5 · α̂2 · α̂1 if the outcome x being considered indicates that the
sink did not receive data from node 5.

Step 3 involves finding the maximizer of Equations (7) and (8).
This can be accomplished by substituting the estimated counts,
n̂j,k, from Step 2 into Equation (11). The values computed dur-
ing this step become α̂(l+1). Therefore, the equation used by Step
3 of the EM Algorithm becomes

α̂j =




n̂j,j/n j ∈ l(T )∑
k∈d(j)

n̂j,k

/ ∑
k∈d(j)

n̂r,k j /∈ l(T ) (14)

The EM algorithm has several properties that make it especially
beneficial in wireless sensor network tomography. It is numerically
stable and reliably converges to a local maximizer from an arbitrary
starting point α̂(0) in almost all cases. The EM algorithm is also
easy to implement and requires little storage space and computa-
tional power. The reader is referred to [14] for a more complete
discussion of the EM algorithm and its properties. Therefore, it
should be possible to efficiently implement a loss rate inference
procedure using the EM algorithm in sensor nodes with limited re-
sources.

4. SIMULATIONS
In this section we attempt to verify the validity and assess the

accuracy of the loss rate inference procedure presented in Section
3. We accomplish this by performing several model simulation ex-
periments. The experiments consider several loss scenarios for two
different networks.

A program was created to randomly generate sensor network
topologies and to simulate the flow of data through these networks.
MATLAB was then used to perform the loss rate inference using
the previously generated topologies and data flow records. To cre-
ate a random topology, The desired number of nodes were ran-
domly placed within a 10 unit by 10 unit square region, with the
sink being placed in the center of the region. An example of a
randomly generated topology is provided in Fig. 7. A reverse mul-
ticast tree for the random topology was then generated. Next, the
flow of data through the network was simulated, including a record
of the outcomes that the sink would observe. For each data col-
lection round, whether a node successfully received data sent to it
by its child nodes was determined randomly but with a specified
intended loss rate for each node. That is, as the number of data
collection rounds increases the actual loss rate of each node should
converge to the intended loss rate. The actual loss rate for each
node was also recorded.

Two networks were used in the simulations. One consisted of
115 nodes while the other contained 9 nodes. Fig. 2(b) shows the
topology of the 9 node network. An intended success rate of 0.99
(i.e. a loss rate of 1%) was chosen for all normally operating nodes
in the 115 node network. An intended success rate of 0.98 was
used for normally operating nodes in the 9 nodes network. Each
simulation consisted of 500 data collection rounds. Once all of the
data was collected, the per node loss rates were inferred using the
results of Section 3.

5 10

10

5

0

sink

lossy area

nodes

Figure 7: A random sensor network for simulations: an exam-
ple

As discussed in Section 3, the initiation and iteration steps of
the EM Algorithm are implementation specific details. In all of the
simulations α(0) was chosen such that the initial loss rate of each
node was 0.85. The choice of initial loss rates does not appear
to affect the inferred loss rates to which the algorithm converges.
This is a property of the EM algorithm which was also observed
by [2]. Finally, steps 2 and 3 were iterated until the inferred loss
rate of each node changed by less than 0.0001 between consecutive
iterations.

Four different loss scenarios were used to test the robustness of
the inference procedure. These four cases cover all of the possible
data loss scenarios that may occur in a real sensor network. The
scenarios were:
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Figure 4: Simulation results: Equal losses on all nodes
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Figure 5: Simulation results: Cascaded losses (Heavy losses at nodes 2 and 5)
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Figure 6: Simulation results: Heavy losses in separate branches (Heavy losses at nodes 5 and 7)



Table 2: Summary of Mean and Maximum Absolute Errors: 115 node network
Loss Scenario Mean Absolute Error Maximum Absolute Error

Equal losses 0.0617 0.2220
Lossy area 0.0724 0.4640

Cascaded losses 0.0625 0.2220
Heavy losses in separate branches 0.1427 0.4200

1. Equal losses throughout the network

2. Lossy area. i.e. Heavy losses at nodes located in the same
physical region.

3. Heavy losses in separate branches of the tree

4. Cascaded losses. i.e., Heavy losses at nodes on the same path
to the sink.

To simulate the equal losses throughout the network scenario, the
intended success rate of each node was set to be that of a normally
operating node. This scenario corresponds to the normal opera-
tion of the network. To simulate the lossy area scenario, all nodes
within a predefined 4 square unit region had their intended success
rates set to 0.75. The lossy area scenario was only simulated for the
115 nodes network since only one node would fall within the lossy
area for the 9 node network. In the 115 node network, four nodes
were located within the lossy area. This scenario corresponds to the
case when a physical obstruction, misbehaving node or other inter-
ference is causing nodes in a certain geographic region to perform
poorly.

The next two scenarios simulate the independent failure of nodes.
The cascaded losses scenario was simulated by randomly selecting
two nodes from the same branch of the reverse multicast tree. The
intended success rates of these nodes were then set to 0.75. For the
9 node network, the intended success rates of nodes 2 and 5 were
set to be 0.85 and 0.75 respectively. Finally, the heavy losses in
separate branches of the tree scenario was simulated by randomly
selecting several nodes from different branches of the reverse mul-
ticast tree. For the 115 node network, the intended success rates of
the selected nodes were then set to 0.75. In the 9 node network,
the intended success rates of nodes 5 and 7 were set to be 0.75 and
0.65 respectively.

A plot of the inferred and actual success rates as well as the abso-
lute error for each node for the equal losses scenario is provided in
Fig. 4. In this scenario the average absolute error was only 0.057.
The leaf nodes all experience an error of approximately 0.10 while
the rest of the nodes experience very small errors. Although the leaf
nodes all have inferred success rates that are lower than their actual
values, the inferred success rates are still very high and would not
lead to falsely concluding that any of these nodes are experiencing
heavy losses.

The results of the cascaded losses scenario for the 9 node net-
work are presented in Fig. 5. In this case, the average absolute er-
ror was 0.1302. The error was most significant for nodes 4 through
6 as some of the losses that should have been attributed to node 2
were instead attributed evenly amongst node 2’s child nodes. This
can be seen in the plot as the inferred success rate of node 2 is
higher than its actual success rate while the success rates of the
child nodes are lower than their actual rates. However, since each
of the child nodes experiences a similar absolute error as a result
of the overestimation of node 2’s success rate, it is still possible to
determine that node 5 is in fact experiencing the heaviest losses.

Fig. 6 contains a plot of the actual and inferred success rates for
each node in the 9 node network for the heavy losses in separate
branches scenario. Fig. 6 also contains a plot of the absolute error
for each node. We were able to successfully infer the success rate
of each node with an average absolute error of only 0.0512. More
importantly, it is clear from the plot of inferred success rates that
our inference procedure was able to determine which nodes were
experiencing heavy losses.

In the lossy area scenario, we were able to infer which nodes
were in the lossy area. The descendants of the nodes in the lossy
area had inferred success rates that were lower than their actual
values. This is because some of the losses that should have been at-
tributed to the nodes in the lossy area were instead being attributed
to their descendants. However, it is still possible to determine the
general area which is experiencing high loss rates.

Table 2 provides the mean and maximum absolute error of the
inferred success rates for all of the loss scenarios for the 115 node
network. These results show that our loss rate inference procedure
scales well. However, the accuracy of the inferred values does de-
crease as the network size increases. A possible solution to this
problem is to designate some of the nodes in the network as infer-
ence nodes. These nodes would then act as sink nodes for their non-
inference node descendants in the inference process. They would
perform the loss rate inference for all of their descendants and then
forward the results to the actual sink. This should allow our infer-
ence procedure to scale to even larger networks, at the expense of
additional overhead, without sacrificing accuracy.

5. RELATED WORK
There has been much research in the area of network tomogra-

phy for wide-area wireline networks. A summary of this research
is provided by [4]. Current research has considered the problem
of using both multicast (e.g., [3], [7], [9], [15]) and unicast (e.g.,
[5], [10] and [16]) probes to infer internal network characteristics.
The type of probe used should reflect the type of traffic for which
measurements are required. That is, if one would like informa-
tion regarding the performance of unicast packet transmission in
the network, then unicast probes should be used.

The basic concept behind tomography is that there is correlation
in the losses (and delays) experienced by the data that is intended
for each receiver. For example, consider the network depicted in
Fig. 2(b). If the sink sends a multicast packet destined for nodes
4 and 5, then the losses and delays experienced on the common
portions of the multicast tree, links (s,1) and (1,2), are expected to
be the same since they are in fact the same packet. That is, if the
data is lost on the link between nodes 1 and 2 then neither node 4
nor node 5 will receive the multicast data. Also, the difference in
the delay measured by nodes 4 and 5 will only be the difference
between the delays on links (2, 4) and (2, 5).

In all cases, the network characteristics being inferred are for
links as opposed to the node based characteristics we wish to in-
fer in wireless sensor networks. The most common characteristics
to infer are loss rates (e.g., [2], [3], [5], [10]), delays ([8]), delay



distributions ([6]), and topology (e.g., [7], [9]). Previous work has
shown that inference techniques used to infer one characteristic can
often be easily adapted to infer other characteristics. We therefore
only consider the inference of per node loss rates in this paper. Our
results should also be applicable to the inference of additional char-
acteristics such as per node delay.

Most of the current network inference research involves the use
of actively sending probe packets into the network. However, the
use of passive network inference has been considered by [16]. The
use of passive tomography techniques is especially important for
sensor networks. The limited resources of sensor nodes makes the
sending of large numbers of tomography probe packets into the net-
work unappealing. It is likely that the tomography process would
deplete more resources than the use of its results would be able to
save.

There has also been significant research in the dissemination and
propagation of data in wireless sensor networks. The reader is re-
ferred to [11], [12], [13] and [17] for discussions of some of the
dissemination and propagation techniques proposed.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we propose to apply wireline network tomography

techniques for use in wireless sensor networks, especially when
using the data aggregation communication paradigm with reverse
multicast trees. To the best of our knowledge, this is the first work
to consider applying network tomography techniques in wireless
sensor networks, targeting per-node loss rate inference rather than
a per-link analysis. We show our detailed proposal of formulating
the problem of loss inference as a Maximum-Likelihood Estima-
tion problem, and performing the inference with the efficient EM
algorithm commonly adopted in a large body of tomography liter-
ature. Via simulations, we validate our claims that per-node loss
rates in the reverse multicast tree may be inferred with accuracy by
the sink node, without any of the internal nodes incurring the addi-
tional overhead of active probes, per-hop acknowledgments, or loss
reports. Our proposal minimizes the overhead (in fact, there is no
overhead of actively injected protocol traffic), and efficiently solves
the problem of loss inference. The results may be used in a variety
of applications, such as when re-routing around problem areas that
suffer from high loss rates, or when designing robust fault-tolerant
protocols. In our future work, we intend to refine the inference pro-
cess and experiment with more loss scenarios in even larger sensor
networks. We would also like to extend our proposed algorithm to
the inference of per-node transmission latency.
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