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Samuel Rota Bulò⋆,† Gerhard Neuhold† Peter Kontschieder†

⋆FBK - Trento, Italy - rotabulo@fbk.eu
†Mapillary - Graz, Austria - {samuel,gerhard,pkontschieder}@mapillary.com

Abstract

We introduce a novel loss max-pooling concept for han-

dling imbalanced training data distributions, applicable as

alternative loss layer in the context of deep neural net-

works for semantic image segmentation. Most real-world

semantic segmentation datasets exhibit long tail distribu-

tions with few object categories comprising the majority

of data and consequently biasing the classifiers towards

them. Our method adaptively re-weights the contribu-

tions of each pixel based on their observed losses, target-

ing under-performing classification results as often encoun-

tered for under-represented object classes. Our approach

goes beyond conventional cost-sensitive learning attempts

through adaptive considerations that allow us to indirectly

address both, inter- and intra-class imbalances. We provide

a theoretical justification of our approach, complementary

to experimental analyses on benchmark datasets. In our

experiments on the Cityscapes and Pascal VOC 2012 seg-

mentation datasets we find consistently improved results,

demonstrating the efficacy of our approach.

1. Introduction

Deep learning approaches have undoubtedly matured to

the new de facto standards for many traditional computer

vision tasks like image classification, object detection or

semantic segmentation. Semantic segmentation aims to as-

sign categorical labels to each pixel in an image and there-

fore constitutes the basis for high-level image understand-

ing. Recent works have contributed to the progress in this

research field by building upon convolutional neural net-

works (CNNs) [30] and enriching them with task-specific

functionalities. Extending CNNs to directly cast dense, se-

mantic label maps [2, 34], including more contextual in-

formation [9, 16, 33, 46] or refining results with graphical

models [31, 47], have led to impressive results in many real-

world applications and on standard benchmark datasets.

Few works have focused on how to properly handle im-

balanced (or skewed) class distributions, as often encoun-

tered in semantic segmentation datasets, within deep neu-

ral network training so far. With imbalanced, we refer to

datasets having dominant portions of their data assigned to

(few) majority classes while the rest belongs to minority

classes, forming comparably under-represented categories.

As (mostly undesired) consequence, it can be observed that

classifiers trained without correction mechanisms tend to be

biased towards the majority classes during inference.

One way to mitigate this class-imbalance problem is

to emphasize on balanced compilations of datasets in the

first place by collecting their samples approximately uni-

formly. Datasets following such an approach are Ima-

geNet [11], Caltech 101/256 [15, 17] or CIFAR 10/100 [29],

where training, validation and test sets are roughly bal-

anced w.r.t. the instances per class. Another widely used

procedure is conducting over-sampling of minority classes

or under-sampling from the majority classes when compil-

ing the actual training data. Such approaches are known

to change the underlying data distributions and may re-

sult in suboptimal exploitation of available data, increased

computational effort and/or risk of over-fitting when re-

peatedly visiting the same samples from minority classes

(c.f . SMOTE and derived variants [6, 8, 19, 24] on ways

to avoid over-fitting). However, its efficiency and straight-

forward application for tasks like image-level classification

rendered sampling a commonly-agreed practice.

Another approach termed cost-sensitive learning

changes the algorithmic behavior by introducing class-

specific weights, often derived from the original data statis-

tics. Such methods were recently investigated [7, 35, 44, 45]

for deep learning, some of them following ideas previ-

ously applied in shallow learning methods like random

forests [27, 28] or support vector machines [38, 42].

Many of these works use statically-defined cost matri-

ces [7, 12, 35, 44, 45] or introduce additional parameter

learning steps [26]. Due to the spatial arrangement and

strong correlations of classes between adjacent pixels, cost-

sensitive learning techniques are preferred over resampling

methods when performing dense, pixel-wise classification

as in semantic segmentation tasks. However, current trends

of semantic segmentation datasets show strong increase in

complexity with more minority classes being added.
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Contributions. In this work we propose a principled solu-

tion to handling imbalanced datasets within deep learning

approaches for semantic segmentation tasks. Specifically,

we introduce a novel loss function, which upper bounds

the traditional losses where the contribution of each pixel

is weighted equally. The upper bound is obtained via a gen-

eralized max-pooling operator acting at the pixel-loss level.

The maximization is taken with respect to pixel weighting

functions, thus providing an adaptive re-weighting of the

contributions of each pixel, based on the loss they actually

exhibit. In general, pixels incurring higher losses during

training are weighted more than pixels with a lower loss,

thus indirectly compensating potential inter-class and intra-

class imbalances within the dataset. The latter imbalance

is approached because our dynamic re-weighting is class-

agnostic, i.e. we are not taking advantage of the class label

statistics like previous cost-sensitive learning approaches.

The generalized max-pooling operator, and hence our

new loss, can be instantiated in different ways depending

on how we delimit the space of feasible pixel weighting

functions. In this paper, we focus on a particular family

of weighting functions with bounded p-norm and∞-norm,

and study the properties that our loss function exhibits un-

der this setting. Moreover, we provide the theoretical con-

tribution of deriving an explicit characterization of our loss

function under this special case, which enables the compu-

tation of gradients that are needed for the optimization of

the deep neural network.

As additional, complementary contribution we describe

a performance-dependent sampling approach, guiding the

minibatch compilation during training. By keeping track of

the prediction performance on the training set, we show how

a relatively simple change in the sampling scheme allows us

to faster reach convergence and improved results.

The rest of this section discusses some related works

and how current semantic segmentation approaches typi-

cally deal with the class-imbalance problem, before we pro-

vide a compact description for the notation used in the rest

of this paper. In Sect. 2 we describe how we depart from

the standard, uniform weighting scheme to our proposed

adaptive, pixel-loss max-pooling and the space of weighting

functions we are considering. Sect. 3 and 4 describe how we

eventually solve the novel loss function and provide algo-

rithmic details, respectively. In Sect. 5 we assess the perfor-

mance of our contributions on the challenging Cityscapes

and Pascal VOC segmentation benchmarks before we con-

clude in Sect. 6. Finally, refer to [39] for more in-depth

analyses and correctness proofs for our approach.

Related Works. Many semantic segmentation works fol-

low a relatively simple cost-sensitive approach via an in-

verse frequency rebalancing scheme, e.g. [7, 35, 44, 45]

or median frequency re-weighting [12]. Other approaches

construct best-practice heuristics by e.g. restricting the

number of pixels to be updated during backpropagation:

The work in [3] suggests increasing the minibatch size

while decreasing the absolute number of (randomly sam-

pled) pixel positions to be updated. In [43], an ap-

proach coined online bootstrapping is introduced, where

pixel losses are sorted and only the k highest loss posi-

tions are updated. A similar idea termed online hard ex-

ample mining [41] was found to be effective for object de-

tection, where high-loss bounding boxes retained after a

non-maximum-suppression step were preferably updated.

The work in [23] tackles class imbalance via enforcing

inter-cluster and inter-class margins, obtained by employing

quintuplet instance sampling with a triple-header hinge loss.

Another recent work [26] proposed a cost-sensitive neu-

ral network for classification, jointly optimizing for class

dependent costs and the standard neural network parame-

ters. The work in [40] addresses the problem of contour

detection with convolutional neural networks (CNN), com-

bining a specific loss for contour versus non-contour sam-

ples with the conventional log-loss. In separate though re-

lated research fields, focus was put on directly optimizing

the target measures like Area under curve (AUC), Intersec-

tion over Union (IoU or Jaccard Index) or Average class

(AC) [1, 4, 36, 37]. The work in [18] is proposing a non-

linear activation function computing the Lp norm of pro-

jections from the lower layers, allowing to interpret max-,

average- and root-mean-squared-pooling operators as spe-

cial cases of their activation function.

Notation. In this paper, we denote by AB the space of

functions mapping elements in the set B to elements in the

set A, while An with n a natual number denotes the usual

product set of n-tuples with elements in A. The sets of

real and integer numbers are R and Z, respectively. Let

f, g ∈ R
A, c ∈ R. Operations defined on R such as, e.g.

addition, multiplication, exponentiation, etc., are inherited

by R
A via pointwise application (for instance, f + g is the

function z ∈ A 7→ f(z) + g(z) and f c is the function

z ∈ A 7→ f(z)c). Additionally, we use the notations:

• 〈f〉B =
∑

z∈A∩B f(z), and 〈f〉 = 〈f〉A

• ‖f‖p,B =
(
∑

z∈A∩B f(z)p
)1/p

and ‖f‖p = ‖f‖p,A
• f · g =

∑

z∈A f(z)g(z)
• f � c ⇐⇒ (∀z ∈ A)(f(z) ≤ c)
• (f)+ denotes the function z ∈ A 7→ max{f(z), 0}.

2. Pixel-Loss Max-Pooling

The goal of semantic image segmentation is to provide

an assignment of class labels to each pixel of an image. The

input space for this task is denoted by X and corresponds

to the set of possible images. For the sake of simplicity, we

assume all images to have the same number of pixels . We

denote by I ⊂ Z2 the set of pixels within an image, and let

n be the number of pixels, i.e. n = |I|. The output space
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for the segmentation task is denoted by Y and corresponds

to all pixelwise labelings with classes in C. Each labeling

y ∈ Y is a function mapping pixels to classes, i.e. Y = CI .

Standard setting. The typical objective used to train

a model fθ ∈ YX with parameters θ (e.g. a fully-

convolutional network), given a training set T ⊂ X × Y ,

takes the following form:

min







∑

(x,y)∈T

L(fθ(x), y) + λR(θ) : θ ∈ Θ







, (1)

where Θ is the set of possible network parameters, L ∈
R
Y×Y is a loss function penalizing wrong image labelings

and R ∈ R
Θ is a regularizer. The loss function L commonly

decomposes into a sum of pixel-specific losses as follows

L(ŷ, y) =
1

n
〈ℓŷy〉 , (2)

where ℓŷy ∈ R
I assigns to each pixel u ∈ I the loss in-

curred for predicting class ŷ(u) instead of y(u). In the rest

of the paper, we assume ℓŷy to be non-negative and bounded

(i.e. pixel losses are finite).

Loss max-pooling. The loss function defined in (2) weights

uniformly the contribution of each pixel within the image.

The effect of this choice is a bias of the learner towards el-

ements that are dominant within the image (e.g. sky, build-

ing, road) to the detriment of elements occupying smaller

portions of the image. In order to alleviate this issue, we

propose to adaptively reweigh the contribution of each pixel

based on the actual loss we observe. Our goal is to shift

the focus on image parts where the loss is higher, while re-

taining a theoretical link to the loss in (2). The solution

we propose is an upper bound to L, which is constructed

by relaxing the pixel weighting scheme. In general terms,

we design a convex, compact space of weighting functions

W ⊂ R
I , subsuming the uniform weighting function, i.e.

{ 1n}
I ⊂ W , and parametrize the loss function in (2) as

Lw(ŷ, y) = w · ℓŷy , (3)

with w ∈ W . Then, we define a new loss function

LW ∈ R
Y×Y , which targets the highest loss incurred with

a weighting function inW , i.e.

LW(ŷ, y) = max{Lw(ŷ, y) : w ∈ W} . (4)

Since the uniform weighting function belongs toW and we

maximize overW , it follows that LW upper bounds L, i.e.

LW(ŷ, y) ≥ L(ŷ, y) for any ŷ, y ∈ Y . Consequently, we

obtain an upper bound to (1) if we replace L by LW .

The title of our work, which ties the loss to max-pooling,

is inspired by the observation that the loss proposed in (4)

is the application of a generalized max-pooling operator
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Figure 1: Left: Plot of ‖w‖p = 1 in the 2-dimensional

case for p ∈ {1, 1.4, 2, 4,∞}. Right: SetW when n = 2,

p = 1.4 and τ = 0.6.

acting on the pixel-losses. Indeed, we recover a conven-

tional max-pooling operator as a special case if W is the

set of probability distributions over I. Similarly, the stan-

dard loss in (2) can be regarded as the application of an

average-pooling operator, which again can be boiled down

to a special case of (4) under a proper choice ofW .

The space W of weighting functions. The property that

the loss max-pooling operator exhibits depends on the shape

of W . Here, we restrict the focus to weighting functions

with p-norm (p ≥ 1) and∞-norm upper bounded by γ and

τ , respectively (see Fig. 1 for an example):

W =
{

w ∈ R
I : ‖w‖p ≤ γ, ‖w‖∞ ≤ τ

}

. (5)

We fix the bound on the p-norm to γ = n−1/q with q =
p

p−1 , which corresponds to the p-norm of a uniform weight-

ing function. Instead, p and τ are left as hyper-parameters.

Possible values of τ should be chosen in the range [n−1, γ].
Indeed, lower values would prevent the uniform weighting

function from belonging to W , while higher values would

be equivalent to putting τ = γ.

Intuitively, the user can control the pixel selectivity de-

gree of the pooling operation in (4) by changing p. Indeed,

the optimal weights will be in general concentrated around

a single pixel as p → 1 and be uniformly spread across

pixels as p → ∞. On the other hand, τ allows to con-

trol, through the relation m =
(

γ
τ

)p
, the minimum num-

ber of pixels (namely ⌈m⌉) that should be supported by the

optimal weighting function. In Fig. 2 we show some ex-

amples, given synthetically-generated losses for n = 100
pixels (sorted for better visualization). On the left, we fix

m = n/3 (i.e. at least 1/3 of the pixels should be sup-

ported) and report the optimal weightings for different val-

ues of p. As we can see, the weights get more peaked

on high losses as p moves towards 1, but the constraint

on m prevents selecting less than ⌈m⌉ pixels. On the

other hand, the weights tend to become uniform as p ap-

proaches∞. The plot on the right fixes p = 1.7 and varies

m ∈ {0, 0.1n, 0.2n, 0.4n, 0.8n, n}. We see that the weights

tend to uniformly support a larger share of pixels as we in-

crease m, yielding the uniform distribution when m = n.
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3. Computation of LW

The maximization problem in (4) is concave and has an

explicit-form solution ifW is defined as in (5). We provide

the details by cases, considering the parametrization (p,m)
in place of (p, τ), because m has a clear intuitive meaning as

mentioned in the previous section. Valid parametrizations

satisfy p ≥ 1 and 1 ≤ m ≤ n.

3.1. Case p > 1

To address this case, we consider the following dual for-

mulation of the maximization problem in (4):

LW(ŷ, y) = min
{

g(λ) : λ � 0, λ ∈ R
I
}

, (6)

where λ is the dual variable accounting for the constraint

w � τ , which is equivalent to ‖w‖∞ ≤ τ , and

g(λ) = τ〈λ〉+max
{

w · (ℓŷy − λ) : ‖w‖p ≤ γ, w ∈ R
I
}

.

Moving from the primal to the dual formulation is legit-

imate because both formulations share the same optimal

value. Indeed, the Slater’s condition applies [5] (e.g. func-

tion z ∈ I 7→ 0 is strictly feasible).

The maximization in g(λ) is the definition of the dual

norm [5, Appendix A.1.6] of the p-norm, which corre-

sponds to the q-norm with q = p
p−1 , evaluated in ℓŷy − λ

and scaled by γ. Accordingly, we have that

g(λ) = τ〈λ〉+ γ‖ℓŷy − λ‖q . (7)

We get a solution to (6) by finding a point λ∗ that satisfies

λ∗ =
(

ℓŷy −m−1/q‖ℓŷy − λ∗‖q
)

+
(8)

and maximizes ‖ℓŷy − λ‖q (see, [39, Prop. 3]). However,

computing such a solution from (8) is not straightforward

due to the recursive nature of the formula involving multiple

variables (elements of λ∗). We reduce it to the problem of

finding the largest root of the single-variable function

η(α) = (m− |Jα|)α
q − 〈ℓqŷy〉Jα

, (9)

where Jα = {u ∈ I : ℓŷy(u) > α} and J α = I \ Jα is

its complement. This characterization of solutions to the

dual formulation (6) in terms of roots of η is proved correct

in [39, Prop. 1] and it is used to derive the theorem below,

which provides an explicit formula for LW(ŷ, y), the opti-

mal weighting function w∗ of the maximization in (4) and

the optimal dual variable λ∗:

Theorem 1. Let 1 ≤ q < ∞, 1 ≤ m ≤ n and α∗ =
‖ℓŷy‖q,J∗

(m−|J ∗|)1/q
, where J ∗ = {u ∈ I : η(ℓŷy(u)) > 0} and

J
∗
= I \ J ∗. Then

LW(ŷ, y) = τ [〈ℓŷy〉J ∗ + (m− |J ∗|)α∗] . (10)

Moreover, λ∗ = |ℓŷy − α∗|+ is a minimizer of the dual

formulation in (6), while

w∗(u) =



















τ if u ∈ J ∗

τ

(

ℓŷy(u)

α∗

)q−1

if u ∈ J
∗

and α∗ > 0

0 otherwise

is a maximizer of the primal formulation in (4).

3.2. Case p = 1

For this case, the solution takes the same form as in (10),

but J ∗ becomes the subset of ⌊m⌋ pixels with the highest

losses, while α∗ is the highest loss among the remaining

pixels (α∗ = 0 if J ∗ = I). As for the optimal weighting

function w∗, let J + = {u ∈ I : ℓŷy(u) = α∗}\J ∗. Then

for any probability distribution µ over J +

w∗(u) =











τ if u ∈ J ∗

τ(m− ⌊m⌋)µ(u) if u ∈ J +

0 otherwise,

is an optimal solution for the primal (see, [39, Thm. 1]).

4. Algorithmic Details

The key quantities to compute are J ∗ and α∗. In-

deed, once those are available we can determine the loss

LW(ŷ, y) and compute gradients with respect to the seg-

mentation model’s parameters (we show it later in this sec-

tion). We report in Algorithm 1 the pseudo-code of the

computation of J ∗ and α∗. We start sorting the losses

(line 1). This yields a bijective function π ∈ I{1,...,n}

satisfying ℓŷy(πi) ≤ ℓŷy(πj) if i < j (we wrote πi for

π(i)). Case p = 1 (line 13) is trivial, since we know that

the last ⌊m⌋ ranked pixels will form J ∗, while α∗ corre-

sponds to the highest loss among the remaining pixels, or 0
if no pixel is left (see, Subsection 3.2). As for case p > 1,

we walk through the losses in ascending order and stop as

soon as we find an index i satisfying one of the follow-

ing conditions: a) i = n and ηn ≤ 0, or b) ηi > 0. If

the first condition is hit, then J ∗ = ∅ and, hence, α∗ =
‖ℓŷy‖q/m

1/q . This is indeed what we obtain in line 11,

where i = n + 1 so that α∗ = (an/cn)
1/q , where cn = m

and an =
∑n

j=1 ℓ
q
ŷy(πj). Instead, if condition b is hit, then

we have by [39, Prop. 10] that J ∗ = {πj : i ≤ j ≤ n}.
Consequently, ci = m−n+i = m−|J ∗| and ai = 〈ℓ

q
ŷy〉J ∗

so that α∗ = (ai/ci)
1/q .

Gradient. In order to train the semantic segmentation

model we need to compute the partial derivative ∂LW

∂ŷ (ŷ, y).

It exists almost everywhere1 and is given by (see derivations

1Precisely, it exists in all (ŷ, y) having an open neighborhood where J ∗

does not change.
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Figure 2: Example of optimal weightings w∗ for n = 100 pixels. Left: m = n/3 and varying values of p ∈
{1, 1.2, 1.4, 1.7, 2, 3, 4, 10,∞}. Right: p = 1.7 and varying values of m

n ∈ {0, 0.1, 0.2, 0.4, 0.8, 1}. Losses are syntheti-

cally generated and sorted for visualization purposes.

Algorithm 1 Compute J ∗, α∗

Require: m ∈ [1, n], p ∈ [1,∞], n > 0 pixel losses ℓŷy
1: π ← sort(ℓŷy)
2: if p > 1 then

3: q ← p
p−1

4: c0 ← m− n, i← 0, a0 ← 0
5: repeat

6: i← i+ 1, ci ← ci−1 + 1
7: ai ← ai−1 + ℓqŷy(πi)

8: ηi ← ci ℓ
q
ŷy(πi)− ai

9: until ηi > 0 or i = n
10: if ηi ≤ 0 then i← i+ 1

11: α∗ ←
(

ai−1

ci−1

)1/q

12: else

13: i← n− ⌊m⌋+ 1
14: α∗ ← ℓŷy(πi−1) if i > 0 else 0

15: return J ∗ ← {πj : i ≤ j ≤ n}, α∗

in [39, Appendix B])

∂LW

∂ŷ
(ŷ, y) =

∂ℓŷy
∂ŷ

w∗ .

Note that we will use the same function also where the par-

tial derivative technically does not exist.2

Implementation notes. For values of p close to 1, we have

that q becomes arbitrarily large and this might cause nu-

merical issues in Algorithm 1. A simple trick to improve

stability consists in normalizing the losses with a division

by the maximum loss, i.e. we consider
ℓŷy

ℓŷy(π(n))
in place of

ℓŷy . This modification then requires multiplying LW(ŷ, y)

2This is a common practice within the deep learning community (see, e.g.

how the derivative of ReLU, or max-pooling, are computed).

by ℓŷy(π(n)) to adjust the objective, while the optimal pri-

mal solution w∗ remains unaffected by the change.

Complimentary sampling strategy. In addition to our

main contribution described in the previous sections, we

propose a complimentary idea on how to compile mini-

batches during training. We propose a mixed sampling

approach taking both, uniform sampling from the train-

ing data’s global distribution and the current performance

of the model into account. As a surrogate for the lat-

ter, we keep track of the per-class Intersection over Union

(IoU) scores on the training data and conduct inverse sam-

pling, which will suggest to preferably pick from under-

performing classes (that are often strongly correlated with

minority classes). Blending this performance-based sam-

pling idea with uniform sampling ensures to maintain

stochastic behavior during training and therefore helps not

to over-fit to particular classes.

5. Experiments

We have evaluated our novel loss max-pooling (LMP)

approach on the Cityscapes [10] and the extended Pascal

VOC [14] semantic image segmentation datasets. In par-

ticular, we have performed an extensive parameter sweep

on Cityscapes, assessing the performance development for

different settings of our hyper-parameters p and m (see

Equ. (5) and Fig. 2). All reported numbers are Intersection-

over-Union (IoU) (or Jaccard) measures in [%], either aver-

aged over all classes or provided on a per-class basis.

5.1. Network architecture

For all experiments, we are using a network architec-

ture similar to the one of DeepLabV2 [9], implemented

within Caffe [25] using cuDNN for performance improve-
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ment and NCCL3 for multi-GPU support. In particular,

we are using ResNet-101 [21] in a fully-convolutional way

with atrous extensions [22, 46] for the base layers before

adding DeepLab’s atrous spatial pyramid pooling (ASPP).

Finally, we apply upscaling (via deconvolution layers with

fixed, uniform weights and therefore performing bilinear

upsampling) before using standard softmax loss for all base-

line methods BASE, BASE+ and for the inverse median

frequency weighting [12] while we use our proposed loss

max-pooling layer in LMP. Both our approaches, BASE+

and LMP are using the complimentary sampling strategy for

minibatch compilation as described in the previous section,

while plain uniform sampling in BASE leads to similar re-

sults as reported in [9]. We also report results of our new

loss with plain uniform sampling (“Proposed loss only”).

To save computation time and provide a conclusive param-

eter sensitivity study for our approach, we disabled both,

multi-scale input to the networks and post processing via

conditional random fields (CRF). We consider both of these

features as complementary to our method and highly rele-

vant for improving the overall performance in case time and

hardware budgets permit to do so. However, our primary in-

tention is to demonstrate the effectiveness of our LMP, under

comparable settings with other baselines like our BASE+.

All our reported numbers and plots are obtained from fine-

tuning the MS-COCO [32] pre-trained CNN of [9], which

is available for download4. In order to provide statistically

more significant results, we provide mean and standard de-

viations obtained by averaging the results at certain steps

over the last 30k training iterations. We only report results

obtained from a single CNN as opposed to using an ensem-

ble of CNNs, trained using the stochastic gradient descent

(SGD) solver with polynomial decay of the learning rate

(”poly” as described in [9]) setting both, decay rate and mo-

mentum to 0.9. For data augmentation (Augm.), we use ran-

dom scale perturbations in the range 0.5 − 1.5 for patches

cropped at positions given by the aforementioned sampling

strategy, and horizontal flipping of images.

5.2. Cityscapes

This recently-released dataset contains street-level im-

ages, taken at daytime from driving scenes in 50 major cen-

tral European cities in Germany, France and Switzerland.

Images are captured at high resolution (2.048 × 1.024) and

are divided into training, validation and test sets holding

2.975, 500 and 1.525 images, respectively. For training and

validation data, densely annotated ground truth into 20 label

categories (19 objects + ignore) is publicly available, where

the 6 most frequent classes account for ≈90% of the an-

notated pixel mass. Following previous works [9, 43], we

3https://github.com/NVIDIA/nccl
4http://liangchiehchen.com/projects/DeepLabv2_resnet.

html

p 150k 160k 165k Mean Std.Dev.

1.0 74,35 74.64 74.64 74.54 0.17

1.1 74.34 74.61 74.60 74.52 0.15

1.2 74.42 74.60 74.77 74.60 0.18

1.3 74.52 74.71 74.69 74.64 0.10

1.4 74.33 74.51 74.49 74.44 0.10

1.5 74.03 73.99 74.04 74.02 0.03

1.6 74.05 74.42 74.52 74.33 0.25

1.7 74.10 74.56 74.74 74.57 0.17

1.8 73.65 74.18 74.17 74.00 0.30

1.9 73.97 74.21 74.48 74.22 0.26

2.3 73.93 74.23 74.12 74.09 0.15

BASE+ 73.12 73.16 73.10 73.13 0.03

Table 1: Sensitivity analysis for p parameter with m fixed

to 25% of valid pixels per crop using efficient tiling at test

time. Numbers in [%] correspond to results on Cityscapes

validation set after indicated training iterations (and aver-

ages with corresponding std.dev. thereof). Boldface and un-

derlined values are in correspondence with best and second

best results, respectively. Bottom-most row shows results

from our baseline BASE+ under the efficient tiling setting.

report results obtained on the validation set. During train-

ing, we use minibatches comprising 2 image crops, each of

size 550 × 550. The initial learning rate is set to 2.5e−4,

and we run a total number of 165k training iterations.

In Tab. 1, we provide a sensitivity analysis for hyper-

parameter p, fixing m to 25% of non-ignore per-crop pix-

els. Due to the large resolution of images and consider-

able number of trainings to be run, we employ different

tiling strategies during inference. Numbers in Tab. 1 are

obtained by using our so-called efficient tiling strategy, di-

viding the validation images into five non-overlapping, rect-

angular crops with full image height. With this setting,

the best result was obtained for p = 1.3, closely followed

by p = 1.2. It can be seen that increasing values for p
show a trend towards BASE+ results, empirically confirm-

ing the theoretical underpinnings from Sect. 2. After fix-

ing p = 1.3, we conducted additional experiments with

m selected in a way to correspond to selecting at least

10%, 25% or 50% of non-ignore per-crop pixels, obtaining

74.09%± 0.22, 74.64± 0.10 and 73.44± 0.21 on the val-

idation data, respectively. Finally, we locked in on p = 1.3
and 25%, running an optimized tiling strategy on the valida-

tion set where we consider a 200 pixel overlap between tiles,

allowing for improved context capturing. The final class la-

bel decisions for the first half of the overlap area are then

exclusively taken by the left tile while the second half is

provided by the right tile, respectively. The resulting scores

are listed in Tab. 2, demonstrating improved results over

BASE, BASE+ and related approaches like DeepLabV2 [9]

(even when using CRF) or [43] with deeper ResNet and on-
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Method mean IoU

[9] RN-101 & Augm. & ASPP 71.0

[9] RN-101 & Augm. & ASPP & CRF 71.4

[43] FCRN-101 & Augm. 71.16

[43] FCRN-152 & Augm. 71.51

[43] FCRN-152 & Online BS & Augm. 74.64

Our approaches - Resnet-101

BASE Augm. & ASPP 72.55 ±0.04
BASE+ Augm. & ASPP 73.63 ±0.04
[12] Inverse median freq. & Augm. & ASPP 69.81 ±0.08
Proposed loss only & Augm. & ASPP 74.17 ±0.03
LMP Augm. & ASPP 75.06 ±0.09

Table 2: ResNet-based results (in [%]) on validation set of

Cityscapes dataset using optimized tiling.

line bootstrapping (BS). Also our loss alone, i.e. without the

complimentary sampling strategy, yields improved results

over both BASE and BASE+.

To demonstrate the impact of our approach on under-

represented classes, we provide a plot showing the per-class

performance gain (LMP- BASE+ on y-axis in %) vs. the

absolute number of pixels for a given object category (x-

axis, log-scale) in Fig. 3. Positive values on y indicate im-

provements (18/19 classes) and class labels attached to x
indicate increasing object class pixel label volume for cate-

gories from left to right. E.g., motorcycle is most underrep-

resented while road is most present. The plot confirms how

LMP naturally improves on underrepresented object classes

without accessing the underlying class statistics.

Another experiment we have run compares BASE to

LMP: In order to match the result of LMP, one has to e.g. im-

prove the worst 7 categories by 5% each or the worst 10 cat-

egories by 3% each, which we find a convincing argument

for LMP. Additionally, we illustrate the qualitative evolu-

tion of the semantic segmentation for two training images

in Fig. 4. Odd rows show segmentations obtained when

training with conventional log-loss in BASE+, while even

rows show the ones obtained using our loss max-pooling

LMP at an increasing number of iterations. As we can see,

LMP starts improving on under-represented classes sooner

than standard log-loss (see, e.g. traffic light and its pole on

the middle right in the first image, and the car driver in the

second image). Finally, we also report the individual per-

class IoU scores in Tab. 3a for both, BASE+ and LMP, cor-

responding to the setting from Tab. 2.

5.3. Pascal VOC 2012

We additionally assess the quality of our novel LMP on

the Pascal VOC 2012 segmentation benchmark dataset [13],

comprising 20 object classes and a background class. Im-

ages in this dataset are considerably smaller than the ones

from the Cityscapes dataset so we increased the minibatch

size to 4 (with crop sizes of 321×321), using the (extended)
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Figure 3: Improvement of LMP over BASE+ (18/19

classes) as a function of overall per-category pixel count on

Cityscapes validation data.

training set with 10.582 images [20]. Testing was done on

the validation set containing 1.449 images. We ran a total

of 200k training iterations and fixed parameters p = 1.3
and m to account for 25% of valid pixels per crop for our

LMP. During inference, images are evaluated at full scale,

i.e. no special tiling mechanism is needed. We again re-

port the mean IoU scores in Tab. 4 (this time averaged af-

ter training iterations 180k, 190k and 200k), and list re-

sults from comparable state-of-the-art approaches [9, 43]

next to ours. We can again obtain a considerable rela-

tive improvement over BASE+ as well as comparable base-

lines from [9, 43]. Our approach compares slightly worse

(−1.4%) with DeepLabV2’s strongest variant, which how-

ever additionally uses multi-scale inputs (MSC) and refine-

ments from a CRF (contributing 2.55% and 1.34% accord-

ing to [9], respectively) but only come with increased com-

putational costs. Additionally, and as mentioned above, we

consider both of these techniques as complementary to our

contributions and plan to integrate them in future works. We

finally notice that also for this dataset our new loss alone

without the complimentary sampling strategy yields consis-

tent improvements over BASE and BASE+.

In Tab. 3b, we give side-by-side comparisons of per class

IoU scores for BASE+ and LMP. Again, the majority of cat-

egories benefits from our approach, confirming its efficacy.

6. Conclusions

In this work we have introduced a novel approach to

tackle imbalances in training data distributions, which do

not occur only when we have under-represented classes

(inter-class imbalance), but might occur also within the

same class (intra-class imbalance). We proposed a new loss

function that performs a generalized max-pooling of pixel-

specific losses. Our loss upper bounds the traditional one,

which gives equal weight to each pixel contribution, and

implicitly introduces an adaptive weighting scheme that bi-
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Figure 4: Evolution of semantic segmentation images during training. Left, we have pairs of original images (odd) and their

ground-truth segmentations (even). The other images show semantic segmentations obtained by standard log-loss in BASE+

(odd rows) and our loss max-pooling LMP (even rows) after 20k, 40k, 60k, 80k, 100k, 120k, 140k, 165k training iterations.

(a) Cityscapes

Method Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle Mean

BASE+ Mean 97.37 80.60 90.99 53.23 54.67 56.72 63.29 72.62 91.19 59.85 93.46 78.59 59.08 93.41 68.94 80.49 67.77 62.51 74.09 73.63

BASE+ Std.Dev. 0.01 0.02 0.14 0.92 0.05 0.08 0.56 0.13 0.13 0.96 0.16 0.18 0.31 0.12 0.26 1.08 3.12 0.70 0.11 0.04

LMP Mean 97.51 81.56 91.52 55.43 56.88 59.01 66.33 74.77 91.61 60.85 93.80 79.91 60.76 93.93 67.11 83.87 70.42 65.15 75.76 75.06

LMP Std.Dev. 0.05 0.32 0.06 0.80 0.68 0.31 0.27 0.21 0.07 0.27 0.09 0.08 0.29 0.01 0.77 0.44 0.53 0.44 0.14 0.09

(b) Pascal VOC 2012

Method Background Aeroplane Bicycle Bird Boat Bottle Bus Car Cat Chair Cow Dining Table Dog Horse Motorbike Person Potted Plant Sheep Sofa Train TV Monitor Mean

BASE+ Mean 92.69 83.21 78.46 81.39 67.95 77.59 92.14 80.17 86.99 38.49 80.86 55.95 81.03 80.64 79.28 81.14 61.74 81.51 47.76 82.25 72.68 75.42

BASE+ Std.Dev. 0.00 0.32 0.04 0.03 0.14 0.02 0.12 0.14 0.08 0.03 0.06 0.10 0.02 0.22 0.06 0.03 0.35 0.21 0.24 0.09 0.24 0.04

LMP Mean 92.84 85.02 79.62 81.43 69.99 76.36 92.38 82.38 89.43 39.78 82.70 58.60 82.85 81.82 80.17 81.60 61.22 84.30 45.44 82.52 71.70 76.29

LMP Std.Dev. 0.02 0.18 0.03 0.34 0.26 0.10 0.17 0.05 0.10 0.06 0.17 0.10 0.05 0.03 0.07 0.05 0.14 0.19 0.04 0.09 0.10 0.02

Table 3: Class-specific IoU scores on Cityscapes (with optimized tiling during inference) and Pascal VOC 2012 validation

datasets for our baseline (BASE+) and our proposed loss max-pooling (LMP). All numbers in [%].

Method mean IoU

[9] RN-101 Base w/o COCO 68.72

[9] RN-101 & MSC & Augm. & ASPP 76.35

[9] RN-101 & MSC & Augm. & ASPP & CRF 77.69

[43] FCRN-101 & Augm. 73.41

[43] FCRN-152 & Augm. 73.32

[43] FCRN-101 & Online BS & Augm. 74.80

[43] FCRN-152 & Online BS & Augm. 74.72

Our approaches - Resnet-101

BASE Augm. & ASPP 75.74 ±0.05
BASE+ Augm. & ASPP 75.42 ±0.04
[12] Inverse median freq. & Augm. & ASPP 74.93 ±0.03
Proposed loss only & Augm. & ASPP 76.01 ±0.01
LMP Augm. & ASPP 76.29 ±0.02

Table 4: ResNet based results on Pascal VOC 2012 segmen-

tation validation data. All numbers in [%].

ases the learner towards under-performing image parts. The

space of weighting functions involved in the maximization

can be shaped to enforce some desired properties. In this

paper we focused on a particular family of weighting func-

tions, enabling us to control the pixel selectivity and the

extent of the supported pixels. We have derived explicit for-

mulas for the outcome of the pooling operation under this

family of pixel weighting functions, thus enabling the com-

putation of gradients for training deep neural networks. We

have experimentally validated the effectiveness of our new

loss function and showed consistently improved results on

standard benchmark datasets for semantic segmentation.
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