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1. Introduction
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Heavy-tail distributions

Distribution with “tail” that is “heavier” than that of Exponential.

For random vectors, consider the distribution of kXk.
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Multivariate heavy-tail distributions

Heavy-tail distributions for random vectors X 2 R
d :

I Marginal distributions of Xi have heavy tails, or

I Strong dependencies between the Xi .
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Multivariate heavy-tail distributions

Heavy-tail distributions for random vectors X 2 R
d :

I Marginal distributions of Xi have heavy tails, or

I Strong dependencies between the Xi .

Can we use the same procedures originally designed for distributions
without heavy tails?

Or do we need new procedures?
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Minimax optimal but not deviation optimal

Empirical mean achieves minimax rate for estimating E(X ), but
suboptimal when deviations are concerned:

Squared error of empirical mean is

Ω

✓
�2

n�

◆

with probability � 2� for some distribution.

(n = sample size, �2 = var(X ) < 1.)
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Minimax optimal but not deviation optimal

Empirical mean achieves minimax rate for estimating E(X ), but
suboptimal when deviations are concerned:

Squared error of empirical mean is

Ω

✓
�2

n�

◆

with probability � 2� for some distribution.

(n = sample size, �2 = var(X ) < 1.)

Note: If data were Gaussian, squared error would be

O

✓
�2log(1/�)

n

◆
.
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Main result
New computationally efficient estimator for least squares linear
regression when distributions of X 2 R

d and Y 2 R may have
heavy tails.
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Main result
New computationally efficient estimator for least squares linear
regression when distributions of X 2 R

d and Y 2 R may have
heavy tails.

Assuming bounded (4 + ✏)-order moments and regularity
conditions, convergence rate is

O

✓
�2d log(1/�)

n

◆

with probability � 1 � � as soon as n � Õ(d log(1/�) + log2(1/�)).

(n = sample size, �2 = optimal squared error.)
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Main result
New computationally efficient estimator for least squares linear
regression when distributions of X 2 R

d and Y 2 R may have
heavy tails.

Assuming bounded (4 + ✏)-order moments and regularity
conditions, convergence rate is

O

✓
�2d log(1/�)

n

◆

with probability � 1 � � as soon as n � Õ(d log(1/�) + log2(1/�)).

(n = sample size, �2 = optimal squared error.)

Previous state-of-the-art: [Audibert and Catoni, AoS 2011], essentially

same conditions and rate, but computationally inefficient.

General technique with many other applications: ridge, Lasso, matrix

approximation, etc.
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2. Warm-up: estimating a scalar mean
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Warm-up: estimating a scalar mean

Forget X ; how do we estimate E(Y )?

(Set µ := E(Y ) and �2 := var(Y ); assume �2 < 1.)
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Empirical mean

Let Y1,Y2, . . . ,Yn be iid copies of Y , and set

bµ :=
1

n

nX

i=1

Yi

(empirical mean).
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Empirical mean

Let Y1,Y2, . . . ,Yn be iid copies of Y , and set

bµ :=
1

n

nX

i=1

Yi

(empirical mean).

There exists distributions for Y with �2 < 1 s.t.

P

✓
(bµ� µ)2 �

�2

2n�
(1 � 2e�/n)n�1

◆
� 2�.

10

(Catoni, 2012)



Median-of-means

[Nemirovsky and Yudin, 1983; Alon, Matias, and Szegedy, JCSS 1999]
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Median-of-means

[Nemirovsky and Yudin, 1983; Alon, Matias, and Szegedy, JCSS 1999]

1. Split the sample {Y1, . . . ,Yn} into k parts S1, S2, . . . , Sk of
equal size (say, randomly).

2. For each i = 1, 2, . . . , k : set bµi := mean(Si ).

3. Return bµ := median({bµ1, bµ2, . . . , bµk}).

11



Median-of-means

[Nemirovsky and Yudin, 1983; Alon, Matias, and Szegedy, JCSS 1999]

1. Split the sample {Y1, . . . ,Yn} into k parts S1, S2, . . . , Sk of
equal size (say, randomly).

2. For each i = 1, 2, . . . , k : set bµi := mean(Si ).

3. Return bµ := median({bµ1, bµ2, . . . , bµk}).

Theorem (Folklore)

Set k := 4.5 ln(1/�). With probability at least 1 � �,

(bµ� µ)2  O

✓
�2 log(1/�)

n

◆
.
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Analysis of median-of-means

1. Assume |Si | = k/n for simplicity. By Chebyshev’s inequality,
for each i = 1, 2, . . . , k :

Pr

 
|bµi � µ| 

r
6�2k

n

!
� 5/6.
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Analysis of median-of-means

1. Assume |Si | = k/n for simplicity. By Chebyshev’s inequality,
for each i = 1, 2, . . . , k :

Pr

 
|bµi � µ| 

r
6�2k

n

!
� 5/6.

2. Let bi := 1{|bµi � µ| 
p

6�2k/n}. By Hoeffding’s inequality,

Pr

 
kX

i=1

bi > k/2

!
� 1 � exp(�k/4.5).
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Analysis of median-of-means

1. Assume |Si | = k/n for simplicity. By Chebyshev’s inequality,
for each i = 1, 2, . . . , k :

Pr

 
|bµi � µ| 

r
6�2k

n

!
� 5/6.

2. Let bi := 1{|bµi � µ| 
p

6�2k/n}. By Hoeffding’s inequality,

Pr

 
kX

i=1

bi > k/2

!
� 1 � exp(�k/4.5).

3. In the event that more than half of the bµi are withinp
6�2k/n of µ, the median bµ is as well.
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Alternative: minimize a robust loss function

Alternative is to minimize a “robust” loss function [Catoni, 2012]:

bµ := arg min
µ2R

nX

i=1

`

✓
µ� Yi

�

◆
.

Example: `(z) := log cosh(z). Optimal rate and constants.

Catch: need to know �2.
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3. Linear regression with heavy-tail distributions
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Linear regression (for out-of-sample prediction)

1. Response variable: random variable Y 2 R.

2. Covariates: random vector X 2 R
d .

(Assume Σ := EXX
> � 0.)

3. Given: Sample S of n iid copies of (X ,Y ).

4. Goal: find bβ = bβ(S) 2 R
d to minimize population loss

L(β) := E(Y � β>
X )2.
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Linear regression (for out-of-sample prediction)

1. Response variable: random variable Y 2 R.

2. Covariates: random vector X 2 R
d .

(Assume Σ := EXX
> � 0.)

3. Given: Sample S of n iid copies of (X ,Y ).

4. Goal: find bβ = bβ(S) 2 R
d to minimize population loss

L(β) := E(Y � β>
X )2.

Recall: Let β
?
:= arg minβ0

2Rd L(β0). For any β 2 R
d ,

L(β)� L(β
?
) =

���Σ1/2(β � β
?
)
���

2

=: kβ � β
?
k2
Σ .
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Generalization of median-of-means

1. Split the sample S into k parts S1, S2, . . . , Sk of equal size
(say, randomly).

2. For each i = 1, 2, . . . , k : set bβi := ordinary least squares(Si ).

3. Return bβ := select good one
⇣n
bβ1,
bβ2, . . . ,

bβk

o⌘
.
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Generalization of median-of-means

1. Split the sample S into k parts S1, S2, . . . , Sk of equal size
(say, randomly).

2. For each i = 1, 2, . . . , k : set bβi := ordinary least squares(Si ).

3. Return bβ := select good one
⇣n
bβ1,
bβ2, . . . ,

bβk

o⌘
.

Questions:

1. Guarantees for bβi = OLS(Si )?

2. How to select a good bβi?
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Ordinary least squares

Under moment conditions⇤, bβi := OLS(Si ) satisfies

���bβi � β
?

���
Σ

= O

 s
�2d

|Si |

!

with probability at least 5/6 as soon as |Si | � O(d log d).⇤⇤

⇤ Requires Kurtosis condition for this simplified bound.
⇤⇤ Can replace d log d with d under some regularity conditions

[Srivastava and Vershynin, AoP 2013].
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Ordinary least squares

Under moment conditions⇤, bβi := OLS(Si ) satisfies

���bβi � β
?

���
Σ

= O

 s
�2d

|Si |

!

with probability at least 5/6 as soon as |Si | � O(d log d).⇤⇤

Upshot: If k := O(log(1/�)), then with probability � 1 � �, more
than half of the bβi will be within " :=

p
�2d log(1/�)/n of β

?
.

⇤ Requires Kurtosis condition for this simplified bound.
⇤⇤ Can replace d log d with d under some regularity conditions

[Srivastava and Vershynin, AoP 2013].
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Selecting a good bβi assuming Σ is known

Consider metric ⇢(a,b) := ka � bkΣ .

1. For each i = 1, 2, . . . , k :

Let ri := median
n
⇢(bβi ,

bβj) : j = 1, 2, . . . , k
o

.

2. Let i? := arg min ri .

3. Return bβ := bβi? .
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Selecting a good bβi assuming Σ is known

Consider metric ⇢(a,b) := ka � bkΣ .

1. For each i = 1, 2, . . . , k :

Let ri := median
n
⇢(bβi ,

bβj) : j = 1, 2, . . . , k
o

.

2. Let i? := arg min ri .

3. Return bβ := bβi? .

Claim: If more than half of the bβi are within distance " of β
?
,

then bβ is within distance 3" of β
?
.
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Selecting a good bβi when Σ is unknown

General case: Σ is unknown; can’t compute distances ka � bkΣ .

19



Selecting a good bβi when Σ is unknown

General case: Σ is unknown; can’t compute distances ka � bkΣ .

Solution: Estimate
�
k
2

�
distances using fresh (unlabeled) samples.
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Selecting a good bβi when Σ is unknown

General case: Σ is unknown; can’t compute distances ka � bkΣ .

Solution: Estimate
�
k
2

�
distances using fresh (unlabeled) samples.

I Only require constant fraction of these estimates to be
accurate within constant multiplicative factors.

I Extra O(k2) = O(log2(1/�)) (unlabeled) samples suffice.
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Another interpretation: multiplicative approximation

With probability � 1 � �,

L(bβ) 

✓
1 + O

✓
d log(1/�)

n

◆◆
L(β

?
)

(as soon as n � Õ(d log(1/�) + log2(1/�))).

For instance, get 2-approximation with

n = Õ
⇣
d log(1/�) + log2(1/�)

⌘

—no dependence on L(β
?
).

(cf. [Mahdavi and Jin, COLT 2013].)
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4. Concluding remarks
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Concluding remarks

1. This talk: Linear regression with heavy-tail distributions in
finite dimensions.
Paper: Other applications (e.g., ridge, Lasso, matrix
approximation). http://arxiv.org/abs/1307.1827
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Concluding remarks

1. This talk: Linear regression with heavy-tail distributions in
finite dimensions.
Paper: Other applications (e.g., ridge, Lasso, matrix
approximation). http://arxiv.org/abs/1307.1827

2. Simple algorithms + simple statistics:
Avoid unnecessary assumptions made in statistical learning
theory for classical problems.
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finite dimensions.
Paper: Other applications (e.g., ridge, Lasso, matrix
approximation). http://arxiv.org/abs/1307.1827

2. Simple algorithms + simple statistics:
Avoid unnecessary assumptions made in statistical learning
theory for classical problems.

3. Open questions:

I Remove extraneous log factors?
I Validation sets: not just for parameter tuning?
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Concluding remarks

1. This talk: Linear regression with heavy-tail distributions in
finite dimensions.
Paper: Other applications (e.g., ridge, Lasso, matrix
approximation). http://arxiv.org/abs/1307.1827

2. Simple algorithms + simple statistics:
Avoid unnecessary assumptions made in statistical learning
theory for classical problems.

3. Open questions:

I Remove extraneous log factors?
I Validation sets: not just for parameter tuning?

Thanks!
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