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ABSTRACT 138 

Background Common diseases such as coronary heart disease (CHD) are complex in etiology. The 139 

interaction of genetic susceptibility with lifestyle factors may play a prominent role. However, gene-140 

environment interactions for CHD have been difficult to identify. Here, we investigate interaction of 141 

smoking behavior, a potent lifestyle factor, with genotypes that have been shown to associate with 142 

CHD risk.  143 

Methods We analyzed data on 60,919 CHD cases and 80,243 controls from 29 studies for gene-144 

smoking interactions for genetic variants at 45 loci previously reported to associate with CHD risk. 145 

We also studied 5 loci associated with smoking behavior. Study specific gene-smoking interaction 146 

effects were calculated and pooled using fixed-effects meta-analyses. Interaction analyses were 147 

declared to be significant at a P-value < 1.0x10-3 (Bonferroni correction for 50 tests).  148 

Results We identified novel gene-smoking interaction for a variant upstream of the ADAMTS7 gene. 149 

Every T allele of rs7178051 was associated with lower CHD risk by 12% in never-smokers (P-value: 150 

1.3x10-16) compared to 5% in ever-smokers (P-value: 2.5x10-4) translating to a 60% loss of CHD 151 

protection conferred by this allelic variation in people who smoked tobacco (Interaction P-value: 152 

8.7x10-5). The protective T allele at rs7178051 was also associated with reduced ADAMTS7 153 

expression in human aortic endothelial cells and lymphoblastoid cell lines. Exposure of human 154 

coronary artery smooth muscle cells to cigarette smoke extract led to induction of ADAMTS7. 155 

Conclusion Allelic variation at rs7178051 that associates with reduced ADAMTS7 expression 156 

confers stronger CHD protection in “never-smokers” compared to “ever-smokers”. Increased 157 

vascular ADAMTS7 expression may contribute to the loss of CHD protection in smokers.    158 

Key words: Gene-smoking interaction, gene-environment interaction, coronary heart disease, 159 

ADAMTS7, smoking. 160 

Word count: 269 161 

 162 

  163 
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Clinical Perspective 164 

1) What is new?  165 
 166 
• Using data on 60,919 CHD cases and 80,243 controls, this study conducted gene-167 

environment interaction analyses to investigate effect modification by smoking behavior at 168 

established CHD and smoking related loci. 169 

• Cardio-protective effects associated with allelic variation at the ADAMTS7 locus were 170 

attenuated by 60% in people who smoked tobacco compared to those who did not smoke. 171 

• Allelic variation at ADAMTS7 associated with reduced CHD risk was associated with reduced 172 

ADAMTS7 expression in human aortic endothelial cells and lymphoblastoid cell lines. 173 

• Exposure of human coronary artery smooth muscle cells to cigarette smoke extract led to 174 

induction of ADAMTS7. 175 

 176 

2) What are the clinical implications?  177 

 178 
• These human genomic data provide new insights into potential mechanisms of CHD in 179 

cigarette smokers.  180 

• Findings from this study also point towards the directional impact of the ADAMTS7 locus on 181 

CHD. 182 

• ADAMTS7 and its substrates have a specific role in cigarette smoking related CHD. 183 

• Inhibition of ADAMTS7 is a novel potential therapeutic strategy for CHD that may have 184 

particular benefits in individuals who smoke cigarettes. 185 

 186 

 187 

 188 

 189 

 190 

 191 

 192 

 193 
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INTRODUCTION 194 

Coronary heart disease (CHD) is a complex disorder resulting from the interplay of lifestyle 195 

and genetic factors.1, 2 Yet, gene-environment interactions for CHD have been difficult to identify. 196 

Cigarette smoking is one of the strongest lifestyle risk factors for CHD but the underlying molecular 197 

mechanisms of CHD in humans who smoke remain uncertain.3-5  Cigarette smoking accounts for 198 

one-fifth of all CHD events globally and is responsible for ~1.6 million deaths attributable to CHD 199 

annually.6 Genome-wide association studies (GWAS) have improved our understanding on the 200 

genetic predisposition to both CHD and smoking behavior.7-10 Joint or interactive effects of genetic 201 

variation and smoking behavior in the etiology of CHD, however, remain poorly understood. GWAS 202 

can provide new opportunities to investigate gene-smoking interactions.  203 

We hypothesized that genetic predisposition to CHD is modified by cigarette smoking at 204 

loci discovered by GWAS to be associated with either CHD or smoking behavior. We conducted a 205 

focused experiment at 50 main-effect loci (45 for CHD and 5 for smoking behavior) using genetic 206 

data and information on smoking behavior in 60,919 CHD cases and 80,243 controls from 29 207 

different studies. We report novel findings on gene-smoking interactions in CHD.  208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 
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METHODS 221 

Summary of study Design  222 

All studies participating in the CARDIoGRAMplusC4D consortium7-9 that had information 223 

available on smoking status, CHD risk and genotypes at the 50 CHD and smoking behavior-224 

associated loci were invited to participate. The current study had five inter-related components 225 

(Supplementary Figure-1). First, as part of the quality control, we investigated the association of 226 

smoking status with CHD risk within each study. Second, we performed an updated analysis of all 227 

the SNPs (± 50 KB) at the 45 established CHD loci to identify the variant with the strongest CHD 228 

association in our study population at each established CHD locus. Effect estimates from each study 229 

in association with CHD risk were obtained and pooled to identify the strongest CHD associated 230 

variant (“lead variant”). Third, we investigated gene-smoking interactions at these 45 CHD loci and at 231 

5 loci related to smoking behavior. Fourth, for loci demonstrating differential CHD associations by 232 

smoking status, we mapped the interaction region, examined linkage disequilibrium (LD) across the 233 

region and performed conditional analyses to identify independent genetic signals. Finally, for loci 234 

exhibiting gene-smoking interaction in CHD, we assessed eQTL data for association of variants with 235 

expression of local genes in available datasets and examined expression of these genes in multiple 236 

cell types that play prominent roles in smoking-CHD pathobiology.  237 

Harmonization of phenotypes and genotypes 238 

Summary level estimates for each study were shared via a secure FTP site. We used 239 

“ever-smoking” as a primary exposure and data were harmonized by uniformly characterizing 240 

participants in each study into two categories, “ever-smokers” and “never-smokers”. “Ever-smokers” 241 

were defined as those who had smoked more than 100 cigarettes in a lifetime. For case-control 242 

studies, information on “ever smoking” status collected at the time of enrollment was used for the 243 

current analyses; whereas for prospective cohort studies, information on smoking status obtained at 244 

the baseline visit was used for the current investigation. CHD was defined based on evidence from 245 

angiography or history of verified myocardial infarction (MI), percutaneous coronary interventions 246 

(PCI) or coronary artery bypass grafting (CABG) as published in CARDIoGRAMplusC4D projects.7-9  247 

Genotype data generated through GWAS (directly genotyped or imputed) or cardio-metabochip 248 

(directly genotyped only) arrays were obtained from each study and all genetic data were aligned 249 

using the build-37 reference panel. Imputed SNPs were removed if they had any of the following: (i) 250 

a minor allele frequency of <1%; (ii) info score of <0.90; or (iii) confidence score <0.90. For each 251 

study, GWAS data were imputed using the Phase II CEU HapMap reference population.11 Standard 252 
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quality control criteria were applied by each participating study, as described previously.7 All 253 

participating studies in the CARDIoGRAMplusC4D consortium were approved by their locally 254 

relevant institutional review boards and all participants gave written informed consent before their 255 

enrollment in each study. 7-9 256 

STATISTICAL ANALYSIS 257 

Gene-smoking interaction analyses 258 

Initial quality control and association of established CHD loci with CHD risk: As part of an initial 259 

quality control, effect estimates from each study were obtained for “ever-smoking” status and CHD 260 

risk using a case-control logistic regression model adjusted for age and sex. Each participating study 261 

also assessed and, if needed, controlled for population stratification by including principal 262 

components as covariates in the regression model as described earlier.7-9 To identify variant(s) with 263 

the most significant association with CHD risk at established CHD loci in our study population, 264 

logistic regression analyses were conducted by each participating study for all the SNPs flanking 265 

(±50 kb) the lead variant previously reported at each CHD locus.  Effect estimates and standard 266 

errors were obtained and meta-analyzed using a fixed-effects inverse variance approach. All lead 267 

variants identified through these analyses were further investigated for gene-smoking interactions in 268 

CHD. One lead variant per locus was selected for primary gene-smoking interaction analyses. 269 

Investigation of the APOE locus: Although APOE has been recently established as a GWAS locus,7 270 

previous studies prior to GWAS have suggested that CHD risk is higher among carriers of the ε4 271 

allele at the APOE locus in smokers than in non-smokers.12-14 Because the ε2, ε3 and ε4 alleles at 272 

the APOE locus are not captured by the GWAS platform, we specifically conducted genotyping for 273 

rs429358 and rs7412 variants to capture the three epsilon (ε) alleles in 13,822 participants (including 274 

7,286 first-onset myocardial infarction cases) in the PROMIS study.15  275 

Gene-smoking interaction analyses at CHD and smoking loci: To assess gene-smoking interactions, 276 

analyses were conducted within each study, adjusted for age, sex and other study specific 277 

covariates (e.g., principal components), and variants were analyzed in association with CHD 278 

separately in “ever-smokers” and “never-smokers”. Results from the two groups were then used to 279 

test for interaction within each study. For the 50 variants, an interaction test statistic was calculated 280 

within each study using the following equation as adapted from Teslovich TM et.al.16  281 

(βn −  βe) 

√𝑆𝐸𝑛2 + 𝑆𝐸𝑒2
 282 
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where βn and βe are the beta coefficients for the SNP in never-smokers and ever-smokers 283 

respectively, 𝑆𝐸𝑛 and 𝑆𝐸𝑒 are the standard errors for the log-ORs estimated for never-smokers and 284 

ever-smokers, respectively. Study specific interaction beta(s) and se(s) were calculated within each 285 

study and were pooled across studies using a fixed-effects meta-analysis. Interaction analyses were 286 

declared to be significant at a P-value of <1.0x10-3 (Bonferroni correction for 50 tests).  287 

Conditional analyses on chr.15q25.1: At chr.15q25.1, we observed two variants exhibiting gene-288 

smoking interactions for CHD. The proximity of these two signals raised the possibility that the 289 

observed interactions may represent a single interaction locus across the entire region. To 290 

investigate this possibility we undertook conditional analyses using an approximate conditional and 291 

joint analyses approach, also known as GCTA (Genome-wide Complex Trait Analysis), as described 292 

previously.17-22 Briefly, this method leverages summary-level statistics from a meta-analysis and uses 293 

LD corrections between SNPs estimated from a reference sample.  Such an approach has been 294 

shown to yield similar results to that obtained from conditional analyses conducted on individual 295 

participant data and has been successfully implemented in several other studies that have fine-296 

mapped loci for other complex traits.17-22 Using this approach, we first conducted separate 297 

conditional analyses at the chr.15q25.1 locus to identify main-effect variant(s) independently 298 

associated with CHD and smoking behavior, respectively. We used the meta-analyzed data for CHD 299 

main effects in the CARDIoGRAMplus4D consortium to identify SNPs independently associated with 300 

CHD risk and we used the genetic meta-analysis data from the Tobacco and Genetics Consortium 301 

(TGC) in 140,000 participants to identify variants independently associated with smoking behavior. 302 

We then estimated the effects of these independent variants on CHD risk stratified by smoking 303 

status and mutually adjusted the effects of these variants for each other.  304 

  305 

Analysis of eQTLs and regulatory features at the chr15q25.1 gene-smoking interaction locus 306 

eQTL analyses: We mined publicly available databases to identify genotype-related expression 307 

differences (eQTLs) in ADAMTS7 and the CHRNB4-A3-A5 gene cluster in order to understand the 308 

directionality of the association of expression of these genes with CHD and smoking behavior. 309 

Specifically, we investigated data available from the GTEx consortium,23 the HapMap consortium 310 

(restricted to European populations),` and the Multiple Tissue Human Expression Resource 311 

(MuTHER).24 We also analyzed expression data in 147 donor HAoEC lines.25 We used a nominal P-312 

value of 0.002 to account for multiple testing involved in the eQTL analyses. 313 
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Regulatory features of the chr. 15q25.1 region: Data from ENCODE26 were explored as described in 314 

eMethods. ChIP-seq experiments were performed on confluent HCASMC (Cell Applications 350-05a 315 

& Lonza CC-2583; cultured in SmGM-2 BulletKit media; Lonza) as described.27 TCF21 (Abcam 316 

ab49475), Jun (Santa Cruz Biotechnology sc-1694), JunD (Santa Cruz Biotechnology sc-74), and 317 

CEBP (Santa Cruz Biotechnology sc-150) transcription factor binding was interrogated and H3K27ac 318 

data were acquired using the same ChIP protocol with an anti-H3K27ac antibody (Abcam; ab4729). 319 

Reads were aligned to the human genome (GRCh37p13) using STAR.28   320 

 321 

Analyses of ADAMTS7 and CHRNB4-A3-A5 gene expression in vascular cells and tissues 322 

ADAMTS7 and CHRNB4-A3-A5 gene expression in vascular cells: ADAMTS7 and CHRNB4-A3-A5 323 

mRNA levels were measured in cultured human coronary artery smooth muscle cells (HCASMC; 324 

Lonza CC-2583, Lonza Walkersville, MD), human coronary artery endothelial cells (HCAEC, Lonza 325 

CC-2585), human aortic smooth muscle cells (HAoSMC, Lonza CC-2571), human aortic endothelial 326 

cells (HAoEC, Lonza CC-2535), human aortic adventitial fibroblasts (HAoAF, Lonza CC-7014), and 327 

human acute monocytic leukemia cell line (THP-1, ATCC TIB-202). Further details are provided in 328 

eMethods. 329 

ADAMTS7 and CHRNB4-A3-A5 gene expression in response to cigarette smoke extract: HCASMC 330 

were grown to confluence and cigarette smoke extract experiments performed at passage-7. 331 

Cigarette smoke extract was custom-prepared by Arista Laboratories (Richmond, VA). Briefly, the 332 

condensate was generated by smoking Marlboro Red King Size Hard Pack cigarettes on an 333 

analytical smoke machine under International Organization for Standardization smoking conditions. 334 

The smoke condensate was collected on 92 mm filter pads and extracted from each pad in DMSO 335 

by shaking to obtain a solution of ~20 mg/mL final concentration of the total particulate matter. 336 

Serum starved (24 hrs) HCASMC were treated with 0.5% or 1.0% cigarette smoke extract (v/v) for 4, 337 

12, and 24 hrs in serum reduced conditions (0.5% FBS in DMEM). Details on RNA preparation and 338 

q-PCR are provided in Supplementary Methods. 339 

 340 

 341 

 342 

 343 
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RESULTS 344 

Description of the participating studies  345 

Of the 37 studies participating in the CARDIoGRAMplusC4D consortium, information on 346 

“ever-smoking” was available in 30 studies, yielding a total sample size of 60,919 CHD cases and 347 

80,243 controls. All studies recruited participants of European ancestry, except PROMIS (South 348 

Asian),15 LOLIPOP (South Asian)29 and FGENTCARD (Lebanese).30 Number of CHD cases and 349 

controls and percentages that were “ever-smokers” are provided in Supplementary Table 1. As 350 

expected, in all the participating studies, association of “ever-smoking” status with CHD risk was 351 

directionally consistent with an increased risk of CHD (Supplementary Figure 2).  352 

New variants associated with CHD at established loci 353 

Supplementary Figure 3 and Supplementary Table 2 present effect estimates for the 354 

association with CHD for (i) the most significant variant that we identified at known CHD loci in the 355 

current CARDIoGRAMplusC4D consortium analysis as well as for (ii) the top SNP previously 356 

reported at each of these established CHD loci. Of the 45 established CHD loci, we identified 32 for 357 

which we discovered a more statistically significant SNP in association with CHD risk in our dataset 358 

than the prior reported top variant. All of these 32 SNPs were in moderate to high LD (r2 >0.6) with 359 

the previously published variants.7-9 In our primary gene-smoking interaction analyses, at each of the 360 

CHD loci, we, therefore, used the SNP with the most significant CHD association (Supplementary 361 

Figure 3 and Supplementary Table 2). Because the smoking behavior phenotype (captured as 362 

cigarettes per day [CPD]) was not available in all CARDIoGRAMplusC4D studies, we used the top 363 

variant previously reported for CPD10 at each locus (Supplementary Figure 4). 364 

Analyses of the APOE locus.  365 

The effect of rs6857, the lead CHD variant at the APOE locus, was similar in “ever-366 

smokers” compared to “never-smokers” (Supplementary Table 3).  Specifically, the CHD OR for the 367 

T allele at rs6857 was found to be 1.10 (P-value 7.93x10-4) in “never-smokers” (12,159 CHD cases 368 

and 22,932 controls) which was quantitatively similar to the CHD OR of 1.09 (P-value: 8.68x10-5) 369 

observed in “ever-smokers” (23,753 CHD cases and 24,019 controls) (interaction P-value: 0.76) 370 

(Supplementary Figure 5a). Investigation in the PROMIS study of the APOE epsilon genotypes 371 

yielded consistent findings; the OR for CHD among ε4 carriers in “never-smokers” was 1.13 372 

compared to the CHD OR of 1.07 observed in “ever-smokers” (interaction P-value: 0.82) 373 

(Supplementary Figure 5a).  374 
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Novel gene-smoking interaction effects on CHD at chromosome 15q25.1  375 

Of the 50 loci, we identified effect-modification by “ever-smoking” status on CHD risk for the 376 

lead variants at two distinct loci, rs7178051, in proximity of ADAMTS7 (an established CHD locus), 377 

and rs1051730, in proximity of CHRNB4-A3-A5 (an established smoking behavior locus) 378 

(Supplementary Table 3). Although associated with different traits and located in distinct LD blocks, 379 

these two variants reside ~224 KBs apart on chr.15q25.1 and are in weak linkage disequilibrium 380 

(LD) (r2 = 0.22), raising the question of whether these two chr.15q25.1 gene-smoking interactions on 381 

CHD are independent of each other.   382 

At the ADAMTS7 CHD locus, the T allele at the rs7178051 variant was found to be more 383 

strongly and inversely associated with CHD risk in never-smokers (OR: 0.88; P-value: 7.02x10-16) 384 

compared to a much weaker effect in ever-smokers (OR: 0.95; P-value: 8.64x10-4) (P-value of 385 

interaction: 8.57x10-5) (Table 1). Thus, the protective impact of the rs7178051 T allele observed in 386 

never-smokers was halved in people who smoked (Figure-1). This difference is not related to power 387 

differences within strata because for this variant, there were less data available in the never-smoking 388 

group (21,232 CHD cases and 38,713 controls) compared to the ever-smoking group (39,585 CHD 389 

cases and 40,749 controls). There was no substantial evidence of heterogeneity for the interaction 390 

beta across the participating studies (Heterogeneity chi-squared = 36.23 (d.f. = 25); P-value for the 391 

χ2 test of heterogeneity = 0.06; I2 = 31.0%; tau-squared (τ2 = 0). We further conducted sensitivity 392 

analyses using a random effect model; the results remained unchanged and the interaction beta 393 

remained significant (Supplementary Figure 5b). Although the frequency of rs7178051 was 39% in 394 

Europeans compared to 28% in South Asians, further analyses stratified by ancestry (i.e., European 395 

versus non-Europeans) showed similar results (Supplementary Figure 5c). Other variants 396 

discovered through prior CHD GWAS at the ADAMTS7 locus (e.g., rs7173743, rs4380028, 397 

rs3825807) were in moderate to high LD (r2 >0.50) with rs7178051 and were also found to display a 398 

similar pattern of gene-smoking interaction effects (Table 1).  399 

At the CHRNB4-A3-A5 smoking locus, the A allele at the rs1051730 variant had an inverse 400 

trend (not significant after adjustment) of association with CHD in never-smokers (OR: 0.96; P-value: 401 

1.56x10-2) and a positive trend (not significant after adjustment) in ever-smokers (OR: 1.03; P-value: 402 

1.53x10-2) (P-value of interaction: 2.37x10-4) (Table 1 and Supplementary Table 3). For this 403 

variant, data on 20,559 CHD cases and 38,198 controls were available in the never-smoking group 404 

whereas 38,923 CHD cases and 40,371 controls were available in the ever-smoking group. Similar 405 

gene-smoking interaction patterns were observed for other variants (e.g., rs2036527, rs8034191) 406 

that have been previously reported for CPD behavior at the CHRNB4-A3-A5 gene cluster (Table 1). 407 
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Further interrogation of the chr15q21.1 region encompassing rs7178051 and rs1051730 408 

across three distinct LD blocks (Figure 1) revealed multiple additional variants for which we 409 

observed gene-smoking interactions in CHD (Table 1 and Figure 1). Indeed, several SNPs (e.g., 410 

rs7178051, rs10083696, rs7176187, rs6495335, rs4887077) had genome-wide significant 411 

associations with CHD in “never-smokers” but had weaker and less significant associations with 412 

CHD in “ever-smokers” (Figure 1). Alleles clustered specifically around ADAMTS7 rather than at the 413 

CHRNB4-A3-A5 genes appear to be protective of CHD in “never-smokers” but have attenuated 414 

protective effects in “ever-smokers” (Figure 2).  415 

Conditional analyses  416 

To investigate the possibility that the two chr.15q25.1 gene-smoking interactions might 417 

represent a single interaction locus across the entire region we undertook an approximate 418 

conditional and joint analyses17-22 using summary data derived from CARDIoGRAMplus4D for CHD 419 

and from the TGC for smoking behavior. In-addition to rs7178051, we identified one other variant, 420 

rs11072794 in low LD with rs7178051 (r2=0.20) that was associated independently with CHD 421 

(Figure 3a; red triangles) (Figure 3b & Supplementary Figure 6b; red triangles). We also 422 

confirmed two variants (rs1051730 and rs684513) located in two different LD blocks that were 423 

independently associated with smoking behavior in the TGC data10 (Figure 3d & Supplementary 424 

Figure 6b; grey circles).  425 

In analyses of the CHD variants, both rs7178051 and rs11072794 remained strongly 426 

associated with CHD after adjusting for the top CPD variants (rs1051730 and rs684513) (Figure 3d, 427 

red triangles) whereas their weak association with CPD was lost after adjusting for the top CPD 428 

variants (Figure 3d; grey circles); e.g., the P-value for rs7178051 association with CPD was 1x10-5 429 

in unadjusted analyses but attenuated to 0.55 after adjusting for rs1051730 and rs684513. In 430 

analyses of the CPD variants, both rs1051730 and rs684513 remained strongly associated with CPD 431 

after adjusting for the top CHD variants (rs7178051 and rs11072794) (Figure 3b, grey circles) 432 

whereas their weak association with CHD was lost after adjusting for the top CHD variants (Figure 433 

3b, red triangles). As expected, conditional analyses that included all four of these variants resulted 434 

in a null association of the region with both CHD and CPD (Supplementary Figure 6b).  To 435 

underscore the validity of the conditional approach using summary data, we used individual 436 

participant data from an expanded PROMIS sample involving 9,025 MI cases and 8,506 controls. 437 

We found that the OR conferred by allelic variation at rs7178051 remained associated with MI risk 438 

independent of the two CPD variants (rs1051730 and rs684513) and rs11072794 (the second CHD 439 
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SNP) (Supplementary Figure 6c). Conversely, the apparent effect of allelic variation at rs1051730 440 

(the top CPD variant) on CHD risk was lost when we adjusted for the other three variants, 441 

rs7178051, rs11072794 and rs684513 (Supplementary Figure 6c). 442 

Next, using summary level data we examined the association of each of these four variants 443 

with CHD risk separately in “ever-smokers” and “never-smokers” while mutually adjusting for the 444 

other three variants (Figure 4 & Supplementary Figure 7). In these analyses, only allelic variation 445 

at rs7178051 was found to have independent genome-wide significant effects on CHD in never-446 

smokers. rs7178051 was also the only one of these four variants with significant differences in the 447 

effect estimate for gene-CHD associations between the two smoking groups (P-value for the χ2 test 448 

of heterogeneity: 5.4x10-5) after adjusting for the effects of other variants (rs11072794, rs1051730 449 

and rs684513).  These conditional analyses suggest that (a) variants located near the ADAMTS7 450 

gene but not CHRNB4-A3-A5 genes have independent effects on CHD, (b) a single independent 451 

gene-smoking interaction signal for CHD exists on chr.15q.25.1 which is localized at the ADAMTS7 452 

CHD locus (marked by rs7178051) and (c) an apparent interaction signal observed at the nearby 453 

CHRNB4-A3-A5 CPD locus (marked by rs1051730) is not independent of the ADAMTS7 454 

(rs7178051) interaction signal.  455 

To assess the robustness of conditional analyses methodology that uses summary level data 456 

(i.e., GCTA)17-22, we conducted sensitivity analyses in the PROMIS dataset (9,025 MI cases and 457 

8,506 controls). We assessed the association of rs7178051 (top CHD SNP) and rs1051730 (top 458 

CPD SNP) after mutually adjusting for each other by conducting (i) standard logistic regression using 459 

individual participant data and (ii) summary level data in PROMIS using the GCTA method 460 

(Supplementary Table 4). The top CHD SNP was found associated with CHD risk in PROMIS 461 

independent of the top CPD variant using both the methods, in-contrast the effect on CHD of the top 462 

CPD SNP attenuated sharply when adjusted for the top CHD SNP – the effect estimates obtained 463 

using the two methods were very similar (Supplementary Table 4).  464 

Finally, to further demonstrate that the gene-smoking interaction effect in CHD at rs7178051 is 465 

independent of the CHRNB4-A3-A5 CPD locus, we conducted sensitivity analyses in the PROMIS 466 

study by restricting our gene-environment interaction analysis to subjects who do not carry the minor 467 

alleles of rs1051730 and rs684513 (the two SNPs associated with CPD) at the CHRNB4-A3-A5 468 

locus. The T allele at the rs7178051 variant was associated with CHD only in never-smokers (OR: 469 

0.88; P-value: 0.01) compared to a weaker and non-significant association in ever-smokers (OR: 470 

0.94; P-value: 0.21) (Supplementary Table 5). The effect estimates obtained in each of the 471 
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categories defined by smoking status in PROMIS were similar to the effect estimates obtained in our 472 

overall meta-analyses that utilized data in all participants (Supplementary Table 5).  473 

Analysis of eQTLs and regulatory features at the chr15q25.1 gene-smoking interaction locus. 474 

We mined publicly available eQTL data from the HapMap consortium,11 GTEx consortium23 475 

and the MuTHER consortium24 as well as data from 147 HAoEC lines25 to examine the association 476 

between mRNA expression of ADAMTS7 and CHRN genes with CHD, CPD and gene-smoking 477 

interaction SNPs at the chr15q25.1 locus. SNP-mRNA associations with p-values <0.002 (correction 478 

for 20 tests) are presented (Figure 5). The top two CHD variants (rs7178051, rs11072794) are 479 

associated with reduced ADAMTS7 expression (e.g., rs11072794 p=6.01x10-21 in MuTHER LCL, 480 

n=850; and rs7178051 p=0.0029 in HAoEC, n=147) but have no association with expression of 481 

CHRN genes in any cell or tissue examined. In contrast, the top two CPD variants (rs1051730 and 482 

rs684513) were associated with CHRN gene expression (e.g., rs1051730 p=6.9x10-7 for CHRNA5 in 483 

GTEx skeletal muscle and nerve tissue) but have no association with ADAMTS7 in these cells or 484 

tissues. These findings complement conditional analyses suggesting that gene-CHD and gene-485 

smoking interaction effects on CHD are likely mediated by ADAMTS7 whereas the smoking behavior 486 

effect appears to be mediated through the CHRNA3-5 gene cluster.  487 

In analysis of data from the ENCODE project26 and for human aortic tissue in NIH 488 

Roadmap Epigenomics project, ADAMTS7 was associated with RNAseq reads and an active 489 

transcription mark, H3K36me3, whereas CHRN genes had low/absent RNAseq reads and were 490 

positive for repressive marks, H3K27me3 and H3K9me3 (Supplementary Figure 8). In HCASMC 491 

ChIPseq data, rs7178051 the top CHD and gene-smoking CHD interacting SNP, is located in a 492 

region with active regulatory marks H3K4me1 and H3K4me3 as well as transcription factor binding 493 

site for TCF21, an important HCASMC transcription factor also associated with CAD. This ChIPseq 494 

pattern was observed also in human aortic tissue (Figure 6).  These regulatory data suggest active 495 

transcription of ADAMTS7, but not CHRN genes, in vascular cells and aortic tissue and reveal that 496 

rs7178051, the lead gene-smoking CHD interaction SNP, overlaps active transcription marks and 497 

transcription factor binding regions in HCASMC.    498 

ADAMTS7 and CHRNB4-A3-A5 expression in vascular cells and their response to cigarette smoke 499 

extract  500 

In order to explore which genes at the chr15q25.1 locus are expressed in CHD-relevant 501 

vascular cells, we performed q-PCR of ADAMTS7 and the CHRNB4-A3-A5 genes in primary human 502 
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vascular cells and in the THP1 human monocyte cell line (Supplementary Figure 9 & Figure 5). 503 

Whilst ADAMTS7 mRNA was expressed abundantly in all vascular cell types, mRNA was below 504 

detection or expressed at a very low level for each of the genes in the CHRNB4-A3-A5 cluster in any 505 

of these cell types (Supplementary Figure 9). Next, we explored the effect of cigarette smoke 506 

extract on gene expression in HCASMC, a cell type of particular relevance to vascular responses to 507 

cigarette smoke products31, 32 as well as to ADAMTS7 vascular functions in atherosclerosis and 508 

CHD.33 In primary HCASMC, cigarette smoke extract exposure increased ADAMTS7 mRNA levels 509 

by over 2-fold (Figure 5) but did not affect expression of the CHRN genes (not shown).  Thus, in 510 

contrast to CHRN genes, ADAMTS7 is both expressed and modulated by cigarette smoke extract in 511 

CHD-relevant vascular cells providing biological support for ADAMTS7, but not CHRN genes, in the 512 

gene-smoking interaction at chr15q25.1.     513 

 514 

 515 

 516 

 517 

 518 

 519 
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 525 

 526 

 527 

 528 
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DISCUSSION 529 

We conducted a gene-environment interaction study at fifty loci associated with either CHD 530 

or smoking behavior and found evidence of effect-modification of genotype-related CHD risk by 531 

smoking-behavior at the chr.15q21.1 CHD locus. Specifically, we observed highly significant 532 

attenuation of the cardio-protective effects associated with alleles at this locus in people who 533 

smoked cigarettes.  Conditional analyses identified an LD block located at the ADAMTS7 gene that 534 

accounted for both the main effect on CHD as well as the gene-smoking interactions in CHD. Data 535 

from expression and cell studies support our genetic analysis, suggesting that the underlying 536 

mechanism relates to genotype differences in the effect of smoking on expression of ADAMTS7 in 537 

vascular tissue.  538 

Our findings have novel mechanistic and clinical implications. These human genomic data 539 

provide new insights into the mechanism of CHD in cigarette smokers. Identification of gene-540 

smoking interaction at the chr15q21.1 locus suggests a specific role in smoking-related CHD for 541 

ADAMTS7 and its substrates, vascular matrix and vascular smooth muscle cell biology more 542 

broadly. Such insights can help to prioritize translational strategies for smoking-related CHD and 543 

present opportunities to study lifestyle interventions and pharmacological strategies to lower CHD in 544 

individuals who smoke cigarettes. Thus, inhibition of ADAMTS7 represents a novel potential 545 

therapeutic strategy for CHD that may have particular benefits in individuals who smoke cigarettes. 546 

All smokers should receive counseling for smoking cessation yet such broad public health strategies 547 

have failed to reach or impact smoking behavior in a large portion of nicotine-addicted individuals. 548 

Our data provides a human genomic context for consideration of targeting specific genetically at-risk 549 

individuals via intensified preventive strategies and development of novel pharmacological 550 

treatments.  551 

Our study also represents a realistic strategy for performing gene-environment interaction 552 

studies using contemporary genetic data. We illustrate that identifying joint effects of genetic and 553 

lifestyle factors in CHD requires very large sample sizes, yet such analyses are biologically 554 

informative when studies are adequately powered. In this context, an important observation in our 555 

large sample is the lack of effect modification by smoking behavior on CHD at the APOE locus, a 556 

previously reported smoking interaction locus.12-14 This finding is consistent with a recent meta-557 

analysis that found no evidence of effect modification by smoking for APOE genotypes and CHD 558 

risk.34 These studies raise concerns that most prior gene-environment interactions studies in CHD 559 

have been prone to the same biases (i.e., limited statistical power and false positive associations) as 560 
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candidate gene studies investigating main effects in the pre-GWAS era. The present study differs 561 

from previous studies by being much larger and, importantly, it includes genomic and functional 562 

follow-up data supporting the plausibility of the observed gene-environment interaction. 563 

ADAMTS7 (or the A disintegrin and metalloproteinase with thrombospondin motifs-7) is a 564 

member of the ADAMTS family of secreted zinc metalloproteases.35, 36 We previously discovered 565 

and replicated genetic variation at the ADAMTS7 locus in association with coronary atherosclerosis 566 

and MI.7-9 Both in vivo and in vitro studies suggest that ADAMTS7 modulates VSMC phenotype 567 

switching and migration and that this may be mediated via cartilage oligomeric matrix protein 568 

(COMP) or thrombospondin-1 (TSP-1),32,33 i.e. putative ADAMTS7 substrates expressed in vascular 569 

tissue. Genetic variation at ADAMTS7, however, has no relationship with traditional risk factors or 570 

mechanistic biomarkers; hence the directional impact of ADAMTS7 expression on CHD risk and the 571 

underlying biological mechanisms have been unclear.32 572 

Our gene-smoking interaction analyses provide novel insights into the directional impact of 573 

the ADAMTS7 locus on CHD, the underlying mechanisms of CHD in smokers, and how such 574 

findings ultimately might translate towards achieving health benefits in society. Our human eQTL 575 

interrogations reveal that common alleles that relate to lower CHD risk at the ADAMTS7 locus are 576 

also associated with reduced ADAMTS7 expression, implying an atherogenic role of the gene. This 577 

is supported by our recent in vivo experimental studies; Adamts7 deficiency protected against diet-578 

induced atherosclerosis in both the Ldlr-/- and ApoE-/- mouse models, reduced neointima formation 579 

following arterial injury, and decreased VSMC migration in vitro.33 In our smoking-stratified analyses, 580 

we observed CHD protective effect which was attenuated in smokers. Thus, smoking exposure may 581 

overcome the genetic effect of protective alleles that act by reducing ADAMTS7 expression. Such a 582 

possibility is supported by our HCASMC data that reveals increased ADAMTS7 expression in 583 

HCASMC exposed to cigarette smoke extract. These human genome-smoking studies are the first to 584 

implicate a specific locus as causal in mediating increased risk of CHD in smokers. Additional 585 

translational studies are needed to establish the precise mechanisms of atheroprotection for alleles 586 

at the ADAMTS7 locus, how cigarette smoking impacts these genetic effects, and whether deletion 587 

or inhibition of ADAMTS7 in vivo attenuates the specific acceleration of atherosclerosis conferred by 588 

cigarette smoking.  589 

Strengths and limitations of our study merit consideration. This is a large study that 590 

conducted gene-smoking interaction analyses in CHD by using GWAS data. We observed 591 

substantial heterogeneity across study samples in our initial quality control analyses of “ever-592 
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smoking” status with CHD risk. This is similar, however, to the heterogeneity reported in a recent 593 

meta-analysis that pooled risk ratios from all the past prospective studies with information on 594 

association of “ever-smoking” with incident CHD events.5 We recognize that other smoking related 595 

phenotypes are important e.g., “current smoking” may have a more pronounced role than “ever-596 

smoking” in plaque rupture and thrombosis in patients with MI. We were however unable to 597 

distinguish between “former” versus “current” smokers within “Ever Smokers” in our current 598 

analyses; furthermore we were not able to analyze graded exposure to cigarette smoking such as 599 

“pack-years”. Given the use of multiple studies and meta-analyses of data, we used only one 600 

analytical approach to investigate gene-smoking interactions. This approach, however, was feasible 601 

and powerful in this large-scale consortium setting. While we used a fixed effects approach in our 602 

meta-analyses, a random effects meta-analysis yielded qualitatively similar results (data not shown). 603 

The lack or replication is partially offset by a large sample size, consistency across study cohorts 604 

and racial groups and supplemental genomic and experimental evidence supporting biological 605 

plausibility. This approach is also consistent with recent recommendations37 which favor use of a 606 

powerful discovery experiment using all data rather than reducing power by splitting available 607 

dataset for discovery and validation. While our in vitro studies support a role for ADAMTS7 in the 608 

gene-smoking interaction, it will be important to confirm that Adamts7 deficiency protect against 609 

cigarette-smoke acceleration of atherosclerosis in rodent models.  610 

Our interaction analyses, conditional analyses, eQTL interrogations and cell studies 611 

suggest that ADAMTS7, but not the CHRNB4-A3-A5 gene cluster, is likely causal at 15q21.1 for 612 

gene-smoking interaction effects in CHD. Yet, analyses are not definitive. Although top interacting 613 

SNPs and CHD SNPs (e.g., rs7178051) were associated with ADAMTS7, but not CHRNB4-A3-A5, 614 

expression in LCLs, large-scale eQTL data and allele specific expression data (e.g., via RNA 615 

sequencing) are not available for vascular tissues limiting causal inference. In our small HCAEC 616 

datasets, we did however find that alleles at rs7178051 associate with ADAMTS7 expression but not 617 

with any CHRNB4-A3-A5 genes suggesting, at least in one vascular cell type, that the gene-smoking 618 

interaction is mediated via ADAMTS7.  619 

 620 

 621 

 622 

 623 
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 624 

Conclusions 625 

We provide novel evidence for allelic variation exhibiting gene-smoking interaction in CHD 626 

at the chr.15q21.1 locus. The protective effect conferred by variation at this locus in never-smokers 627 

is markedly attenuated in people who are ever-smokers. Stepwise conditional analyses, gene 628 

expression data in vascular cells, eQTL interrogation, and cigarette smoke extract exposure in 629 

HCASMC suggest that ADAMTS7 accounts for both the gene-smoking interaction in CHD and the 630 

CHD main effect on chr.15q21.1. Our findings reveal interactions of genetic variants and key lifestyle 631 

determinants in the etiology of CHD, provide new insights into the potential mechanisms of CHD in 632 

cigarette smokers, and facilitate precision medicine advances in cigarette-smoking related CHD. Our 633 

work motivates future large-scale studies investigating joint effects of genes and environment in 634 

CHD using existing complex-disease consortia datasets and genome-wide discovery approaches. 635 

This will provide opportunities to detect additional and novel loci displaying gene-environment 636 

interactions revealing genetic contexts for targeting intensive lifestyle interventions and novel 637 

therapeutics. 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 



21 
 

Collaborators: 656 

Stanley L. Hazen MD,1 W.H. Wilson Tang MD,1 Perttu P Salo PhD,2,3 Marja-Liisa Lokki PhD,4 657 
Markku S Nieminen PhD,5 Antti-Pekka Sarin MSc,2,6 Alun Evans MSc,7 Jean Ferrières MD,8 Jarmo 658 
Virtamo PhD,2 Frank Kee PhD,9 David-Alexandre Trégouët PhD,10 Dominique Arveiler PhD,11 659 
Philippe Amouyel PhD,12 Paolo Brambilla PhD,13 Annette Peters PhD,14 Melanie Waldenberger 660 
PhD,14,15 Giovanni Veronesi PhD,16 Giancarlo Cesana PhD,17 Satu Männistö PhD,2 Pekka Jousilahti 661 
PhD,2 Antti M Jula PhD,2 Kennet Harald PhD,2 Albert Hofman PhD,18 Oscar H. Franco PhD,18 Andre 662 
G. Uitterlinden PhD.19 663 

1 Departments of Cardiovascular Medicine and Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, 664 
OH 44195 665 
2 National Institute for Health and Welfare, Helsinki, Finland 666 
3 University of Helsinki, Institute for Molecular Medicine, Finland (FIMM) 667 
4 Transplantation Laboratory, Haartman Institute, Helsinki, Finland 668 
5 Heart and Lung Center HUH, Helsinki University Hospital and Helsinki University, Finland 669 
6 University of Helsinki, Institute for Molecular Medicine, Finland (FIMM) 670 
7 Centre for Public Health, The Queen's University of Belfast, Belfast, Northern Ireland 671 
8 INSERM UMR 1027, Department of Cardiology, Toulouse University School of Medicine, Rangueil Hospital, 672 
31059 Toulouse, France 673 
9 UKCRC Centre of Excellence for Public Health (NI), Queens University of Belfast, Northern Ireland 674 
10 Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé 675 
(UMR_S) 1166, F-75013, Paris, France AND Sorbonne Universités, Université Pierre et Marie Curie, Paris, 676 
France; and Institute for Cardiometabolism and Nutrition, Paris, France 677 
11 Department of Epidemiology and Public Health, EA3430, University of Strasbourg, Faculty of Medicine, 678 
Strasbourg, France 679 
12 Institut Pasteur de Lille, INSERM U744, Université Lille Nord de France, F-59000 Lille, France 680 
13 Laboratory Medicine, Hospital of Desio, Department of Health Sciences, University of Milano, Bicocca, Italy 681 
14 Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany AND German Center for 682 
Cardiovascular Disease Research (DZHK e.V.), Munich, Germany Melanie Waldenberger 683 
15 Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany 684 
16 EPIMED Research Center, Department of Clinical and Sperimental Medicine, University of Insubria, Varese, 685 
Italy 686 
17 University of Milano, Bicocca, Italy 687 
18 Department of Epidemiology, Erasmus University Medical center, Rotterdam, The Netherlands 688 
19 Department of Internal Medicine, Erasmus University Medical center, Rotterdam, The Netherlands 689 
 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 

 699 

 700 

 701 



22 
 

Sources of Funding 702 

Dr. Saleheen has received funding from the National Institutes of Health, the Fogarty International, 703 

the Wellcome Trust, the British Heart Foundation, Pfizer, Genentech, Regeneron and Eli Lilly 704 

pharmaceuticals. This work was supported in part by R01-HL-111694 and K24-HL-107643 from the 705 

National Institutes of Health to Dr. Reilly.  706 

 707 

PROMIS. Genotyping in PROMIS was funded by the Wellcome Trust, UK and Pfizer. Fieldwork in 708 

the PROMIS study has been supported through funds available to investigators at the Center for 709 

Non-Communicable Diseases, Pakistan and the University of Cambridge, UK.  710 

 711 

EPIC-CVD Consortium. CHD case ascertainment and validation, genotyping, and clinical chemistry 712 

assays in EPIC-CVD were principally supported by grants awarded to the University of Cambridge 713 

from the European Union (EU) Framework Programme 7 (HEALTH-F2-2012-279233), the United 714 

Kingdom (UK) Medical Research Council (G0800270) and British Heart Foundation (SP/09/002), the 715 

UK National Institute for Health Research Cambridge Biomedical Research Centre, and the 716 

European Research Council (268834). Scientists at the EPIC-CVD Coordinating Centre have also 717 

been supported by grants from the US National Institutes of Health, Merck, Novartis, 718 

GlaxoSmithKline, and Pfizer. 719 

 720 

WTCCC. Recruitment of the WTCCC CAD cases was funded by the British Heart Foundation. 721 

Collection of controls and genotyping was funded by the Wellcome Trust. Chris Nelson and Nilesh 722 

Samani are funded by the British Heart Foundation. Nilesh Samani is a National Institute for Health 723 

Research (NIHR) Senior Investigator. 724 

 725 

SCARF-SHEEP.  The investigators would like to acknowledge the Swedish Heart-Lung Foundation, 726 

the Swedish Research Council, the Strategic Cardiovascular Programme of Karolinska Institutet and 727 

the Stockholm County Council, the Strategic support for epidemiological research at Karolinska 728 

Institutet and the Stockholm County Council. Rona J Strawbridge is supported by Strategic Research 729 

Support (SRP) Diabetes Program at Karolinska Institutet. 730 

CARDIOGENICS and THESIAS. Professor Deloukas’ work forms part of the research themes 731 

contributing to the translational research portfolio of Barts Cardiovascular Biomedical Research Unit 732 

which is supported and funded by the National Institute for Health Research. Analysis was supported 733 

by British Heart Foundation (BHF)  grant (Deloukas) RG/14/5/30893. Professor Schunkert was 734 



23 
 

supported by grants from the Fondation Leducq (CADgenomics: Understanding CAD Genes, 735 

12CVD02), the German Federal Ministry of Education and Research (BMBF) within the framework of 736 

the e:AtheroSysMed (e:Med) research and funding concept (grant 01ZX1313A-2014), and the 737 

European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no 738 

HEALTH-F2-2013-601456 (CVgenes-at-target). Further grants were received from the Deutsche 739 

Forschungsgemeinschaft (DFG) as part of the Sonderforschungsbereich CRC 1123 (B2). Thorsten 740 

Kessler MD was supported by a German Centre for Cardiovascular Research (DZHK) Rotation 741 

Grant. 742 

Rotterdam Study. The Rotterdam Study is supported by the Erasmus Medical Center and Erasmus 743 

University Rotterdam; the Netherlands Organization for Scientific Research; the Netherlands 744 

Organization for Health Research and Development (ZonMw); the Research Institute for Diseases in 745 

the Elderly; the Ministry of Education, Culture and Science; the Ministryof Health, Welfare and 746 

Sports; the European Commission; and the Municipality of Rotterdam. Support for genotyping was 747 

provided by the Netherlands Organisation of Scientific Research (NOW) Investments (No. 748 

175.010.2005.011, 911-03-012), the Research Institute for Diseases in the Elderly (014-93-015; 749 

RIDE2), the Netherlands Genomics Initiative/Netherlands Consortium for Healthy Aging project No. 750 

050-060-810. Abbas Dehghan is supported by an NWO grant (veni, 916.12.154) and the EUR 751 

Fellowship. Oscar H. Franco works in ErasmusAGE, a center for aging research across the life 752 

course funded by Nestlé Nutrition (Nestec Ltd.), Metagenics Inc., and AXA. Nestlé Nutrition (Nestec 753 

Ltd.), Metagenics Inc., and AXA had no role in design and conduct of the study; collection, 754 

management, analysis, and interpretation of the data; and preparation, review, or approval of the 755 

manuscript. 756 

 757 

Expression studies. These studies were supported in part by a Transatlantic Network of Excellence 758 

grant 10CVD03 from the Fondation Leducq.  Analysis of expression quantitative trait loci (eQTL) in 759 

endothelial cells was supported by a Transatlantic Networks of Excellence Award (12CVD02) from 760 

Foundation Leducq (to Dr. Jake Lusis and team) 761 

Diabetes Heart Study. This study was supported in part by NIH R01 HL67348, NIH R01 HL092301, 762 

and NIH R01 NS058700 to Donald W. Bowden. 763 

Cleveland Clinic Study. This study was supported in part by NIH grants R01ES021801, 764 

3R01ES021801-03S1, and R01ES025786. 765 

Family Heart Study (FamHS). The FamHS is funded by NIH grant R01HL117078 grant. 766 



24 
 

MORGAM. This work has been sustained by the MORGAM Project's funding:  European Union FP 7 767 

projects ENGAGE (HEALTH-F4-2007-201413), CHANCES (HEALTH-F3-2010-242244) and 768 

BiomarCaRE (278913). This funding has supported central coordination, workshops and part of the 769 

activities of the MORGAM Data Centre, at THL in Helsinki, Finland. MORGAM Participating Centres  770 

are funded by regional and national governments, research councils, charities, and other local 771 

sources. The PRIME Study was supported by grants from Inserm, Merck Sharp and Dohme-Chibret 772 

Laboratory, the French Research Agency and the Foundation Heart and Arteries. We also thank the 773 

following organisations that allowed the recruitment of participants for the PRIME: the health 774 

screening centres organised by the SocialSecurity of Lille (Institut Pasteur), Strasbourg, Toulouse, 775 

and Tourcoing; the occupational medicine services of Haute-Garonne and of the Urban Community 776 

of Strasbourg; the Association Inter-entreprises des Services Médicaux du Travail de Lille et 777 

environs; the Comité pour le Développement de la Médecine du Travail; the Mutuelle Générale des 778 

Postes, Télégraphes et Téléphones du Bas-Rhin; the Laboratoire d’Analyses de l’Institut de Chimie 779 

Biologique de la Faculté de Médecine de Strasbourg. We also gratefully acknowledge the teams of 780 

the Lille, Strasbourg and Toulouse centres for their dedicate work and relentness energy in following 781 

up their cohorts; the contribution of the members of the event validation committees : L Guize; C 782 

Morrison; M-T Guillanneuf; and M Giroud and the Alliance Partnership Programme for its financial 783 

support. The KORA study was initiated and financed by the Helmholtz Zentrum München – German 784 

Research Center for Environmental Health, which is funded by the German Federal Ministry of 785 

Education and Research (BMBF) and by the State of Bavaria. KK was supported by the Orion-786 

Farmos Research Foundation and Academy of Finland (grant number 250207). 787 

DILGOM. This work was enabled through a grant #139635 from the Academy of Finland and a grant 788 

from the Finnish Foundation for Cardiovascular Research. The DILGOM project is also supported by 789 

the Academy of Finland (grant numbers 136895 and 263836). We are grateful for the THL DNA 790 

laboratory for its skillful work to produce the DNA samples used in this study. We also acknowledge 791 

the Academy of Finland (136895 and 263836), Funding from Academy of Finland, grant number: 792 

118065, and Juho Vainio Foundation. 793 

 794 

 795 

 796 

 797 

 798 



25 
 

Acknowledgements 799 

We would like to thank the CARDIoGRAMplusC4D consortium, the EPIC-CVD and the PROMIS 800 

study for contributing data.   801 

PROMIS. We also acknowledge the contributions made by the following: Zeeshan Ozair, Usman 802 

Ahmed, Abdul Hakeem, Hamza Khalid, Naeem Khan, Sadiq Khan, Ayaz Ali, Madad Ali, Saeed 803 

Ahmed, Muhammad Waqar Khan, Muhammad Razaq Khan, Abdul Ghafoor, Mir Alam, Riazuddin, 804 

Muhammad Irshad Javed, Abdul Ghaffar, Tanveer Baig Mirza, Muhammad Shahid, Jabir Furqan, 805 

Muhammad Iqbal Abbasi, Tanveer Abbas, Rana Zulfiqar, Muhammad Wajid, Irfan Ali, Muhammad 806 

Ikhlaq, Danish Sheikh, Muhammad Imran, Nadeem Sarwar, Adam Butterworth, Matthew Walker and 807 

Hannah Lombardi, Shahid Abbas, Faisal Majeed, Saba Akhtar, Nadeem Qamar, Khan Shah Zaman, 808 

Zia Yaqoob, Tahir Saghir, Syed Nadeem Hasan Rizvi, Anis Memon, Nadeem Hayyat Mallick, 809 

Mohammad Ishaq, Syed Zahed Rasheed, Fazal-ur-Rehman Memon, Khalid Mahmood, and 810 

Naveeduddin Ahmed. 811 

EPIC-CVD. We thank all EPIC participants and staff for their contribution to the study, the laboratory 812 

teams at the Medical Research Council Epidemiology Unit for sample management and Cambridge 813 

Genomic Services for genotyping, Sarah Spackman for data management, and the team at the 814 

EPIC-CVD Coordinating Centre for study coordination and administration. 815 

Disclosures 816 

Dr. Saleheen has received funding from Pfizer, Genentech, Regeneron and Eli Lilly pharmaceuticals. 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 

 829 

 830 



26 
 

References 831 

(1) Mangino M, Spector T. Understanding coronary artery disease using twin studies. Heart. 832 
2013;99:373-375. 833 

(2) Lusis AJ, Mar R, Pajukanta P. Genetics of atherosclerosis. Annu Rev Genomics Hum Genet. 834 
2004;5:189-218. 835 

(3) Teo KK, Ounpuu S, Hawken S, Pandey MR, Valentin V, Hunt D, Diaz R, Rashed W, Freeman R, 836 
Jiang L, Zhang X, Yusuf S; INTERHEART Study Investigators. Tobacco use and risk of myocardial 837 
infarction in 52 countries in the INTERHEART study: a case-control study. Lancet. 2006;368:647-838 
658. 839 

(4) Doll R, Peto R, Boreham J, Sutherland I. Mortality in relation to smoking: 50 years' observations 840 
on male British doctors. BMJ. 2004;328:1519. 841 

(5) Huxley RR, Woodward M. Cigarette smoking as a risk factor for coronary heart disease in women 842 
compared with men: a systematic review and meta-analysis of prospective cohort studies. Lancet. 843 
2011;378:1297-1305. 844 

(6) Ezzati M, Lopez AD. Estimates of global mortality attributable to smoking in 2000. Lancet. 845 
2003;362:847-852. 846 

(7) CARDIoGRAMplusC4D Consortium., Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes 847 
TL, Thompson JR, Ingelsson E, Saleheen D, Erdmann J, Goldstein BA, Stirrups K, König IR, Cazier 848 
JB, Johansson A, Hall AS, Lee JY, Willer CJ, Chambers JC, Esko T, Folkersen L, Goel A, 849 
Grundberg E, Havulinna AS, Ho WK, Hopewell JC, Eriksson N, Kleber ME, Kristiansson K, 850 
Lundmark P, Lyytikäinen LP, Rafelt S, Shungin D, Strawbridge RJ, Thorleifsson G, Tikkanen E, Van 851 
Zuydam N, Voight BF, Waite LL, Zhang W, Ziegler A, Absher D, Altshuler D, Balmforth AJ, Barroso I, 852 
Braund PS, Burgdorf C, Claudi-Boehm S, Cox D, Dimitriou M, Do R; DIAGRAM Consortium.; 853 
CARDIOGENICS Consortium., Doney AS, El Mokhtari N, Eriksson P, Fischer K, Fontanillas P, 854 
Franco-Cereceda A, Gigante B, Groop L, Gustafsson S, Hager J, Hallmans G, Han BG, Hunt SE, 855 
Kang HM, Illig T, Kessler T, Knowles JW, Kolovou G, Kuusisto J, Langenberg C, Langford C, 856 
Leander K, Lokki ML, Lundmark A, McCarthy MI, Meisinger C, Melander O, Mihailov E, Maouche S, 857 
Morris AD, Müller-Nurasyid M; MuTHER Consortium., Nikus K, Peden JF, Rayner NW, Rasheed A, 858 
Rosinger S, Rubin D, Rumpf MP, Schäfer A, Sivananthan M, Song C, Stewart AF, Tan ST, 859 
Thorgeirsson G, van der Schoot CE, Wagner PJ; Wellcome Trust Case Control Consortium., Wells 860 
GA, Wild PS, Yang TP, Amouyel P, Arveiler D, Basart H, Boehnke M, Boerwinkle E, Brambilla P, 861 
Cambien F, Cupples AL, de Faire U, Dehghan A, Diemert P, Epstein SE, Evans A, Ferrario MM, 862 
Ferrières J, Gauguier D, Go AS, Goodall AH, Gudnason V, Hazen SL, Holm H, Iribarren C, Jang Y, 863 
Kähönen M, Kee F, Kim HS, Klopp N, Koenig W, Kratzer W, Kuulasmaa K, Laakso M, Laaksonen R, 864 
Lee JY, Lind L, Ouwehand WH, Parish S, Park JE, Pedersen NL, Peters A, Quertermous T, Rader 865 
DJ, Salomaa V, Schadt E, Shah SH, Sinisalo J, Stark K, Stefansson K, Trégouët DA, Virtamo J, 866 
Wallentin L, Wareham N, Zimmermann ME, Nieminen MS, Hengstenberg C, Sandhu MS, Pastinen 867 
T, Syvänen AC, Hovingh GK, Dedoussis G, Franks PW, Lehtimäki T, Metspalu A, Zalloua PA, 868 
Siegbahn A, Schreiber S, Ripatti S, Blankenberg SS, Perola M, Clarke R, Boehm BO, O'Donnell C, 869 
Reilly MP, März W, Collins R, Kathiresan S, Hamsten A, Kooner JS, Thorsteinsdottir U, Danesh J, 870 
Palmer CN, Roberts R, Watkins H, Schunkert H, Samani NJ. Large-scale association analysis 871 
identifies new risk loci for coronary artery disease. Nat Genet. 2013;45:25-33. 872 



27 
 

(8) Coronary Artery Disease (C4D) Genetics Consortium. A genome-wide association study in 873 
Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet. 874 
2011;43:339-344. 875 

(9) Schunkert H, König IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, Preuss M, Stewart AF, 876 
Barbalic M, Gieger C, Absher D, Aherrahrou Z, Allayee H, Altshuler D, Anand SS, Andersen K, 877 
Anderson JL, Ardissino D, Ball SG, Balmforth AJ, Barnes TA, Becker DM, Becker LC, Berger K, Bis 878 
JC, Boekholdt SM, Boerwinkle E, Braund PS, Brown MJ, Burnett MS, Buysschaert I; Cardiogenics., 879 
Carlquist JF, Chen L, Cichon S, Codd V, Davies RW, Dedoussis G, Dehghan A, Demissie S, 880 
Devaney JM, Diemert P, Do R, Doering A, Eifert S, Mokhtari NE, Ellis SG, Elosua R, Engert JC, 881 
Epstein SE, de Faire U, Fischer M, Folsom AR, Freyer J, Gigante B, Girelli D, Gretarsdottir S, 882 
Gudnason V, Gulcher JR, Halperin E, Hammond N, Hazen SL, Hofman A, Horne BD, Illig T, 883 
Iribarren C, Jones GT, Jukema JW, Kaiser MA, Kaplan LM, Kastelein JJ, Khaw KT, Knowles JW, 884 
Kolovou G, Kong A, Laaksonen R, Lambrechts D, Leander K, Lettre G, Li M, Lieb W, Loley C, Lotery 885 
AJ, Mannucci PM, Maouche S, Martinelli N, McKeown PP, Meisinger C, Meitinger T, Melander O, 886 
Merlini PA, Mooser V, Morgan T, Mühleisen TW, Muhlestein JB, Münzel T, Musunuru K, Nahrstaedt 887 
J, Nelson CP, Nöthen MM, Olivieri O, Patel RS, Patterson CC, Peters A, Peyvandi F, Qu L, Quyyumi 888 
AA, Rader DJ, Rallidis LS, Rice C, Rosendaal FR, Rubin D, Salomaa V, Sampietro ML, Sandhu MS, 889 
Schadt E, Schäfer A, Schillert A, Schreiber S, Schrezenmeir J, Schwartz SM, Siscovick DS, 890 
Sivananthan M, Sivapalaratnam S, Smith A, Smith TB, Snoep JD, Soranzo N, Spertus JA, Stark K, 891 
Stirrups K, Stoll M, Tang WH, Tennstedt S, Thorgeirsson G, Thorleifsson G, Tomaszewski M, 892 
Uitterlinden AG, van Rij AM, Voight BF, Wareham NJ, Wells GA, Wichmann HE, Wild PS, Willenborg 893 
C, Witteman JC, Wright BJ, Ye S, Zeller T, Ziegler A, Cambien F, Goodall AH, Cupples LA, 894 
Quertermous T, März W, Hengstenberg C, Blankenberg S, Ouwehand WH, Hall AS, Deloukas P, 895 
Thompson JR, Stefansson K, Roberts R, Thorsteinsdottir U, O'Donnell CJ, McPherson R, Erdmann 896 
J; CARDIoGRAM Consortium., Samani NJ. Large-scale association analysis identifies 13 new 897 
susceptibility loci for coronary artery disease. Nat Genet 2011;43:333-338. 898 

(10) Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci 899 
associated with smoking behavior. Nat Genet. 2010;42:441-447. 900 

(11) International HapMap 3 Consortium., Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs 901 
RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F, Peltonen L, Dermitzakis E, Bonnen PE, 902 
Altshuler DM, Gibbs RA, de Bakker PI, Deloukas P, Gabriel SB, Gwilliam R, Hunt S, Inouye M, Jia X, 903 
Palotie A, Parkin M, Whittaker P, Yu F, Chang K, Hawes A, Lewis LR, Ren Y, Wheeler D, Gibbs RA, 904 
Muzny DM, Barnes C, Darvishi K, Hurles M, Korn JM, Kristiansson K, Lee C, McCarrol SA, Nemesh 905 
J, Dermitzakis E, Keinan A, Montgomery SB, Pollack S, Price AL, Soranzo N, Bonnen PE, Gibbs 906 
RA, Gonzaga-Jauregui C, Keinan A, Price AL, Yu F, Anttila V, Brodeur W, Daly MJ, Leslie S, 907 
McVean G, Moutsianas L, Nguyen H, Schaffner SF, Zhang Q, Ghori MJ, McGinnis R, McLaren W, 908 
Pollack S, Price AL, Schaffner SF, Takeuchi F, Grossman SR, Shlyakhter I, Hostetter EB, Sabeti 909 
PC, Adebamowo CA, Foster MW, Gordon DR, Licinio J, Manca MC, Marshall PA, Matsuda I, Ngare 910 
D, Wang VO, Reddy D, Rotimi CN, Royal CD, Sharp RR, Zeng C, Brooks LD, McEwen JE. 911 
Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467:52-912 
58. 913 

(12) Humphries SE, Talmud PJ, Hawe E, Bolla M, Day IN, Miller GJ. Apolipoprotein E4 and coronary 914 
heart disease in middle-aged men who smoke: a prospective study. Lancet. 2001;358:115-119. 915 

(13) Grammer TB, Hoffmann MM, Scharnagl H, Kleber ME, Silbernagel G, Pilz S, Tomaschitz A, 916 
Lerchbaum E, Siekmeier R, März W. Smoking, apolipoprotein E genotypes, and mortality (the 917 
Ludwigshafen RIsk and Cardiovascular Health study). Eur Heart J. 2013;34:1298-1305. 918 



28 
 

(14) Gustavsson J, Mehlig K, Leander K, Strandhagen E, Björck L, Thelle DS, Lissner L, Blennow K, 919 
Zetterberg H, Nyberg F. Interaction of apolipoprotein E genotype with smoking and physical inactivity 920 
on coronary heart disease risk in men and women. Atherosclerosis. 2012;220:486-492. 921 

(15) Saleheen D, Zaidi M, Rasheed A, Ahmad U, Hakeem A, Murtaza M, Kayani W, Faruqui A, 922 
Kundi A, Zaman KS, Yaqoob Z, Cheema LA, Samad A, Rasheed SZ, Mallick NH, Azhar M, Jooma 923 
R, Gardezi AR, Memon N, Ghaffar A, Fazal-ur-Rehman, Khan N, Shah N, Ali Shah A, Samuel M, 924 
Hanif F, Yameen M, Naz S, Sultana A, Nazir A, Raza S, Shazad M, Nasim S, Javed MA, Ali SS, 925 
Jafree M, Nisar MI, Daood MS, Hussain A, Sarwar N, Kamal A, Deloukas P, Ishaq M, Frossard P, 926 
Danesh J. The Pakistan Risk of Myocardial Infarction Study: a resource for the study of genetic, 927 
lifestyle and other determinants of myocardial infarction in South Asia. Eur J Epidemiol. 928 
2009;24:329-338. 929 

(16) Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, Pirruccello JP, 930 
Ripatti S, Chasman DI, Willer CJ, Johansen CT, Fouchier SW, Isaacs A, Peloso GM, Barbalic M, 931 
Ricketts SL, Bis JC, Aulchenko YS, Thorleifsson G, Feitosa MF, Chambers J, Orho-Melander M, 932 
Melander O, Johnson T, Li X, Guo X, Li M, Shin Cho Y, Jin Go M, Jin Kim Y, Lee JY, Park T, Kim K, 933 
Sim X, Twee-Hee Ong R, Croteau-Chonka DC, Lange LA, Smith JD, Song K, Hua Zhao J, Yuan X, 934 
Luan J, Lamina C, Ziegler A, Zhang W, Zee RY, Wright AF, Witteman JC, Wilson JF, Willemsen G, 935 
Wichmann HE, Whitfield JB, Waterworth DM, Wareham NJ, Waeber G, Vollenweider P, Voight BF, 936 
Vitart V, Uitterlinden AG, Uda M, Tuomilehto J, Thompson JR, Tanaka T, Surakka I, Stringham HM, 937 
Spector TD, Soranzo N, Smit JH, Sinisalo J, Silander K, Sijbrands EJ, Scuteri A, Scott J, 938 
Schlessinger D, Sanna S, Salomaa V, Saharinen J, Sabatti C, Ruokonen A, Rudan I, Rose LM, 939 
Roberts R, Rieder M, Psaty BM, Pramstaller PP, Pichler I, Perola M, Penninx BW, Pedersen NL, 940 
Pattaro C, Parker AN, Pare G, Oostra BA, O'Donnell CJ, Nieminen MS, Nickerson DA, Montgomery 941 
GW, Meitinger T, McPherson R, McCarthy MI, McArdle W, Masson D, Martin NG, Marroni F, 942 
Mangino M, Magnusson PK, Lucas G, Luben R, Loos RJ, Lokki ML, Lettre G, Langenberg C, Launer 943 
LJ, Lakatta EG, Laaksonen R, Kyvik KO, Kronenberg F, König IR, Khaw KT, Kaprio J, Kaplan LM, 944 
Johansson A, Jarvelin MR, Janssens AC, Ingelsson E, Igl W, Kees Hovingh G, Hottenga JJ, Hofman 945 
A, Hicks AA, Hengstenberg C, Heid IM, Hayward C, Havulinna AS, Hastie ND, Harris TB, 946 
Haritunians T, Hall AS, Gyllensten U, Guiducci C, Groop LC, Gonzalez E, Gieger C, Freimer NB, 947 
Ferrucci L, Erdmann J, Elliott P, Ejebe KG, Döring A, Dominiczak AF, Demissie S, Deloukas P, de 948 
Geus EJ, de Faire U, Crawford G, Collins FS, Chen YD, Caulfield MJ, Campbell H, Burtt NP, 949 
Bonnycastle LL, Boomsma DI, Boekholdt SM, Bergman RN, Barroso I, Bandinelli S, Ballantyne CM, 950 
Assimes TL, Quertermous T, Altshuler D, Seielstad M, Wong TY, Tai ES, Feranil AB, Kuzawa CW, 951 
Adair LS, Taylor HA Jr, Borecki IB, Gabriel SB, Wilson JG, Holm H, Thorsteinsdottir U, Gudnason V, 952 
Krauss RM, Mohlke KL, Ordovas JM, Munroe PB, Kooner JS, Tall AR, Hegele RA, Kastelein JJ, 953 
Schadt EE, Rotter JI, Boerwinkle E, Strachan DP, Mooser V, Stefansson K, Reilly MP, Samani NJ, 954 
Schunkert H, Cupples LA, Sandhu MS, Ridker PM, Rader DJ, van Duijn CM, Peltonen L, Abecasis 955 
GR, Boehnke M, Kathiresan S. Biological, clinical and population relevance of 95 loci for blood lipids. 956 
Nature 2010;466:707-713. 957 

(17) Yang J, Ferreira T, Morris AP, Medland SE; Genetic Investigation of ANthropometric Traits 958 
(GIANT) Consortium.; DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium., 959 
Madden PA, Heath AC, Martin NG, Montgomery GW, Weedon MN, Loos RJ, Frayling TM, McCarthy 960 
MI, Hirschhorn JN, Goddard ME, Visscher PM. Conditional and joint multiple-SNP analysis of GWAS 961 
summary statistics identifies additional variants influencing complex traits. Nat Genet. 2012;44:369-962 
373. 963 

(18) Yang J, Lee SH, Goddard ME, Visscher PM. Genome-wide complex trait analysis (GCTA): methods, 964 
data analyses, and interpretations. Methods Mol Biol. 2013; 1019:215-236. 965 



29 
 

(19) Keller MF, Ferrucci L, Singleton AB. Genome-Wide Analysis of the Heritability of Amyotrophic Lateral 966 
Sclerosis. JAMA Neurol. 2014;71:1123-1134. 967 

(20)  van Rheenen W, Shatunov A, Dekker AM, McLaughlin RL, Diekstra FP, Pulit SL, van der Spek RA, 968 
Võsa U, de Jong S, Robinson MR, Yang J, Fogh I, van Doormaal PT, Tazelaar GH, Koppers M, Blokhuis 969 
AM, Sproviero W, Jones AR, Kenna KP, van Eijk KR, Harschnitz O, Schellevis RD, Brands WJ, Medic J, 970 
Menelaou A, Vajda A, Ticozzi N, Lin K, Rogelj B, Vrabec K, Ravnik-Glavač M, Koritnik B, Zidar J, 971 
Leonardis L, Grošelj LD, Millecamps S, Salachas F, Meininger V, de Carvalho M, Pinto S, Mora JS, 972 
Rojas-García R, Polak M, Chandran S, Colville S, Swingler R, Morrison KE, Shaw PJ, Hardy J, Orrell 973 
RW, Pittman A, Sidle K, Fratta P, Malaspina A, Topp S, Petri S, Abdulla S, Drepper C, Sendtner M, 974 
Meyer T, Ophoff RA, Staats KA, Wiedau-Pazos M, Lomen-Hoerth C, Van Deerlin VM, Trojanowski JQ, 975 
Elman L, McCluskey L, Basak AN, Tunca C, Hamzeiy H, Parman Y, Meitinger T, Lichtner P, Radivojkov-976 
Blagojevic M, Andres CR, Maurel C, Bensimon G, Landwehrmeyer B, Brice A, Payan CA, Saker-Delye S, 977 
Dürr A, Wood NW, Tittmann L, Lieb W, Franke A, Rietschel M, Cichon S, Nöthen MM, Amouyel P, 978 
Tzourio C, Dartigues JF, Uitterlinden AG, Rivadeneira F, Estrada K, Hofman A, Curtis C, Blauw HM, van 979 
der Kooi AJ, de Visser M, Goris A, Weber M, Shaw CE, Smith BN, Pansarasa O, Cereda C, Del Bo R, 980 
Comi GP, D'Alfonso S, Bertolin C, Sorarù G, Mazzini L, Pensato V, Gellera C, Tiloca C, Ratti A, Calvo A, 981 
Moglia C, Brunetti M, Arcuti S, Capozzo R, Zecca C, Lunetta C, Penco S, Riva N, Padovani A, Filosto M, 982 
Muller B, Stuit RJ; PARALS Registry.; SLALOM Group.; SLAP Registry.; FALS Sequencing Consortium.; 983 
SLAGEN Consortium.; NNIPPS Study Group., Blair I, Zhang K, McCann EP, Fifita JA, Nicholson GA, 984 
Rowe DB, Pamphlett R, Kiernan MC, Grosskreutz J, Witte OW, Ringer T, Prell T, Stubendorff B, Kurth I, 985 
Hübner CA, Leigh PN, Casale F, Chio A, Beghi E, Pupillo E, Tortelli R, Logroscino G, Powell J, Ludolph 986 
AC, Weishaupt JH, Robberecht W, Van Damme P, Franke L, Pers TH, Brown RH, Glass JD, Landers JE, 987 
Hardiman O, Andersen PM, Corcia P, Vourc'h P, Silani V, Wray NR, Visscher PM, de Bakker PI, van Es 988 
MA, Pasterkamp RJ, Lewis CM, Breen G, Al-Chalabi A, van den Berg LH, Veldink JH. Genome-wide 989 
association analyses identify new risk variants and the genetic architecture of amyotrophic lateral 990 
sclerosis. Nat Genet. 2016;48:1043-1048. 991 

(21)  Torres JM, Gamazon ER, Parra EJ, Below JE, Valladares-Salgado A, Wacher N, Cruz M, Hanis CL, 992 
Cox NJ. Cross-tissue and tissue-specific eQTLs: partitioning the heritability of a complex trait. Am J Hum 993 
Genet. 2014;95:521-534. 994 

(22)  Bailey JN, Loomis SJ, Kang JH, Allingham RR, Gharahkhani P, Khor CC, Burdon KP, Aschard H, 995 
Chasman DI, Igo RP Jr, Hysi PG, Glastonbury CA, Ashley-Koch A, Brilliant M, Brown AA, Budenz DL, 996 
Buil A, Cheng CY, Choi H, Christen WG, Curhan G, De Vivo I, Fingert JH, Foster PJ, Fuchs C, 997 
Gaasterland D, Gaasterland T, Hewitt AW, Hu F, Hunter DJ, Khawaja AP, Lee RK, Li Z, Lichter PR, 998 
Mackey DA, McGuffin P, Mitchell P, Moroi SE, Perera SA, Pepper KW, Qi Q, Realini T, Richards JE, 999 
Ridker PM, Rimm E, Ritch R, Ritchie M, Schuman JS, Scott WK, Singh K, Sit AJ, Song YE, Tamimi RM, 1000 
Topouzis F, Viswanathan AC, Verma SS, Vollrath D, Wang JJ, Weisschuh N, Wissinger B, Wollstein G, 1001 
Wong TY, Yaspan BL, Zack DJ, Zhang K, Study EN; ANZRAG Consortium., Weinreb RN, Pericak-Vance 1002 
MA, Small K, Hammond CJ, Aung T, Liu Y, Vithana EN, MacGregor S, Craig JE, Kraft P, Howell G, 1003 
Hauser MA, Pasquale LR, Haines JL, Wiggs JL. Genome-wide association analysis identifies TXNRD2, 1004 
ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma. Nat Genet. 2016;48:189-194 1005 

(23) GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580-5. 1006 

(24) Grundberg E, Small KS, Hedman ÅK, Nica AC, Buil A, Keildson S, Bell JT, Yang TP, Meduri E, 1007 
Barrett A, Nisbett J, Sekowska M, Wilk A, Shin SY, Glass D, Travers M, Min JL, Ring S, Ho K, 1008 
Thorleifsson G, Kong A, Thorsteindottir U, Ainali C, Dimas AS, Hassanali N, Ingle C, Knowles D, 1009 
Krestyaninova M, Lowe CE, Di Meglio P, Montgomery SB, Parts L, Potter S, Surdulescu G, 1010 
Tsaprouni L, Tsoka S, Bataille V, Durbin R, Nestle FO, O'Rahilly S, Soranzo N, Lindgren CM, 1011 
Zondervan KT, Ahmadi KR, Schadt EE, Stefansson K, Smith GD, McCarthy MI, Deloukas P, 1012 
Dermitzakis ET, Spector TD; Multiple Tissue Human Expression Resource (MuTHER) Consortium.. 1013 



30 
 

Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat Genet. 2012;44:1084-1014 
1089.  1015 

(25) Erbilgin A, Civelek M, Romanoski CE, Pan C, Hagopian R, Berliner JA, Lusis AJ. Identification 1016 
of CAD candidate genes in GWAS loci and their expression in vascular cells. J Lipid Res. 1017 
2013;54:1894-1905. 1018 

(26) ENCODE Project Consortium. A user's guide to the encyclopedia of DNA elements (ENCODE). 1019 
PLoS Biol. 2011;9:e1001046. 1020 

(27) Miller CL, Anderson DR, Kundu RK, Raiesdana A, Nürnberg ST, Diaz R, Cheng K, Leeper NJ, 1021 
Chen CH, Chang IS, Schadt EE, Hsiung CA, Assimes TL, Quertermous T. Disease-related growth 1022 
factor and embryonic signaling pathways modulate an enhancer of TCF21 expression at the 6q23.2 1023 
coronary heart disease locus. PLoS Genet. 2013;9:e1003652. 1024 

(28) Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras 1025 
TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15-21. 1026 

(29) Kooner JS, Saleheen D, Sim X, Sehmi J, Zhang W, Frossard P, Been LF, Chia KS, Dimas AS, 1027 
Hassanali N, Jafar T, Jowett JB, Li X, Radha V, Rees SD, Takeuchi F, Young R, Aung T, Basit A, 1028 
Chidambaram M, Das D, Grundberg E, Hedman AK, Hydrie ZI, Islam M, Khor CC, Kowlessur S, 1029 
Kristensen MM, Liju S, Lim WY, Matthews DR, Liu J, Morris AP, Nica AC, Pinidiyapathirage JM, 1030 
Prokopenko I, Rasheed A, Samuel M, Shah N, Shera AS, Small KS, Suo C, Wickremasinghe AR, 1031 
Wong TY, Yang M, Zhang F; DIAGRAM; MuTHER, Abecasis GR, Barnett AH, Caulfield M, Deloukas 1032 
P, Frayling TM, Froguel P, Kato N, Katulanda P, Kelly MA, Liang J, Mohan V, Sanghera DK, Scott J, 1033 
Seielstad M, Zimmet PZ, Elliott P, Teo YY, McCarthy MI, Danesh J, Tai ES, Chambers JC. Genome-1034 
wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes 1035 
susceptibility loci. Nat Genet. 2011;43:984-999. 1036 

(30) Saade S, Cazier JB, Ghassibe-Sabbagh M, Youhanna S, Badro DA, Kamatani Y, Hager J, 1037 
Yeretzian JS, El-Khazen G, Haber M, Salloum AK, Douaihy B, Othman R, Shasha N, Kabbani S, 1038 
Bayeh HE, Chammas E, Farrall M, Gauguier D, Platt DE, Zalloua PA; FGENTCARD consortium. 1039 
Large scale association analysis identifies three susceptibility loci for coronary artery disease. PLoS 1040 
One. 2011;6:e29427. 1041 

(31) Tsaprouni LG, Yang TP, Bell J, Dick KJ, Kanoni S, Nisbet J, Viñuela A, Grundberg E, Nelson 1042 
CP, Meduri E, Buil A, Cambien F, Hengstenberg C, Erdmann J, Schunkert H, Goodall AH, 1043 
Ouwehand WH, Dermitzakis E, Spector TD, Samani NJ, Deloukas P. Cigarette smoking reduces 1044 
DNA methylation levels at multiple genomic loci but the effect is partially reversible upon cessation. 1045 
Epigenetics. 2014;9:1382-1396. 1046 

(32) Starke RM, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez F, Hasan DM, Rosenwasser RH, 1047 
Owens GK, Koch WJ, Dumont AS. Cigarette smoke modulates vascular smooth muscle phenotype: 1048 
implications for carotid and cerebrovascular disease. PLoS One. 2013;8:e71954. 1049 

(33) Bauer RC, Tohyama J, Cui J, Cheng L, Yang J, Zhang X, Ou K, Paschos GK, Zheng XL, 1050 
Parmacek MS, Rader DJ, Reilly MP. Knockout of Adamts7, a novel coronary artery disease locus in 1051 
humans, reduces atherosclerosis in mice. Circulation. 2015;131:1202-1213. 1052 

(34) Holmes MV, Frikke-Schmidt R, Melis D, Luben R, Asselbergs FW, Boer JM, Cooper J, Palmen 1053 
J, Horvat P, Engmann J, Li KW, Onland-Moret NC, Hofker MH, Kumari M, Keating BJ, Hubacek JA, 1054 



31 
 

Adamkova V, Kubinova R, Bobak M, Khaw KT, Nordestgaard BG, Wareham N, Humphries SE, 1055 
Langenberg C, Tybjaerg-Hansen A, Talmud PJ. A systematic review and meta-analysis of 130,000 1056 
individuals shows smoking does not modify the association of APOE genotype on risk of coronary 1057 
heart disease. Atherosclerosis. 2014;237:5-12. 1058 

(35) Pu X, Xiao Q, Kiechl S, Chan K, Ng FL, Gor S, Poston RN, Fang C, Patel A, Senver EC, Shaw-1059 
Hawkins S, Willeit J, Liu C, Zhu J, Tucker AT, Xu Q, Caulfield MJ, Ye S. ADAMTS7 cleavage and 1060 
vascular smooth muscle cell migration is affected by a coronary-artery-disease-associated variant. 1061 
Am J Hum Genet. 2013;92:366-374. 1062 

(36) Wang L, Zheng J, Bai X, Liu B, Liu CJ, Xu Q, Zhu Y, Wang N, Kong W, Wang X. ADAMTS-7 1063 
mediates vascular smooth muscle cell migration and neointima formation in balloon-injured rat 1064 
arteries. Circ Res. 2009;104:688-698. 1065 
 1066 
(37) Hutter CM, Mechanic LE, Chatterjee N, Kraft P, Gillanders EM; NCI Gene-Environment Think 1067 
Tank. Gene-environment interactions in cancer epidemiology: a National Cancer Institute Think Tank 1068 
report. Genet Epidemiol. 2013;37:643-657. 1069 
 1070 
 1071 
 1072 
 1073 
 1074 
 1075 
 1076 
 1077 
 1078 
 1079 
 1080 
 1081 
 1082 
 1083 
 1084 
 1085 
 1086 
 1087 
 1088 
 1089 
 1090 
 1091 
 1092 
 1093 
 1094 
 1095 
 1096 
 1097 



32 
 

 Table-1. Novel genotype-smoking interaction findings in coronary heart disease at the chromosome 15q25.1 locus  1098 

      Never Smokers  Ever Smokers   

Variant Association allele LD with 
rs7178051* 

LD with 
rs1051730^ 

 N 
cases 

N 
controls 

N 
Total 

Beta (SE) P-value  N 
cases 

N 
controls 

N 
Total 

Beta (SE) P-value  P-value 
interaction 

*rs71780514 CHD (NPR) T/C - 0.22  21232 38713 59945 -0.13 (0.01) 1.30E-16  39585 40749 80334 -0.05 (.01) 2.49E-04  8.57E-05 

†rs105173016 SB (known) A/G 0.22 -  20559 38198 58757 -0.04 (0.02) 0.02  38923 40371 79294 0.03 (0.01) 0.02  2.37E-04 

Other variants on chr.15q25.1 with significant gene-smoking interactions on CHD 

rs71737431 CHD (Known) C/T 0.61 0.18  21050 37955 59005 -0.11 (0.01) 2.73E-13  39044 39559 78603 -0.04 (0.01) 8.60E-04  9.29E-05 

rs100836962 CHD (Novel) A/G 1.0 0.22  19721 36206 55927 -0.11 (0.02) 1.60E-12  38807 40018 78825 -0.05 (0.01) 2.72E-04  5.15E-05 

rs71761873 CHD (Novel) T/C 1.0 0.24  21232 38713 59945 -0.12 (0.01) 7.02E-16  39585 40749 80334 -0.04 (0.01) 8.64E-04  6.93E-05 

rs64953355 CHD (Novel) G/T 1.0 0.22  20144 37217 57361 -0.13 (0.02) 2.39E-15  36448 38203 74651 -0.04 (0.01) 1.69E-03  9.51E-04 

rs43800286 CHD (Known) T/C 1 0.22  21232 38713 59945 -0.12 (0.01) 2.20E-15  39585 40749 80334 -0.04 (.01) 1.03E-03  5.44E-04 

rs38258077 CHD (Known) G/A 0.52 0.43  17137 28633 45771 -0.09 (0.02) 2.82E-08  30071 29014 59086 -0.03 (0.01) 0.04  2.6E-03 

rs38135658 CHD (NPR) T/G 0.43 0.56  19466 35830 55296 -0.08 (0.02) 5.08E-07  36642 37759 74401 -0.01 (0.01) 0.42  3.05E-04 

rs116384909 CHD (NPR) T/C 0.44 0.51  20465 37897 58362 -0.08 (0.01) 6.90E-08  38533 39690 78223 -0.01 (0.01) 0.28  2.25E-04 

rs1107279111 CHD (NPR) A/C 0.44 0.51  19289 35944 55233 -0.08 (0.02) 2.83E-07  35245 36635 71880 -.005 (0.01) 0.68  1.06E-04 

rs92269212 CHD (NPR) A/C 0.44 0.50  20559 38198 58757 -0.08 (0.01) 2.81E-07  38923 40371 79294 -0.01 (0.01) 0.29  2.75E-04 

rs1163837213 CHD (NPR) T/C 0.44 0.50  21232 38713 59945 -0.08 (0.01) 6.92E-08  39585 40749 80334 -0.01 (0.01) 0.23  3.16E-04 

rs488707714 CHD (NPR)  T/C 0.44 0.50  21232 38713 59945 -0.08 (0.01) 4.71E-08  39585 40749 80334 -0.02 (0.01) 0.20  3.92E-05 

rs1289913515 CHD (NPR) G/A 0.39 0.56  20377 37440 57817 -0.07 (0.02) 3.97E-06  38382 39181 77563 -0.01 (0.01) 0.58  4.54E-04 

rs68451318 SB (Known) C/G 0.01 0.10  12517 21054 33572 -0.01 (0.02) 0.67  24641 24487 49129 0.03 (0.02) 0.18  0.08 

rs203652719 SB (Known) A/G 0.17 0.90  20559 38198 58757 -0.04 (0.02) 0.02  38923 40371 79294 0.03 (0.01) 0.02  2.14E-04 

rs1051920320 CHD (NPR) G/A 0.19 0.93  21232 38713 59945 -0.04 (0.01) 5.93E-03  39585 40749 80334 0.03 (0.01) 0.03  1.27E-04 

rs803419121 SB (Known) C/T 0.19 1.0  19251 32131 51382 -0.05 (0.02) 2.62E-03  34925 34047 68972 0.02 (0.01) 0.06  3.91E-05 

                      CHD = coronary heart disease;  SB = smoking behavior; NPR: Not a previously reported variant with disease risk 1099 
                     *lead variant in association with CHD in our dataset; † lead variant in association with SB 1100 

1-21each number refers to the physical location of the variant in figure- 1101 
 1102 
 1103 
 1104 
 1105 
 1106 
 1107 
 1108 
 1109 
 1110 



33 
 

Figure Legends 1111 

 1112 

Figure 1. (a) Regional association analyses at the chromosome 15q25.1 locus in association with 1113 

CHD risk stratified by smoking status. Association P-values for genetic variants with CHD risk in 1114 

“never-smokers” (green squares) and “ever-smokers” (red triangles). (b) Longitudinal bars represent 1115 

gene-smoking CHD interaction P-values at the chromosome 15q25.1 locus; bars in blue are P-1116 

values for variants listed in Table-1 and each variant has been assigned a unique identification 1117 

number based on its physical location; (c) LD-blocks at the 15q25.1 locus visualized through 1118 

HAPLOVIEW using LD estimates in the HapMAP-2 CEU reference population.  1119 

 1120 

Figure 2. Several variants at chromosome 15q21.1 have stronger effects on CHD risk in “never-1121 

smokers” compared to “ever-smokers”. Variants with the strongest interaction P-value are displayed. 1122 

 1123 

Figure 3. Step-wise conditional analysis of genetic variation at the chromosome 15q21.1 locus with 1124 

CHD (red triangles) and smoking behavior (cigarettes per day, CPD; grey circles). At the 1125 

chromosome 15q21.1 locus, analyses adjusted for rs7178051 and rs11072794 completely 1126 

attenuated the gene-CHD associations whereas gene-smoking remained unchanged. Analyses 1127 

adjusted for rs1051730 and rs684513 completely attenuated the gene-smoking associations 1128 

whereas gene-CHD effect remained unchanged. 1129 

Figure 4. Analyses mutually adjusted for rs7178051, rs11072794, rs1051730 and rs684513 at 1130 

15q21.1 on CHD and smoking behavior; gene-CHD interaction analyses were only found significant 1131 

for rs7178051. Analyses on the left panel show associations of rs7178051, rs11072794, rs1051730 1132 

and rs684513 with CHD risk mutually adjusted for each other. Analyses on the right panel show 1133 

associations of rs7178051, rs11072794, rs1051730 and rs684513 with smoking behavior mutually 1134 

adjusted for each other. 1135 

Figure 5.  (a) ADAMTS7 and CHRNB4-A3-A5 mRNA levels were measured in HCASMC. Cells were 1136 

cultured to confluence, total RNA was extracted and cDNA generated. q-PCR was performed for 1137 

ACTB, GAPDH, TBP, ADAMTS7, CHRNB4, CHRNA3, CHRNA5 (95°C 15s, 60°C 1min). Delta Cts 1138 

were calculated as follows:  (CtACTB + CtGAPDH + CtTBP)/3 – CtTARGET GENE). Fold changes are derived 1139 

from delta delta Cts based on formula FC = 2-dCt. (b) Confluent HCASMC were exposed to cigarette 1140 

smoke extract. Serum starved (x24 hrs.) confluent HCASMC were treated with 0.5% or 1.0% 1141 

cigarette smoke extract  (v/v) for 4, 12, and 24 hrs. in serum reduced conditions (0.5% FBS in 1142 

DMEM). Total RNA was extracted, cDNA generated preparation and q-PCR performed for 1143 
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ADAMTS7 by Taqman and normalized to GAPDH. The Average Ct for ADAMTS7 at baseline was 1144 

28.25. Results were presented as means ± SEM, and data were analyzed using Student’s t-Test. (c) 1145 

expression and eQTL Data from the GTEx consortium, the HapMap consortium (restricted to 1146 

European populations), the Multiple Tissue Human Expression Resource (MuTHER) and in 147 1147 

donor HAoEC lines. Association of the independent lead variants identified in our conditional 1148 

analyses with expression of ADAMTS7 and genes in the CHRNB4-A3-A5 cluster. A P-value 1149 

threshold of 0.002 was set to account for multiple testing involved in the eQTL analyses. 1150 

Figure 6.  Genome browser view of regulatory features at rs7178051 on Chr15q21.1.  ChIP-seq 1151 

experiments were performed on confluent HCASMC for TCF21, Jun, JunD, CEBP and H3K4me1, 1152 

H3K27me3, H3K27ac. DNAaseI hypersensitivity data for human AoSMC were acquired from the 1153 

ENCODE project.  Human aortic tissue H3K4me1, H3K9me3, H3K27me3, and H3K36me3 ChIP-seq 1154 

data were acquired from the NIH Roadmap Epigenomics Project.  HCASMC = human coronary 1155 

artery smooth muscle cells; AoSMC = human aortic smooth muscle cells.   1156 

 1157 

 1158 

 1159 
 1160 


