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Loss-of-function mutations in ATP6AP1 and
ATP6AP2 in granular cell tumors
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Granular cell tumors (GCTs) are rare tumors that can arise in multiple anatomical locations,

and are characterized by abundant intracytoplasmic granules. The genetic drivers of GCTs

are currently unknown. Here, we apply whole-exome sequencing and targeted sequencing

analysis to reveal mutually exclusive, clonal, inactivating somatic mutations in the endosomal

pH regulators ATP6AP1 or ATP6AP2 in 72% of GCTs. Silencing of these genes in vitro results

in impaired vesicle acidification, redistribution of endosomal compartments, and accumula-

tion of intracytoplasmic granules, recapitulating the cardinal phenotypic characteristics of

GCTs and providing a novel genotypic–phenotypic correlation. In addition, depletion of

ATP6AP1 or ATP6AP2 results in the acquisition of oncogenic properties. Our results

demonstrate that inactivating mutations of ATP6AP1 and ATP6AP2 are likely oncogenic dri-

vers of GCTs and underpin the genesis of the intracytoplasmic granules that characterize

them, providing a genetic link between endosomal pH regulation and tumorigenesis.
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G
ranular cell tumors (GCTs) are uncommon neoplasms
which can arise in multiple anatomical sites. These
tumors usually follow a benign course1, but may occa-

sionally exhibit an aggressive behavior with local and distant
recurrences1–3. GCTs are characterized by abundant intracyto-
plasmic granules, whose nature and function remain unclear1.
The genetic landscape of GCTs and the mechanisms under-
pinning the presence of their characteristic intracytoplasmic
granules are currently unknown1.

There is a burgeoning body of evidence indicating that genetic
analysis of rare cancer types may provide unique opportunities
for the identification of novel cancer drivers4. A subset of rare
tumors not uncommonly have simple genomes, with a paucity of
copy number alterations (CNAs) and somatic mutations, and are
characterized by highly recurrent, specific, or even pathogno-
monic, somatic mutations, or fusion genes4. These tumors have
distinctive phenotypes and often arise in diverse anatomic loca-
tions. Akin to these tumors, GCTs are rare, arise in different
anatomic locations, and display peculiar morphologic features;
hence, we posited that they could also be underpinned by a highly
recurrent genetic alteration.

Here, through a whole-exome sequencing (WES) and targeted
sequencing analysis of GCTs, we uncovered highly recurrent and
mutually exclusive inactivating mutations targeting the endoso-
mal pH regulators ATP6AP1 and ATP6AP2 in GCTs. In vitro
silencing of ATP6AP1 and ATP6AP2 in human Schwann cells
and epithelial cells resulted in the accumulation of intracyto-
plasmic granules that are ultra-structurally and phenotypically
similar to those of human GCTs, altered endosomal acidification
and oncogenic properties, thereby establishing a novel
genotypic–phenotypic correlation.

Results
Recurrent ATP6AP1 and ATP6AP2 somatic mutations in
GCTs. GCTs were retrieved from the authors’ institutions, fol-
lowing the approval of this study by the local research ethics
committees or institutional review boards (IRBs) of the con-
tributing authors’ institutions. Patient consent was obtained
where appropriate, according to the protocols approved. Upon
central pathology review, 82 cases were classified as GCTs, which
originated in different anatomic locations, including skin (n=
40), soft tissue (n= 15), gastrointestinal tract (n= 13), breast
(n= 6), tongue (n= 5), and other locations (n= 3; Supplemen-
tary Table 1).

Our study comprised a discovery cohort (n= 17) and a
validation cohort (n= 65; Fig. 1). To determine whether GCTs
would be underpinned by a pathognomonic genetic alteration, we
subjected the 17 GCTs of the discovery cohort to WES and 11
GCTs to RNA sequencing, with 10 cases being subjected to both
(Fig. 1, Supplementary Table 1). These analyses revealed a paucity
of CNAs (Supplementary Fig. 1a), no recurrently mutated known
cancer genes, and no recurrent likely pathogenic fusion genes
(Fig. 2a, Supplementary Table 2). Rather, WES analysis revealed
recurrent, mutually exclusive, and clonal loss-of-function (i.e.,
nonsense or frameshift) somatic mutations affecting ATP6AP1 or
ATP6AP2 in 12/17 of the GCTs analyzed (p= 0.041, CoMEt;
Fig. 2a, Supplementary Fig. 1b, Supplementary Tables 3–4). All
ATP6AP1 and ATP6AP2 somatic mutations identified by WES
were validated by Sanger sequencing (Supplementary Fig. 1c). To
validate our findings, we subjected 65 additional GCTs from the
validation cohort to targeted massively parallel sequencing, which
revealed mutually exclusive loss-of-function mutations (i.e.,
nonsense, frameshift, or splice-site) affecting ATP6AP1 and
ATP6AP2 in 36/65 and 6/65 cases, respectively (p= 0.0028,
CoMEt; Figs. 1 and 2b, Supplementary Table 1). In addition, 5/65
GCTs harbored ATP6AP1 in-frame indels affecting evolutionarily
conserved residues (Fig. 2b, Supplementary Fig. 1d). All
ATP6AP1 and ATP6AP2 mutations identified by targeted
sequencing (n= 47) were validated by Sanger sequencing and/
or repeat targeted capture sequencing analysis (Fig. 1a and
Supplementary Table 1). In total, 72% (59/82) of the GCTs
analyzed here harbored likely inactivating somatic mutations in
ATP6AP1 or ATP6AP2. Of note, no differences in histologic
features (Supplementary Table 5) or anatomical site (Fig. 2c) of
GCTs according to the ATP6AP1/ATP6AP2 mutational status
were observed.

ATP6AP1 and ATP6AP2 inactivating mutations are expressed.
ATP6AP1 and ATP6AP2 map to Xq28 and Xp11.4, respectively.
Therefore, a single inactivating mutation in either gene targeting
the X chromosome in males or the active/non-methylated X
chromosome in females would be sufficient to cause its complete
loss of function5. To determine whether ATP6AP1 and ATP6AP2
loss-of-function mutations affect the active/non-methylated X
chromosome in females, we conducted bisulfite sequencing of
GCTs harboring ATP6AP1 mutations in the vicinity of CpG
islands. No GCTs included in this study harbored ATP6AP2
mutations adjacent to CpG islands. Bisulfite sequencing revealed

Granular cell tumors (n = 82)

Granular cell tumors and histologic mimics (n = 185)

Histologic mimics of granular cell tumors
(n = 103)

- Paragangliomas (n = 29)

- Schwannomas (n = 25)

- Adrenocortical carcinomas (n = 16)

- Oncocytomas (n = 13)

- Hibernomas (n = 10)

- Chromophobe renal cell carcinomas (n = 10)

Discovery cohort (n = 17) Validation cohort (n = 65)

Validation of ATP6AP1 and
ATP6AP2 mutations by Sanger

sequencing and/or repeat
targeted capture (n = 47)

Validation of ATP6AP1 and
ATP6AP2 mutations by Sanger

sequencing (n = 12)

Targeted sequencing
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Fig. 1 Schematic representation of the tissue samples and sequencing methods employed in this study. Depiction of the discovery and validation cohorts of

granular cell tumors, and the series of histologic mimics of these tumors included in this study, and of the sequencing analysis methods utilized
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that the ATP6AP1 mutations tested were present in non-
methylated DNA, indicating that these mutations affected the
active/non-methylated X chromosome of GCTs in females
(Fig. 2d and Supplementary Fig. 2a). To validate these findings
using an orthogonal approach, we performed a modified human
androgen receptor (HUMARA) assay following DNA restriction
digestion with the methylation-sensitive restriction enzyme HhaI,
which only cleaves non-methylated DNA. These assays showed
that mock-digested DNA displayed ATP6AP1 mutations, whereas
DNA following treatment with HhaI was wild-type (Supple-
mentary Fig. 2b). These findings indicate that ATP6AP1 muta-
tions affect the active X chromosome in females.

Next, we sought to determine whether loss-of-function
mutations affecting ATP6AP1 and ATP6AP2 result
in their decreased expression. Messenger RNA (mRNA)

expression of ATP6AP1- and ATP6AP2-mutant forms was
detected in all ATP6AP1- and ATP6AP2-mutant GCTs analyzed
by RNA sequencing and/or complementary DNA (cDNA)
sequencing, respectively (Supplementary Figs. 2c, d). We
then aimed to determine whether ATP6AP1 and ATP6AP2
loss-of-function mutations result in reduced protein expression.
As expected, immunofluorescence and western blot
analyses revealed lower ATP6AP1 and ATP6AP2 protein
levels in GCTs harboring ATP6AP1 or ATP6AP2
mutations, respectively, than in GCTs wild-type for these
genes and in normal tissues (Fig. 2e and Supplementary Figs. 3a,
b). Taken together, these data demonstrate that inactivating
somatic mutations affecting ATP6AP1 and ATP6AP2 are
expressed and result in a significant reduction of their respective
protein levels.

Discovery cohort (n = 17)
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Fig. 2 Inactivating ATP6AP1 and ATP6AP2 somatic mutations are highly prevalent in granular cell tumors. a Recurrent non-synonymous somatic mutations

identified in granular cell tumors (GCTs) by whole-exome sequencing (n= 17). Cases are shown in columns and genes in rows. The histologic classification

following the Fanburg-Smith criteria is shown in the phenotype bar (top). Mutation types are color-coded according to the legend. SNV, single-nucleotide

variation. b Mutation frequencies of ATP6AP1 and ATP6AP2 identified by targeted capture sequencing of additional GCTs of the validation cohort (n= 65).

Mutation types are color-coded according to the legend. c Frequency of ATP6AP1 and ATP6AP2 mutations according to anatomical location. The ATP6AP1

and ATP6AP2 mutational status is color-coded according to the legend. GI, gastrointestinal; ST, soft tissue. d Representative Sanger sequencing

electropherograms of bisulfite analysis of an ATP6AP1-mutated GCT in a female patient. Arrows highlight the altered nucleotide. *Cytosine converted to

thymidine upon bisulfite treatment. e ATP6AP1 and ATP6AP2 protein expression in ATP6AP1-mutated, ATP6AP2-mutated, and ATP6AP1- and ATP6AP2-

wild-type GCTs assessed by immunofluorescence (n= 3). Tumor borders are depicted by a dashed line; T, tumor; N, normal stromal/epithelial cells as

internal controls. Scale bars, 20 μm. Quantification of ATP6AP1 and ATP6AP2 fluorescent signal/ cell (n= 3; mean ± S.D.); n.s.= non significant, *P < 0.05;

two-tailed unpaired t-tests. MUT, mutated; WT, wild type. Experiments in (d, e) were independently performed at least three times
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ATP6AP1/ATP6AP2 mutations are likely pathognomonic for
GCTs. To determine whether ATP6AP1 and ATP6AP2 loss-of-
function mutations are pathognomonic for GCTs, we investi-
gated their presence in 6285 non-hypermutated cancers across
14 common cancer types from The Cancer Genome Atlas
(TCGA) studies retrieved from the cBioPortal6. In contrast to
the high frequency of likely inactivating ATP6AP1 (61%) and
ATP6AP2 (11%) somatic mutations in the GCTs analyzed in
this study, mutations affecting these genes were found in only
0.27% and 0.25% of common cancers, respectively (Fig. 3a, b).
Moreover, at variance with GCTs, where ATP6AP1 and
ATP6AP2 mutations were predominantly frameshift or non-
sense, consistent with the mutational spectra of potential tumor
suppressor genes, inactivating mutations targeting ATP6AP1
and ATP6AP2 were found to be vanishingly rare in common
cancers from TCGA, with a prevalence of 0.03% and 0.05% of
cases, respectively (Fig. 3b).

We next sequenced the entire coding region of ATP6AP1 and
ATP6AP2 in 103 histologic mimics of GCTs, including
paragangliomas (n= 29), schwannomas (n= 25), adrenocorti-
cal carcinomas (n= 16), oncocytomas (n= 13), hibernomas
(n= 10), and chromophobe renal carcinomas (n= 10). These
are tumors that may occasionally display intracytoplasmic
granules and may be considered in the differential diagnosis of
GCTs (Fig. 1). This analysis did not reveal any inactivating
somatic mutations affecting either of these genes in the 103
tumors analyzed (Fig. 3c).

Taken together, these findings provide strong circumstantial
evidence to demonstrate that ATP6AP1 and ATP6AP2 loss-of-
function mutations are pathognomonic for GCTs.

ATP6AP1 and ATP6AP2 inactivation drives the GCT pheno-
type. ATP6AP1 and ATP6AP2 encode for regulatory subunits
of the vacuolar H+-ATPase (V-ATPase) complex, a key regulator
of intracellular organelle pH7, and play a role in the control
of endosomal acidification and vesicle trafficking8–10. We posited
that loss of function of ATP6AP1 and ATP6AP2 would lead to
altered endocytosis resulting in the presence of the intracyto-
plasmic granules characteristic of GCTs. Depletion of ATP6AP1
or ATP6AP2 in primary Schwann cells, a putative cell of origin of
GCTs1, resulted in the accumulation of numerous intracyto-
plasmic structures of heterogeneous morphology with electron-
dense and -clear contents, remarkably similar to those observed
in the human GCTs we analyzed (Fig. 4a, b). A similar but less
overt phenotype was observed upon ATP6AP1 or
ATP6AP2 silencing in HEK293 cells and MCF-10A cells (Fig. 4b,
Supplementary Fig. 4a, b).

ATP6AP1 and ATP6AP2 are required for endosomal acidifica-
tion8,9, which is essential for proper endocytic flux7. Immuno-
fluorescence analysis following silencing of either gene
demonstrated an altered distribution of endosomal compart-
ments, due to accumulation of early endosomes (EEA1-positive)
and recycling endosomes (Rab13-positive), which are endosomal
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Fig. 3 Mutations affecting ATP6AP1 and ATP6AP2 are likely pathognomonic for granular cell tumors. a Frequency and type of ATP6AP1 and ATP6AP2
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samples from 16 common cancer types. AML, acute myeloid leukemia; SNV, single-nucleotide variant. b Schematic representation of ATP6AP1 and

ATP6AP2 protein domains depicting the 59 mutations affecting ATP6AP1 and ATP6AP2 in 82 GCTs from this study and 33 mutations affecting these genes

in 6285 non-hypermutated common cancers from TCGA. Mutations are shown on the x-axis, and the frequency of a particular mutation is represented by
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compartments with a higher pH11. In addition, silencing of
ATP6AP1 or ATP6AP2 led to a decreased number of lysosomes
(LAMP1-positive; Fig. 4c). Consistent with these findings, we
observed increased EEA1 and Rab13 protein levels, coupled with
decreased LAMP1 expression upon stable silencing of ATP6AP1
or ATP6AP2 in immortalized Schwann cells and HEK293 cells by
western blot analysis (Fig. 4d and Supplementary Fig. 4c).

Overall, these data suggest that the characteristic intracytoplasmic
granules of GCTs might be due to an abnormal distribution of
endosomal compartments resulting in accumulation of those with
a higher pH.

Depletion of ATP6AP1 or ATP6AP2 and endosomal acid-
ification. Regulation of endosomal pH is key for the adequate
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functioning of endocytosis12. Given that ATP6AP1 and
ATP6AP2 are integral components of the V-ATPase complex7,
we posited that their loss of function would result in suboptimal
acidification of endosomal compartments, coupled with an
altered endocytic flux. We sought to determine the effect of
ATP6AP1 and ATP6AP2 depletion on the acidification of
endocytic organelles. Live-cell microscopy experiments using the
pH-sensitive pHrodo Red dextran, which displays increased
fluorescence with decreasing pH, revealed that transient or stable
silencing of ATP6AP1 or ATP6AP2 in Schwann cells and
HEK293 cells resulted in decreased pHrodo Red dextran fluor-
escence, indicative of reduced acidification of endosomal com-
partments (Fig. 5a and Supplementary Fig. 4d). Although the
effect on endosomal acidification upon simultaneous transient
silencing of ATP6AP1 and ATP6AP2 was more pronounced than
following silencing of either gene separately (Supplementary
Fig. 4e), the extent of redistribution of endosomal compartments
upon single and double silencing of these genes was comparable
(Supplementary Fig. 4f).

We posited that the decreased endosomal acidification
observed following ATP6AP1 or ATP6AP2 silencing would
be due to abnormal functioning of the V-ATPase. Hence,
we performed a V-ATPase activity assay using the membrane
fraction of immortalized Schwann cells and HEK293 cells, where
ATP6AP1 or ATP6AP2 had been stably silenced, and control
cells, in the presence and absence of Bafilomycin-A1 (a selective
inhibitor of the V-ATPase). These experiments revealed that
silencing of ATP6AP1 or ATP6AP2 led to decreased V-ATPase
activity compared to control (Fig. 5b). To corroborate these
findings, we evaluated the impact of loss of function of these
genes on lysosomal activity, as lysosomes are acidic endosomal
compartments. Upon transient silencing of ATP6AP1 or
ATP6AP2 in Schwann cells and HEK293 cells, we observed
decreased lysosomal activity, detected as reduced fluorescence of
the lysosome-specific self-quenched substrate, which acts as
endocytic cargo generating fluorescent signal upon lysosomal
degradation. These findings provide further evidence that
ATP6AP1 and ATP6AP2 loss of function results in abnormal
functioning of the V-ATPase, with a subsequent decrease in
lysosomes and lysosomal activity (Fig. 5c and Supplementary
Fig. 4g).

We next investigated whether loss of function of ATP6AP1 or
ATP6AP2 would result in a general alteration of endocytic flux,
through the evaluation of the trafficking of transferrin, which
undergoes receptor-mediated endocytosis. We observed that
transient and stable silencing of ATP6AP1 or ATP6AP2 led to
decreased delivery of pHrodo Red transferrin to acidic endosomal
compartments, suggesting that depletion of either gene results in
a block of endocytic flux (Supplementary Figs. 4h, i).

The activity of the V-ATPase is regulated by several factors,
such as the assembly of its cytoplasmic V1 domain, which
hydrolyzes adenosine triphosphate, and its membrane-bound V0

domain, which translocates protons across endosomal mem-
branes7. We sought to determine whether loss of function of
ATP6AP1 or ATP6AP2 would result in decreased V-ATPase
activity by affecting the assembly of the V1 and V0 domains.
Hence, we evaluated the protein levels of ATP6V1A and
ATP6V0D1, subunits of the V-ATPase V1 and V0 domains,
respectively, in the membrane and cytoplasmic fractions of
immortalized Schwann cells and HEK293 cells where ATP6AP1
or ATP6AP2 had been stably silenced, and in control cells. Given
that the V1 domain is cytoplasmic, membranous ATP6V1A could
be regarded as a surrogate marker for the relative abundance of
assembled V-ATPase. Silencing of ATP6AP1 or ATP6AP2
resulted in decreased membrane/cytosolic ATP6V1A (Supple-
mentary Fig. 5a), indicating that loss of function of ATP6AP1 or
ATP6AP2 is associated with a defective assembly of the V0 and
V1 domains of the V-ATPase. Interestingly, we also observed that
silencing of either gene caused reduced total ATP6V0D1 levels,
suggesting that loss of function of ATP6AP1 or ATP6AP2 leads
to a decreased biogenesis or stability of the V-ATPase V0 domain
(Supplementary Fig. 5a), providing a putative mechanism for the
observed decrease in lysosomal acidification upon depletion of
either gene. Consistent with these findings, we observed a mild
increase in the levels of LC3B-II upon ATP6AP1 or
ATP6AP2 silencing in immortalized Schwann cells and
HEK293 cells at baseline conditions compared to control
(Supplementary Fig. 5b), indicating that loss of function of either
gene results in a modest but significant impairment of the
autophagic flux.

Taken together, our findings provide a likely mechanistic basis
for the characteristic intracytoplasmic granules of GCTs, given
that ATP6AP1 or ATP6AP2 silencing impairs the assembly of the
V-ATPase and vesicular acidification, resulting in abnormal
endocytic flux, which might be accountable for the accumulation
of endosomal vesicles with a higher pH.

Oncogenic properties of ATP6AP1 or ATP6AP2 inactivation.
In light of the high frequency of ATP6AP1 and ATP6AP2 inac-
tivating mutations in GCTs, which suggests a putative tumor
suppressor role for these genes, we hypothesized that their loss of
function would result in the acquisition of oncogenic properties
in vitro in GCT-relevant cell models. While stable silencing of
either gene in immortalized Schwann cells and HEK293 cells had
negligible effects on cellular proliferation in a Cell Titer-Blue
viability assay (Supplementary Fig. 5c), their combined silencing
resulted in decreased cellular viability (Supplementary Fig. 5d),
suggesting that synthetic sickness might be the molecular basis for
the mutual exclusivity of ATP6AP1 and ATP6AP2 mutations in
GCTs. Moreover, treatment with N-ethylmaleimide (NEM; an
H+-ATPase inhibitor that blocks vesicular transport) of immor-
talized Schwann cells and HEK293 cells, where ATP6AP1 or
ATP6AP2 had been stably silenced, led to a significant decrease in
cellular viability compared to controls, suggesting that the

Fig. 4 ATP6AP1 and ATP6AP2 loss of function results in a granular phenotype and redistribution of endosomal compartments. a Representative

hematoxylin-and-eosin micrographs and transmission electron micrographs of human granular cell tumors (GCTs) harboring ATP6AP1 or ATP6AP2 loss-of-

function mutations. Scale bars, 50 μm (left), 1 μm (center), and 0.5 μm (right). b Representative transmission electron micrographs of primary Schwann

cells and HEK293 cells transfected with validated short-interfering RNAs (siRNAs) targeting ATP6AP1, ATP6AP2, or non-targeting control. Scale bars, 1 μm

(left) and 0.5 μm (right). c Representative confocal micrographs of immunofluorescence analysis of EEA1, Rab13, and LAMP1 (red) and 4-6-diamidino-2-

phenylindole (DAPI, blue) expression in primary Schwann cells and HEK293 cells transfected with siRNAs against ATP6AP1, ATP6AP2, or control. Scale

bars, 10 μm. Quantification (right) of EEA1-, Rab13-, and LAMP1-positive foci/cell relative to control. Error bars, mean ± S.D. (n= 10). *P < 0.05, **P < 0.01,

***P < 0.001; two-tailed unpaired t-test. d Representative western blot analysis of EEA1, Rab13, and LAMP1 protein levels in immortalized Schwann cells and

HEK293 cells with stable knockdown of ATP6AP1, ATP6AP2, or control. Tubulin was used as protein loading control. Quantification (right) of EEA1, Rab13,

and LAMP1 protein levels relative to control. Experiments were performed in replicates (Schwann cells, n≥ 5; HEK293 cells, n≥ 4). Error bars, mean ± S.D.;

n.s., non significant; *P < 0.05, **P < 0.01, ***P < 0.001; two-tailed unpaired t-test
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decreased endosomal acidification due to ATP6AP1 or ATP6AP2
loss of function might render cells susceptible to further V-
ATPase inhibition (Supplementary Fig. 5e).

We observed that stable silencing of ATP6AP1 or ATP6AP2 in
immortalized Schwann cells and HEK293 cells, and transient
silencing of either gene in primary Schwann cells, enhanced
cellular migration in wound healing assays (Fig. 6a and
Supplementary Fig. 5f), and resulted in an increased number of
colonies and average colony size in a soft agar colony formation
assay (Fig. 6b and Supplementary Fig. 5g). The increased cellular
migration and anchorage-independent growth we observed upon
silencing of ATP6AP1 or ATP6AP2 indicates that loss of function
of either gene results in the acquisition of oncogenic properties
in vitro, supporting a novel tumor suppressor role for ATP6AP1
and ATP6AP2 and the notion that inactivating mutations
targeting these genes are potential drivers of GCTs.

Endocytosis orchestrates an array of cellular processes,
including signaling, as it fine-tunes the amplitude and duration
of various signaling cascades13. Hence, we posited that altered
endocytosis downstream of ATP6AP1 or ATP6AP2 loss of
function would result in the activation of signaling hubs. To
identify the signaling cascades that may be triggered by ATP6AP1

and ATP6AP2 loss of function, we assessed the phosphorylation
status of 43 kinases and 2 related proteins upon transient
silencing of ATP6AP1 or ATP6AP2 in primary Schwann cells
and stable silencing of either gene in HEK293 cells and
immortalized Schwann cells. These analyses revealed that
depletion of these genes resulted in increased phosphorylation
of multiple signaling hubs, such as focal adhesion kinase (FAK)
and its downstream targets p-38α and Hsp2714, Src-family
kinases (SFKs) and signal transducer and activator of transcrip-
tion 5a/b (STAT5a/b), 5'-adenosine monophosphate-activated
protein kinase-α2 (AMPKα2) and its target CREB, which
facilitates cancer cell adaptation to metabolic stress15, glycogen
synthase kinase-3β (GSK3β), a key component of the Wnt
pathway16, and platelet-derived growth factor receptor
β (PDGFR-β) (Fig. 6c). To determine whether the oncogenic
properties elicited by ATP6AP1 or ATP6AP2 loss of function
may be attributed to increased signaling via the pathways above,
we inhibited them pharmacologically, and assessed whether the
oncogenic phenotype observed due to silencing of these genes
would be reversed. Treatment with PD166285 (a protein tyrosine
kinase inhibitor which potently targets PDGFR-β17), PP2 (a
selective inhibitor of SFKs (which inhibits Lck, Fyn, and Hck
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Fig. 5 ATP6AP1 and ATP6AP2 loss of function leads to decreased acidification of endosomal compartments and V-ATPase activity. a Representative

confocal pHrodo Red dextran fluorescence micrographs of primary Schwann cells and HEK293 cells transfected with siRNAs against ATP6AP1, ATP6AP2,

or control. Scale bars, 50 μm. Quantification (bottom) of pHrodo Red dextran fluorescence/cell area relative to control. Error bars, mean ± S.D. (n= 3).

**P < 0.01, ***P < 0.001; two-tailed unpaired t-test. b Enzymatic V-ATPase activity assay in immortalized Schwann cells and HEK293 cells with stable

silencing of ATP6AP1 or ATP6AP2 and control cells, in the presence of Bafilomycin-A1. V-ATPase activity is depicted compared to control. Error bars,

mean ± S.D. Schwann cells, n= 4; HEK293 cells, n= 6. **P < 0.01, ***P < 0.001; two-tailed unpaired t-test. c Lysosomal activity assay of primary Schwann
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robustly18), and the STAT5 inhibitor CAS 285986-31-419

partially reversed the increased anchorage-independent growth
elicited by stable silencing of ATP6AP1 or ATP6AP2 in
immortalized Schwann cells (Fig. 6d). In addition, treatment

with PD166285 and PP2 blocked the increased cellular migration
observed upon depletion of ATP6AP1 or ATP6AP2 (Supple-
mentary Fig. 5h). These results demonstrate that the oncogenic
properties downstream of ATP6AP1 or ATP6AP2
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loss of function might be mediated, at least to some extent, by
increased signaling via PDGFR-β, SFKs, and STAT5 pathways.

Discussion
Here, we demonstrate that GCTs harbor recurrent, mutually
exclusive, and clonal somatic loss-of-function mutations affecting
ATP6AP1 and ATP6AP2. These genes encode for accessory
proteins of the V-ATPase, which plays a pivotal role in the reg-
ulation of endosomal pH7. Missense germline mutations of
ATP6AP1 have been shown to be causative of Immunodeficiency
4720, characterized by hepatopathy, cognitive impairment, and
abnormal protein glycosylation, whereas missense germline
mutations affecting ATP6AP2 result in the Hedera-type X-linked
mental retardation syndrome21,22. Importantly, however, the role
of loss-of-function germline mutations affecting ATP6AP1 and
ATP6AP2 remains to be determined and neither ATP6AP1 nor
ATP6AP2 have been previously implicated in cancer. We and
others have shown that a subset of rare tumors arising in multiple
anatomic sites are not uncommonly underpinned by recurrent,
specific, or even pathognomonic, genetic alterations23,24. In this
study, we expand the spectrum of rare cancer types underpinned
by likely pathognomonic genetic alterations, as loss-of-function
mutations targeting ATP6AP1 or ATP6AP2 are present in up to
72% of GCTs, but are found in less than 0.1% of common cancer
types (Fig. 3a, b) and in none of the histologic mimics of GCTs
tested here (Fig. 3c).

The histogenesis of GCTs remains a matter of contention.
While it has been suggested that GCTs derive from Schwann
cells1, other cell lineages have also been proposed25–27. Due to the
lack of representative cell line models derived from human GCTs,
we established cell models using Schwann cells, the likeliest cell of
origin of GCTs, and HEK293 cells, where we stably silenced
ATP6AP1 and ATP6AP2. The in vitro studies we conducted
revealed that depletion of ATP6AP1 or ATP6AP2 results in
accumulation of intracytoplasmic granules, recapitulating the
cardinal histologic and ultra-structural features of human GCTs
(Fig. 4a, b), likely due to accumulation of endosomal compart-
ments with higher pH. These results support a
genotypic–phenotypic correlation between loss-of-function
mutations affecting ATP6AP1 and ATP6AP2 and GCTs. Inter-
estingly, the accumulation of intracytoplasmic granules was more
conspicuous in Schwann cells than in epithelial cells, suggesting
that the interplay between loss of function of ATP6AP1 and
ATP6AP2 and cell of origin is a likely determinant of the novel
genotypic–phenotypic correlation described here.

We observed that loss of function of ATP6AP1 and ATP6AP2
results in decreased V-ATPase activity and endosomal acidifica-
tion, likely due to reduced levels of the V0 domain of the V-
ATPase, and decreased assembly of the V0 and V1 V-ATPase
domains. The reduced levels of V-ATPase V0 domain are in
agreement with Kinouchi et al.28, who reported on decreased V-

ATPase V0 domain levels in floxed mouse embryonal fibroblasts
following Atp6ap2 deletion. Notably, in yeast, the loss of any
V0 subunit may affect the stability of the remaining V0 subunits,
and the assembly of the yeast V-ATPase requires assembly fac-
tors, such as Vma12p, Vma21p, and Vma22p29, and mutant cells
lacking these factors display low levels of the V-ATPase V0
domain30. One could posit that ATP6AP1 and ATP6AP2 activity
may be required for the assembly of the V-ATPase in humans,
and that their loss of function results in decreased stability of the
V0 domain with a subsequent reduction of V-ATPase functional
levels.

Our functional studies demonstrated that ATP6AP1 and
ATP6AP2 silencing results in the acquisition of oncogenic
properties in vitro, which are partially dependent on signaling via
PDGFR-β, SFKs, and STAT5. Endocytosis and cell signaling are
intimately related cellular processes31, and it is therefore not
surprising that loss of function of ATP6AP1 and ATP6AP2 leads
to the activation of several signaling pathways. It should be noted,
however, that defective endocytosis downstream of inactivation of
either of these genes is possibly the common underlying
mechanistic basis resulting in activation of different signaling
pathways. Further studies are warranted to define the mechanistic
links between ATP6AP1 and ATP6AP2 loss of function and
altered signaling.

Our study has several limitations. Due to the multi-
institutional nature of our study, follow-up information was
unavailable, and an assessment of the impact of ATP6AP1 and
ATP6AP2 mutational status on patient outcome could not be
performed. It is possible that altered endocytosis with accumu-
lation of endosomal organelles due to a deficient V-ATPase and
the oncogenic phenotype downstream of overt signaling via
PDGFR-β, SFKs, and STAT5 are phenomena due to loss of
function of ATP6AP1 or ATP6AP2, but independent of each
other.

In conclusion, ATP6AP1 and ATP6AP2 loss-of-function
mutations are the likely drivers of GCTs, and appear to be
pathognomonic for these tumors. Our findings provide a
genotypic–phenotypic correlation and indicate that the intracy-
toplasmic granules of GCTs may constitute accumulated high-pH
cytoplasmic vesicles resulting from defects in vesicle acidification.
Finally, by studying a rare tumor type we have uncovered a novel
potential tumor suppressor role for genes essential to endosomal
pH control and vesicular trafficking.

Methods
Subjects and samples. Following approval by the IRB of the authors’ institutions,
frozen and/or formalin-fixed paraffin-embedded (FFPE) tissue blocks of GCTs
were retrieved from the pathology archives/tissue banks of Memorial Sloan Ket-
tering Cancer Center (MSKCC; NY, USA), Cleveland Clinic (OH, USA), University
of Nottingham (UK), Thomas Jefferson University Hospital (PA, USA), and
Edelweiss Laboratory (Brazil). Patient consents were obtained if required by IRB
protocols approved by the authors’ institutions. Samples were anonymized before

Fig. 6 Loss of function of ATP6AP1 and ATP6AP2 confers oncogenic properties in vitro. aWound healing assay of immortalized Schwann cells and HEK293

cells with stable silencing of ATP6AP1 or ATP6AP2 using short-hairpin RNAs (shRNAs). Wound area was assessed at 0 and 16 h. Scale bars, 500 μm.

Quantification (bottom) of wound healed compared to control. Error bars, mean ± S.D. Schwann cells, n= 6; HEK293 cells, n= 3. *P < 0.05, **P < 0.01,

***P < 0.001; two-tailed unpaired t-test. b Soft agar colony formation assay of immortalized Schwann cells and HEK293 cells with stable shRNA silencing of

ATP6AP1, ATP6AP2, or control shRNAs. Scale bars, 500 μm. Quantification (bottom) of number of colonies/well compared to control. Error bars, mean ±

S.D. Schwann cells, n= 4; HEK293 cells, n= 6. n.s., non significant; *P < 0.05, **P < 0.01; two-tailed unpaired t-test. c Heatmap depicting phosphorylation

levels of selected target proteins upon transient (primary Schwann) or stable (immortalized Schwann and HEK293 cells) RNA-interference silencing of

ATP6AP1 or ATP6AP2, relative to control. Protein phosphorylation fold change, cell model, and gene silenced are color-coded according to the legend.

Only proteins significantly (P < 0.05; two-tailed unpaired t-test) altered in at least one cell model are shown. Experiments were performed in replicates

(primary Schwann cells, n= 4; immortalized Schwann cells, n= 4; HEK293 cells, n= 4). d Soft agar colony formation assay of immortalized Schwann cells

with stable silencing of ATP6AP1, ATP6AP2, or control following 14 days of treatment with 50 nM of PD166285, 500 nM of PP2, and 50 μM of CAS

285986-31-4 (CAS) or vehicle (DMSO). Error bars, mean ± S.D. (n > 5) *P < 0.05, **P < 0.01; two-tailed unpaired t-test
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tissue processing. All cases were centrally reviewed by four pathologists (F.P., F.C.
G., T.H., and M.E.) and assessed following the Fanburg-Smith criteria32. In total,
after central pathology review, 82 tumors (5 frozen, 77 FFPE) arising from different
anatomic locations, excluding the central nervous system, were classified by the
four study pathologists as GCTs and included in this study.

The discovery series comprised 17 GCTs (Fig. 1, Supplementary Table 1). DNA
was extracted separately from microdissected tumor and matched normal tissue
samples under a stereomicroscope and subjected to WES. RNA was extracted from
11 microdissected GCTs, 10 of which were also subjected to WES, and subjected to
RNA sequencing. The validation series consisted of 65 GCTs; FFPE-derived DNA
from microdissected tumor and matched normal tissue samples was subjected to
massively parallel sequencing using a custom bait set targeting all exons and
flanking intronic regions of ATP6AP1 and ATP6AP2 (Fig. 1, Supplementary
Table 1). In addition, DNA extracted from microdissected tumor and normal tissue
samples from 103 GCT histologic mimics (Fig. 1) was subjected to ATP6AP1 and
ATP6AP2 targeted massively parallel sequencing. For power calculations, we
assumed that GCTs would be driven by a highly recurrent mutation or fusion gene
present in ≥70% of cases, akin to other rare tumor types33,34. Based on a binomial
distribution, the analysis of 10 cases would be sufficient to identify a highly
recurrent genetic alteration or a highly recurrently altered gene with >90%
statistical power.

RNA sequencing and fusion gene identification. RNA sequencing was per-
formed on 11 GCTs using validated protocols23,35 employed at MSKCC Integrated
Genomics Operation (IGO). In brief, paired-end RNA sequencing was performed
with 2 × 50 bp cycles on an Illumina HiSeq2000. Read pairs supporting fusion
transcripts were identified using INTEGRATE36 and deFuse37, as previously
described23,35. Candidates supported by at least two spanning reads were included.
To account for alignment artifacts and normal transcriptional variants, we exclu-
ded fusion gene and read-through candidates which were identified in a set of 38
normal samples from TCGA38. The remaining candidate fusion genes were
annotated using OncoFuse39 to define their likelihood of constituting potential
driver fusion genes.

Whole-exome sequencing and variant calling. Microdissected tumor and nor-
mal DNA samples from 17 GCTs were subjected to WES at MSKCC IGO using
validated protocols as previously described23,40. Sequencing data were analyzed as
previously described40. In brief, reads were aligned to the reference human genome
GRCh37 using the Burrows-Wheeler Aligner (BWA, v0.7.10)41. Local realignment,
duplicate removal, and base quality recalibration were performed using the Gen-
ome Analysis Toolkit (GATK, v3.1.1)42. Somatic single-nucleotide variants (SNVs)
were detected by MuTect (v1.0)43, and small insertion and deletions (indels) by
Strelka (v2.0.15)44 and VarScan2 (v2.3.7)45. SNVs and indels for which the tumor
mutant allele fraction (MAF) was <5 times that of the matched normal MAF were
excluded46. SNVs and indels found at >5% global minor allele frequency in dbSNP
(build 137) were also excluded. All mutations were manually inspected using the
Integrative Genomics Viewer (IGV)47. FACETS48 was used to determine CNAs
and whether genes harboring a somatic mutation were targeted by loss of het-
erozygosity, as previously described40,46. ABSOLUTE (v1.0.6)49 was employed to
determine the cancer cell fraction (CCF) of each mutation, as previously descri-
bed40,46. A mutation was classified as clonal if its probability of being clonal was
>50%50 or if the lower bound of the 95% confidence interval of its CCF was >90%
40,46. Mutations affecting hotspot codons51 were annotated as previously
described46.

Validation of ATP6AP1 and ATP6AP2 mutations. DNA from GCTs of the
validation series and DNA from histologic mimics of GCTs were subjected to
targeted capture massively parallel sequencing using a custom bait set targeting all
exons and flanking intronic regions of ATP6AP1 and ATP6AP2 (IDT Technolo-
gies). Sequencing read alignment and local realignment, duplicate removal, and
quality score recalibration were performed using BWA41 and GATK42 as described
above. SNVs were identified using MuTect43; indels were identified using Strelka44,
VarScan245, Platypus52, and Scalpel53, and further curated by manual inspection
using IGV47.

All somatic ATP6AP1 and ATP6AP2 mutations identified by WES in GCTs
from the discovery series were validated by Sanger sequencing, as previously
described 23. In addition, all somatic ATP6AP1 and ATP6AP2 mutations identified
by targeted sequencing in GCTs from the validation series were validated by Sanger
sequencing 23 and/or by repeated targeted capture massively parallel sequencing
using an independent DNA sample utilizing our custom ATP6AP1 or ATP6AP2
bait set (Supplementary Table1).

Bisulfite sequencing and modified HUMARA assay. For bisulfite sequencing54

of ATP6AP1 mutations near CpG islands, 200 ng of tumor DNA was treated with a
bisulfite conversion kit (Methylamp DNA Modification Kit; EpiGentek), and
amplified by PCR with methylated and non-methylated DNA-specific primers. For
the modified HUMARA assay55 following methylation-specific DNA digestion56,
200 ng of tumor DNA was incubated overnight at 37 °C with 25 U of the
methylation-sensitive restriction enzyme HhaI (New England Biolabs) or water

(for mock-digested control). PCR fragments were cleaned using ExoSAP-IT
(ThermoFisher Scientific) and subjected to Sanger sequencing as previously
described23.

Expression of mutant ATP6AP1 and ATP6AP2. The mRNA expression of mutant
ATP6AP1 and ATP6AP2 in GCTs identified by WES was assessed in the cases
subjected to RNA sequencing by visual inspection of reads in IGV47. In addition,
the expression of ATP6AP1 and ATP6AP2 mutations in GCTs identified by tar-
geted sequencing was assessed by Sanger sequencing of RNA-derived cDNA. PCR
fragments were cleaned using ExoSAP-IT (ThermoFisher Scientific) and Sanger
sequenced as previously described23.

Mutual exclusivity test. Mutual exclusivity analysis of mutations targeting
ATP6AP1 and ATP6AP2 was performed using CoMEt57, a statistical approach to
identify combinations of mutually exclusive alterations in cancer, as previously
described58.

Amino acid sequence alignment of ATP6AP1 across species. To determine
whether ATP6AP1 residues affected by in-frame indels are evolutionarily con-
served, the amino acid sequences of the ATP6AP1 protein from different species
were retrieved from Ensembl and aligned using Clustal Omega at EMBL-EBI59, as
previously described23.

Analysis of data from TCGA. ATP6AP1 and ATP6AP2 mutation frequencies in
6285 common cancer (non-GCT) samples from TCGA were obtained from
cBioPortal6, including 14 studies (see Supplementary methods). Following the
approach described by Jelinic et al.60, ATP6AP1 and ATP6AP2 mutation fre-
quencies were assessed following exclusion of hypermutated cases, defined as
cancers harboring more than 1000 non-synonymous mutations, microsatellite
unstable or harboring POLE or POLD1 exonuclease domain mutations. Mutation
diagrams (‘lollipop’ plots) were generated using MutationMapper on cBioportal6

and manually curated.

Immunofluorescence. HEK293 (20,000 cells/well) and primary Schwann cells
(7500 cells/well) were plated on Millicell EZ SLIDE 8-chamber slides, fixed with 4%
formaldehyde (ThermoFisher Scientific), and stained using primary antibodies
against EEA1 (Clone C45B10; Cell Signaling; #3288), Rab13 (Sigma-Aldrich;
#SAB4200058), and LAMP1 (Clone D2D11; Cell Signaling; #9091S), followed by
Alexa Fluor–conjugated secondary antibodies (ThermoFisher Scientific), at
recommended dilutions. Slides were mounted using ProLong Gold Antifade
Reagent with 4-6-diamidino-2-phenylindole (DAPI; ThermoFisher Scientific).

Formalin-fixed cell pellets were generated, as previously described61.
Immunofluorescence staining of FFPE tumor and cell pellet sections was
performed using the Leica Bond RX automated stainer (Leica Biosystems) using
primary antibodies against ATP6AP1 (OriGene; #TA590072; 1:150) or ATP6AP2
(Sigma; #HPA003156; 1:200), followed by Alexa FluorTM 488 Tyramide Reagent
(ThermoFisher Scientific; #B40953) and DAPI solution (ThermoFisher Scientific),
according to the manufacturer’s instructions.

Fluorescence images were acquired with an Axio Imager 2 upright microscope
(Zeiss) with a 40×/0.75 air objective, an Axiocam 506 camera (Zeiss), and Zen Blue
(version 2) acquisition software (Zeiss) at a resolution of 1376 × 1104 pixels, a
scaling of 0.227 micron/pixel, and a bit depth of 14-bit. DAPI and Alexa488 were
illuminated with an Illuminator HXP 120 V(D) lamp (Zeiss) and imaged in the
range of 435–485 nm and 512–542 nm, respectively. Linear LUT was used at full
range. No post-acquisition processing was done, besides minor adjustments of
brightness and contrast, applied equally to all images. ImageJ software was used to
quantify the signal intensity per cell; at least five representative images (40× field)
were analyzed for each case.

Confocal images were acquired with a TCS SP5 Upright Confocal microscope
(Leica Microsystems), using a 63×/1.40 oil objective, HyD hybrid detectors, and the
Leica Application Suite Advanced Fluorescence (LASAF) acquisition software
(Leica Microsystems), as previously described62. Images were acquired at a
resolution of 1024 × 1024 pixels, a scaling of 0.12 micron/pixel, and an 8-bit depth.
DAPI, Alexa568 and Alexa488 were excited with 405 nm, 543 nm, and 488 nm
lasers, respectively, and imaged in the range of 410–460 nm, 570–620 nm, and
490–520 nm, respectively. Linear LUT was used at full range. No post-acquisition
processing was performed, besides minor adjustments of brightness and contrast,
applied equally to all images. ImageJ was used to quantify the number of foci per
cell, with at least 7 representative images analyzed for each condition. All
experiments were repeated three times.

Cell lines. HEK293 (ATCC), MCF-10A (ATCC), primary Schwann (ScienCell),
and immortalized human normal Schwann cells (Margaret Wallace, University of
Florida)63 were authenticated using short tandem repeat profiling at MSKCC IGO
and tested for mycoplasma using the PCR-based Universal Mycoplasma Detection
kit (ATCC). HEK293 and immortalized Schwann cells were cultured in Dulbecco's
modified Eagle's medium (DMEM) high glucose supplemented with 10% fetal
bovine serum (FBS) and 1% penicillin/streptomycin. MCF-10A cells were cultured
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in DMEM/F12 supplemented with 5% horse serum, 20 ng/ml epidermal growth
factor, 10 μg/ml insulin, 0.5 μg/ml hydrocortisone, and 1% penicillin/streptomycin.
Primary Schwann cells were cultured in Schwann Cell Medium (ScienCell), con-
sisting of basal medium, 5% FBS, 1% Schwann cell growth supplement, and 1%
penicillin/streptomycin. All cell lines were maintained in a 5% CO2 atmosphere at
37 °C.

Inhibitors. The ATPase inhibitor NEM (#34115, Millipore Sigma) was used in cell
viability assays. The V-ATPase inhibitor Bafilomycin-A1 (Millipore Sigma;
#B1793) was used in LC3B western blots. PP2 (R&D Systems; #1407), an inhibitor
of the Src family kinases, PD166285 (#3785, R&D Systems), a Src, PDGFRβ and
FGFR1 inhibitor, and CAS 285986-31-4 (Millipore Sigma; #573108), a STAT5
inhibitor, were used in colony formation and wound healing assays (see below).

Transient siRNA transfection. Transient transfections were performed using
Lipofectamine RNAiMAX (ThermoFisher Scientific) with ON-TARGETplus
SMART pool short-interfering RNA (siRNA) for human ATP6AP1 and ATP6AP2,
single ON-TARGETplus siRNAs for human ATP6AP1 and ATP6AP2, and ON-
TARGETplus Non-Targeting control pool (GE Healthcare Dharmacon), according
to the manufacturer’s instructions. Transfection efficiency was assessed by western
blotting (see below) and by TaqMan quantitative reverse transcription-polymerase
chain reaction (qRT-PCR); ATP6AP1 (Hs00184593_m1) and ATP6AP2
(Hs00997145_m1) gene expression levels were evaluated, using GAPDH
(Hs02786624) for normalization, as previously described64. Experiments were
performed 72 h after transfection and repeated a minimum of three times for each
condition.

Generation of stable cell lines. Custom high efficiency miR-E short-hairpin
RNAs (shRNAs) in the SGEP vector (puromycin/GFP) targeting ATP6AP1 or
ATP6AP2 were created by the MSKCC RNAi Core Facility, as previously descri-
bed65. miR-E shRNA targeted to Firefly Renilla Luciferase was used as a negative,
non-targeting control. Virus containing shRNA was produced in HEK293T cells
(ATCC) using a lentiviral packaging mix (Sigma-Aldrich). In addition, Mission
shRNA lentiviral transduction particles (Sigma-Aldrich) targeting ATP6AP1 or
ATP6AP2 or non-targeting control were employed. HEK293 or immortalized
Schwann cells were infected for 48 h with virus containing shRNA and then
selected for 14 days in puromycin (2 µg/ml;ThermoFisher Scientific). Silencing
efficiency was confirmed by qRT-PCR and western blot, and for ATP6AP1 or
ATP6AP2, the two shRNAs with the highest level of silencing were selected for
downstream experiments.

Transmission electron microscopy. Cells were fixed with a modified Karnovsky’s
fixative, and embedded in an epon analog resin. En face ultrathin sections (65 nm)
were contrasted with lead citrate, as previously described66. FFPE tissue punches
were reprocessed and embedded in flat molds and processed following the above
protocol66.

Transmission electron micrographs were captured using a JSM 1400 electron
microscope (JEOL), a Veleta 2K x 2K CCD camera (EMSIS), and the iTEM
acquisition software (EMSIS). Images were acquired at a resolution of 4008 × 2672
pixels at 9 micron/pixel and a 14-bit depth. Linear LUT was used at full range. No
post-acquisition processing was performed, besides minor adjustments of
brightness and contrast, applied equally to all images. At least 10 representative
images (8000× field) were analyzed per condition using ImageJ.

Protein blotting. Standard western blotting was conducted as previously descri-
bed67. Frozen tissue was lysed in RIPA buffer and homogenized using a Tissuelyser
(Qiagen). Proteins were extracted from FFPE material using the Qproteome FFPE
Tissue Kit (Qiagen; #37623), according to the manufacturer’s instructions. Cell
fractionation was performed using the Cell Fractionation Kit (Cell Signaling;
#9038), according to the manufacturer’s instructions. Primary antibodies against
ATP6AP1 (cell lines and cell pellets: Santa Cruz; #sc-81886; GCTs: Sigma-Aldrich;
#A1486), ATP6AP2 (Sigma-Aldrich; #HPA003156), Tubulin (Cell Signaling;
#2125), GAPDH (Clone 14C10; Cell Signaling; #2118), ATP6V1A (Abcam;
#ab137574), ATP6V0D1 (Abcam; #ab56441), MEK1/2 (Clone D1A5; Cell Signal-
ing; #8727), NRG1 (Abcam; #ab180808), LC3B (Cell Signaling; #2275), EEA1
(Clone C45B10; Cell Signaling; #3288), Rab13 (Sigma-Aldrich; #SAB4200058), and
LAMP1 (Clone D2D11; Cell Signaling; #9091S) were used at recommended dilu-
tions. Conjugated IRDye680RD/800CW secondary antibodies were employed and
detected using the Odyssey Infrared Imaging System (LI-COR Biosciences).
Quantification and analysis were performed using LI-COR Image Studio Software.
Experiments were repeated in triplicate. Unprocessed images of all western blots
are shown in Supplementary Figs. 6 and 7.

Live-cell microscopy. HEK293 (20,000 cells/well) and primary and immortalized
Schwann cells (7500 cells/well) were seeded on top of glass slides with polystyrene
chambers (Lab-Tek II Chambered Coverglass slides; Nunc). Cells were incubated
for 20 min at 37 °C with pHrodo Red dextran 10,000MW probes (ThermoFisher
Scientific; #P10361), at a concentration of 40 μg/ml, following the manufacturer’s

guidelines. Confocal fluorescence and bright-field z-stacks were acquired at 37 °C
using an LSM880 inverted confocal microscope (Zeiss) with a 25× objective,
Gallium arsenide phosphide (GaAsP) array detectors, and ZEN Black (Version 2.3)
acquisition software (Zeiss). Images were acquired at a resolution of 1024 × 1024
pixels, a scaling of 0.21 × 0.21 × 0.6 micron/pixel, and an 8-bit depth. pHrodo Red
dextran was excited with a 561 nm laser and imaged in the range of 562–633 nm.
Linear LUT was used at full range. No post-acquisition processing was performed,
besides minor adjustments of brightness and contrast, applied equally to all images.
Sum-intensity projection images were generated and total pHrodo Red dextran
intensity per cell-covered area was quantified using ImageJ. Experiments were
performed in triplicate.

Flow cytometry. For endocytosis experiments, cells were incubated with 25 µg/ml
pHrodo Red Transferrin conjugate (ThermoFisher Scientific; #P35376) at 37 °C for
20 min. Fluorescence was evaluated by flow cytometry using an LSR Fortessa (BD
Biosciences) instrument with a 561 nm laser and a 582/15 nm BP for excitation and
detection of pHrodo, respectively. The cell population was first gated in a FSC-A vs.
SSC-A plot, followed by doublet discrimination using FSC-H vs. FSC-W. For
experiments with GFP+ cells, the GFP+ population was gated using a 2D plot of
582/15 nm (561 nm excitation) vs. 530/50 nm (488 nm excitation). In all samples, a
histogram of pHrodo fluorescence was measured from the final gated population
(singlets or GFP+; Supplementary Fig. 8a).

For lysosomal activity experiments, the Lysosomal Intracellular Activity Assay
Kit (Biovision; #K448) was used according to the manufacturer’s instructions. Cells
were incubated with the lysosome-specific self-quenched substrate at 37 °C for 1 h.
The lysosome-specific self-quenched substrate fluorescent signal was detected by
flow cytometry using a 3-laser (405 nm, 488 nm; 640 nm) Aurora (Cytek
Biosciences) spectral analyzer with 38 fluorescent channels and 2 scatter detectors
(FSC and SSC). Raw spectral data were acquired and unmixed using Spectroflo
Software (Cytek Biosciences) with autofluorescence extraction. The cell population
was first gated in a FSC-A (488 nm) vs. SSC-A (405 nm) plot, followed by doublet
discrimination using FSC-H vs. FSC-W (Supplementary Fig. 8b). Experiments were
performed in triplicate and 10,000 events were acquired per sample. The MFI of
each sample was evaluated using FCS express 6.04 (De Novo Software).

V-ATPase activity assay. Total ATPase activity was measured in cell membrane
protein using the ATPase/GTPase Activity Assay Kit (Sigma-Alrich; #MAK-113),
according to the manufacturer’s instructions, in either the presence or absence of
250 nM Bafilomycin-A1. Absorbance at 595 nm was detected using a Victor X4
Multimode Plate Reader (PerkinElmer). The Bafilomycin-A1-sensitive ATPase
activity was taken as a measure of V-ATPase activity. Experiments were performed
in triplicate.

Scratch wound healing assay. Cells were serum-starved and seeded in 24-well
plates at 90–95% confluence in the CytoSelect 24-well Wound Healing Assay(Cell
Biolabs, Inc), according to the manufacturer’s guidelines. Phase-contrast images
were obtained at 0 h and 16 h following scratch wounding, using an EVOS XL Core
Microscope (ThermoFisher Scientific) and analyzed using ImageJ. Experiments
were performed in triplicate at least 3 times.

Colony formation assay. Soft agar colony formation assay was performed using
CytoSelect 96-well Cell Transformation Assay (Cell Biolabs, Inc.), according to the
manufacturer’s guidelines. Briefly, cells were seeded in 1.2% agar in 96-well plates
(1000 cells/well); n= 4 for immortalized Schwann cells and n= 6 for HEK293
cells). After 14 days, phase-contrast images were obtained using the EVOS XL Core
Microscope (ThermoFisher Scientific). Quantification of the number of colonies
per well and colony size was performed using ImageJ as previously described23.

Proliferation assay. Cells were seeded in 96-well plates (1000 cells/well; n= 3 for
immortalized Schwann cells and n= 4 for HEK293 cells). Proliferation rate was
assessed using the Cell Titer-Blue Cell Viability Assay (Promega). Absorbance
detection was performed with 560 nm excitation and 590 nm emission using a
Victor X4 Multimode Plate Reader (PerkinElmer), as previously described.
Experiments were performed in triplicate.

Human phospho-kinase array. Relative phosphorylation levels of 43 kinases and 2
related proteins were assessed using the Proteome Profiler Human Phospho-Kinase
Array Kit (R&D Systems), according to the manufacturer’s instructions. In brief,
cell lysates were incubated overnight with nitrocellulose membranes of the Human
Phospho-Kinase Array (R&D Systems). Membranes were then washed, incubated
with biotinylated detection antibody cocktails, and then incubated with
streptavidin-horseradish peroxidase and visualized using chemoluminescent
reagents and X-ray film (GE Healthcare). Experiments were performed in four
biological replicates. The signal of each capture spot was measured using the
‘Protein Array Analyzer for ImageJ’ and normalized to internal reference controls.
The median value of the four replicates was calculated for each target, and the fold
change compared to the control condition represented. Heteroscedastic Student’s t-
test was used to determine statistical significance.
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Statistical analysis. Statistical analysis was performed using Prism 7 (GraphPad).
A P value of <0.05 was considered significant. Student’s t-test was employed for the
comparison of means in parametric data. The heteroscedasticity was assessed for
each comparison, and homoscedastic or heteroscedastic t-tests were employed as
appropriate. All P values were two-sided. The 95% confidence intervals were
adopted.

Data availability
Whole-exome sequencing and RNA sequencing data that support the findings of this

study have been deposited in Sequence Read Archive with the accession codes

SRP119539 and SRP118840 respectively.
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