gdu # Loss-of-function mutations in *FGFR1* cause autosomal dominant Kallmann syndrome Published online 10 March 2003; doi:10.1038/ng1122 We took advantage of overlapping interstitial deletions at chromosome 8p11–p12 in two individuals with contiguous gene syndromes and defined an interval of roughly 540 kb associated with a dominant form of Kallmann syndrome, KAL2. We establish here that loss-of-function mutations in *FGFR1* underlie KAL2 whereas a gain-of-function mutation in *FGFR1* has been shown to cause a form of craniosynostosis. Moreover, we suggest that the *KAL1* gene product, the extracellular matrix protein anosmin-1, is involved in FGF signaling and propose that the gender difference in anosmin-1 dosage (because *KAL1* partially escapes X inactivation) explains the higher prevalence of the disease in males. Kallmann syndrome involves hypogonadotropic hypogonadism and anosmia, a deficiency of the sense of smell. Anosmia is related to the absence or hypoplasia of the olfactory bulbs and tracts. Hypogonadism is due to deficiency in gonadotropinreleasing hormone (GnRH) and probably results from a failure of embryonic migration of neurons that synthesize GnRH. These cells normally migrate from the olfactory epithelium to the forebrain along the olfactory nerve pathway¹. Familial cases Kallmann syndrome have been reported²⁻⁴, which suggested X-chromosome linked, autosomal dominant, or, less often, recessive modes of inheritance of the disease. Two intriguing points have been noted: sporadic cases are much more numerous than familial cases, and the disease has a much higher prevalence in males (1:10,000) than in females (the sex ratio has been estimated at 5:1). The gene underlying the X-linked form of the disease (KAL1) has been identified¹. But in many families with only males affected and presumably maternal transmission of the disease, no mutation has been found in the KAL1 coding region. Moreover, a molecular analysis of the gene in sporadic male cases rarely identified a mutation (ref. 4 and C.D., unpublished results). This suggests that mutations in the X-linked gene KAL1 do not account for the higher prevalence of the disease in males. Because the incomplete penetrance of the disease^{2,3} and the infertility in affected individuals impede linkage analysis, the genes underlying the autosomal forms of Kallmann syndrome have so far escaped identification. By segregation analysis of polymorphic markers combined with fluorescence *in situ* hybridization (FISH) analysis, we determined that two *de novo* deletions of roughly 10.7 Mb and 11.6 Mb at chromosome 8p11.2–p12 in two individuals⁵ who are affected by different contiguous gene syndromes that both include Kallmann syndrome overlap by approximately 540 kb (see Supplementary Notes 1 and 2 and Supplementary Fig. 1 online). Three genes have been reported in this interval; from telomere to centromere, they are WHSC1L1 (OMIM 607083), FGFR1 (OMIM 136350) and the first two exons of TACC1 (OMIM 605301). FGFR1 encodes the fibroblast growth factor receptor 1 and was considered the best candidate to underlie Kallmann syndrome because of a possible functional interaction with the KAL1 gene product. Southern-blot analysis of 43 individuals with familial or sporadic Kallmann syndrome using two genomic probes encompassing exons 4–5 and 16–18 of *FGFR1* did not show a deletion of the gene in any of them (data not shown). We then determined the nucleotide sequence of the 18 coding exons and splice sites of *FGFR1* in 129 unrelated individuals with Kallmann syndrome (91 males and 38 females). In four familial cases (Fig. 1) and eight sporadic cases, we detected heterozygous mutations of FGFR1: one nonsense mutation, two frameshift mutations, two donor splice-site mutations and seven missense mutations. In addition, we found that one individual, who was born to consanguineous parents and is affected by Kallmann syndrome with cleft palate, agenesis of the corpus callosum, unilateral hearing loss and fusion of the fourth and fifth metacarpal bones, was homozygous with respect to a deleterious missense mutation (Table 1 and Supplementary Fig. 2 online). From these results, we conclude that FGFR1 underlies one autosomal dominant form of Kallmann syndrome (KAL2). Moreover, cleft palate or lip and dental agenesis, two anomalies that are occasionally associated with Kallmann syndrome¹⁻³ and were present in five individuals with mutations in FGFR1 (Table 1), can now be ascribed to this genetic form of the disease. We also found that bimanual synkinesia, identified in one family with KAL2 (Table 1), can be observed in autosomal Kallmann syndrome, whereas it had thus far been considered to be specific to the X-linked form of the disease. FGF signaling is involved in a variety of developmental processes including the formation, growth and shaping of tissues and organs. Extracellular interaction between FGF, the FGF receptor and heparan sulfate proteoglycans (HSPGs) is required for receptor dimerization and resulting autophosphorylation of several tyrosine residues in the intracellular domain. The phosphotyrosines either stimulate protein tyrosine kinase activity of the receptor or serve as docking sites for downstream signaling molecules. A Fig. 1 Segregation of the mutations in FGFR1 in four families affected with Kallmann syndrome. Filled symbols indicate clinically affected individuals with both hypogonadism and anosmia. Half-filled symbols indicate individuals with anosmia only. Open symbols containing a black dot indicate unaffected carriers of the mutation. N indicates absence of the mutation. In family 1, individual IV2 (who was 16 years old) underwent spontaneous puberty but suffers from anosmia; individuals III2, IV1 and IV2 have multiple dental agenesis. In family 2, individuals II1 and II2 both have bimanual synkinesia. In family 3, individual III1 has a cleft lip and individual III2 has both a cleft lip and a cleft palate. Notably, non-penetrance of the disease in some mutation carriers can simulate recessive transmission of Kallmann syndrome in certain families, for example, families 1, 2 and 4. Diagonal line indicates deceased individual; question mark indicates unknown clinical status. | | Exon/Intron | Kallmann syndrome associated symptoms | |--|-------------|---------------------------------------| | | exon 3 | | | | exon 3 | | | | | | | Mutation | Exon/Intron | Kalimann syndrome associated symptoms | |----------------|-------------------------------|---| | G97D | exon 3 | | | Y99C | exon 3 | | | 303-304insCC | exon 3 | | | A167S | exon 5 | cleft palate, corpus callosum agenesis, unilateral hearing loss, fusion of
the fourth and fifth metacarpal bones | | C277Y | exon 7 | | | 936G→A | exon 7 (donor splice site) | multiple dental agenesis | | V607M | exon 13 | bimanual synkinesis | | R622X | exon 14 | cleft lip or palate | | 1970–1971delCA | exon 14 | | | W666R | exon 15 | cleft palate | | IVS15+1G→A | intron 15 (donor splice site) | | | M719R | exon 16 | | | P772S | exon 18 | cleft palate, unilateral absence of pasal cartilage, iris coloboma | Table 1 • Mutations in FGFR1 associated with Kallmann syndrome All the mutations were present in the heterozygous state except for A167S, which was detected in an individual born of consanguineous parents. Four of the mutations were found in individuals with familial cases of the disease (Fig. 1). The mutation 936G \rightarrow A was found in two affected siblings (male and female) and their unaffected mother; all three had seven to eight teeth missing. The presumed pathogenic effect of this synonymous substitution on splicing has not been formally shown. The amino-acid substitution V607M was present in two affected siblings (male and female) and their unaffected father; both affected individuals had mirror movements of the hands (bimanual synkinesia). The mutation R622X was detected in four affected individuals in one family, two of whom also had cleft palate or cleft lip. Finally, the mutation 1970-1971 delCA was found in two affected brothers and was also present in their unaffected mother. The amino-acid substitutions G97D, Y99C, A167S, C277Y, W666R, M719R and P772S and the mutations 303–304insCC and IVS15+1G→A were found in sporadic cases (seven males and two females). The amino-acid substitution C277Y was also present in the individual's unaffected mother. In addition, one female (with the amino-acid substitution W666R) and one male (with the amino-acid substitution P772S) had undergone surgery for a cleft palate in infancy, and the male also had absence of the nasal cartilage on the right and iris coloboma. All missense mutations were absent in 100 chromosomes from unrelated Caucasian individuals. Four of the amino-acid substitutions (V607M, W666R, M719R, P772S) affect residues that are located in the intracellular part of the receptor, whereas the other four (G97D, Y99C, A167S, C277Y) affect extracellular residues (see Supplementary Fig. 2 online). The amino-acid substitution Y99C creates a novel cysteine residue close to Cys101, which is expected to disrupt the normal disulfide bond of the first Ig-like domain; notably, this mutation is the equivalent of the Y105C substitution in FGFR2 that has been found in two individuals with craniosynostosis. The amino-acid substitution A167S (in the second Ig-like domain) alters a residue that has been shown to interact with FGF2 (ref. 15) and is located in the domain of interaction with HSPGs. The amino-acid substitution C277Y affects one of the two cysteines that form the disulfide bond of the third Ig-like domain; notably, a missense mutation in FGFR2 that affects the corresponding cysteine residue (C278F) causes craniosynostosis. dominant gain-of-function mutation of FGFR1 underlies a form of craniosynostosis⁶. This mutation is believed to result in enhanced affinity for certain FGF ligands⁷. In contrast, KAL2 results from loss-of-function mutations in FGFR1, as shown by the presence of a single allele in the individuals carrying a chromosomal deletion at 8p11.2. Moreover, some of the mutations associated with KAL2 could hinder the formation of functional receptor dimers by a dominant negative effect. Whatever the molecular mechanism may be, our results indicate that olfactory bulb development in humans is crucially sensitive to reduced dosage of FGFR1. Dominant gain-of-function and loss-of-function mutations in FGFR1 cause different developmental disorders: premature fusion of skull bone sutures (craniosynostosis) and failed morphogenesis of the olfactory bulbs (Kallmann syndrome), respectively. Given the phenotype associated with gain-of-function mutation of FGFR1, it is noteworthy that delayed closure of calvarial sutures has not been reported in Kallmann syndrome. The implication of FGFR1 and KAL1 in the same developmental disease raises the possibility that the gene products functionally interact. KAL1 encodes anosmin-1, a locally restricted protein of roughly 100 kDa in embryonic extracellular matrices8. Several arguments suggest that anosmin-1 is involved in FGF signaling through FGFR1. anosmin-1 binds to HSPGs⁹, and HSPGs are important in the dimerization of the binary FGF-FGFR complex¹⁰. Also, the axon-branching phenotype in some neurons in Caenorhabditis elegans that misor overexpress the nematode gene kal1 was no longer present in mutant worms lacking heparan 60-sulfotransferase, an enzyme involved in HSPG biosynthesis^{11,12}. Second, KAL1 and FGFR1 are coexpressed at different sites during embryonic development. KAL1 expressed in the presumptive olfactory bulbs⁸, and Fgfr1 expression in the rostral forebrain is required for initial olfactory bulb evagination in the mouse¹³. In addition, cleft palate or cleft lip was present in several individuals with KAL2 (Table 1), and a high arched palate, which can be regarded as a mild anomaly of palatal fusion, is a common feature of KAL1. Finally, the bimanual synkinesia that we report in one family with KAL2 has been observed in 75% of KAL1 cases. Regarding the low prevalence of the Xlinked form of the disease⁴, the proposal that KAL1 and FGFR1 functionally interact provides a possible explanation for the higher prevalence of Kallmann syndrome in males. The explanation is based on the assumption that the local concentration of anosmin-1 is important in FGF signaling and the fact that KAL1 partially escapes X inactivation in females¹⁴. Accordingly, females are expected to synthesize a higher amount of anosmin-1 than do males; in some cases, this could be enough to maintain FGF signaling above the critical threshold in the context of FGFR1 haploinsufficiency. Indeed, in four of five families in whom we were able to follow the transmission of the FGFR1 mutation, the mutation was transmitted by the unaffected mother (Table 1). Moreover, the probable pseudoautosomal location of Kal1 in rodents can account for the observation that male mice heterozygous with respect to a null allele at the Fgfr1 locus are viable and fertile¹³. Note: Supplementary information is available on the Nature Genetics website. #### Acknowledgments We thank the individuals with Kallmann syndrome and their families for their participation in this study, the Service de séquençage de l'Institut Cochin and J. Weissenbach at the Centre National de Séquençage for sequencing facilities, B. Menten and E. Hermanci for expert technical assistance, J. Hébert and S. McConnell for sharing results before publication and S. Cure for critical reading of the manuscript. This study was supported by European Community, Human Frontiers Science Program (Génétique des Déficits Sensoriels, Paris, France) and Fund for Scientific Research-Flanders (Belgium). #### Competing interests statement The authors declare that they have no competing financial interests. Catherine Dodé¹, Jacqueline Levilliers², Jean-Michel Dupont³, Anne De Paepe⁴, Nathalie Le Dû³, Nadia Soussi-Yanicostas2, Roney S. Coimbra2, Sedigheh Delmaghani², Sylvie Compain-Nouaille², Françoise Baverel³, Christophe Pêcheux¹, Dominique Le Tessier³, Corinne Cruaud⁵, Marc Delpech¹, Frank Speleman⁴, Stefan Vermeulen⁴, Andrea Amalfitano⁶, Yvan Bachelot⁷, Philippe Bouchard⁸, Sylvie Cabrol⁹, Jean-Claude Carel¹⁰, Henriette Delemarre-van de Waal¹¹, Barbara Goulet-Salmon¹², Marie-Laure Kottler¹³, Odile Richard¹⁴, ### Franco Sanchez-Franco¹⁵, Robert Saura¹⁶, Jacques Young¹⁷, Christine Petit² & Jean-Pierre Hardelin² ¹Institut Cochin et Laboratoire de Biochimie et Génétique Moléculaire, Hôpital Cochin, 75014 Paris, France, ²Unité de Génétique des Déficits Sensoriels, Institut Pasteur, 75724 Paris cedex 15. France, ³Institut Cochin et Laboratoire de Cytogénétique, Hôpital Cochin, Paris, France. ⁴Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium. 5Génoscope, Évry, France. ⁶Duke University Medical Center, Durham, North Carolina, USA. 7Hôpital A. Michallon, Grenoble, France. 8Service d'Endocrinologie, Hôpital Saint-Antoine, Paris, France. ⁹Service de Physiologie, Hôpital Armand Trousseau, Paris, France. 10 Service d'Endocrinologie Pédiatrique, Hôpital Saint-Vincent de Paul, Paris, France. 11 Department of Pediatrics, VU University Medical Center, Amsterdam, the Netherlands. 12Centre hospitalier d'Alençon, Alençon, France. ¹³Département Génétique et Reproduction, Hôpital Clemenceau, Caen, France. 14Service de Pédiatrie et Génétique, Hôpital Nord, Saint-Étienne, France. 15 Instituto de Salud Carlos III, Madrid, Spain. 16 Service de Génétique Médicale, Hôpital Pellegrin, Bordeaux, France. ¹⁷Service d'Endocrinologie, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France. Correspondence should be addressed to J.-P.H. (e-mail: hardelin@pasteur.fr). Received 22 November 2002; accepted 6 February 2003. - 1. Hardelin, J.-P. Mol. Cell. Endocrinol. 179, 75-81 - 2. Santen, R.J. & Paulsen, C.A. J. Clin. Endocrinol. Metab. **36**, 47–54 (1972). - White, B.J., Rogol, A.D., Brown, K.S., Lieblich, J.M. & Rosen, S.W. Am. J. Med. Genet. 15, 417–436 (1983). - 4. Oliveira, L.M.B. et al. J. Clin. Endocrinol. Metab. 86, 1532-1538 (2001) - 5. Vermeulen, S. et al. Am. J. Med. Genet. 108, 315-318 - 6. Muenke, M. et al. Nat. Genet. 8, 269-274 (1994). - 7. Anderson, J., Burns, H., Enriquez-Harris, P., Wilkie, A. & Heath, J. *Hum. Mol. Genet.* **7**, 1475–1483 (1998). 8. Hardelin, J.-P. *et al. Dev. Dyn.* **215**, 26–44 (1999). - 9. Soussi-Yanicostas, N. et al. J. Cell Sci. 109, 1749-1757 - 10. Pellegrini, L. Curr. Opin. Struct. Biol. 11, 629-634 (2001).11. Bülow, H.E., Berry, K.L., Topper, L.H., Peles, E. & - Hobert, O. Proc. Natl. Acad. Sci. USA 99, 6346-6351 (2002) - 12. Soussi-Yanicostas, N. et al. Cell 109, 217–228 (2002) - Hébert, J.M., Partanen, J., Rossant, J. & McConnell, S.K. Development 130, 1101–1111 (2003). - 14. Franco, B. et al. Nature 353, 529-536 (1991) - Plotnikov, A.N., Schlessinger, J., Hubbard, S.R. & Mohammadi, M. Cell 98, 641–650 (1999).