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Presenilin mutations are the main cause of familial Alzheimer
disease. From a genetic point of view, these mutations seem to
result in a gain of toxic function; however, biochemically, they
result in a partial loss of function in the γ-secretase complex,
which affects several downstream signalling pathways.
Consequently, the current genetic terminology is misleading. In
fact, the available data indicate that several clinical presenilin
mutations also lead to a decrease in amyloid precursor protein-
derived amyloid β-peptide generation, further implying that pre-
senilin mutations are indeed loss-of-function mutations. The loss
of function of presenilin causes incomplete digestion of the amy-
loid β-peptide and might contribute to an increased vulnerability
of the brain, thereby explaining the early onset of the inherited
form of Alzheimer disease. In this review, I evaluate the implica-
tions of this model for the amyloid-cascade hypothesis and for
the efficacy of presenilin/γ-secretase as a drug target.
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Introduction
Alzheimer disease (AD) is a common and disabling disorder. Its inci-
dence increases exponentially with age and therefore it is a signifi-
cant public-health concern. Only symptomatic treatment is currently
available; however, there is a legitimate hope for a cure thanks to the
tremendous progress that is being made in understanding the molec-
ular pathogenesis of the disease. The dominant theory in the field is
the ‘amyloid-cascade hypothesis’, which links abnormal amyloid
precipitates in the brain with neuronal dysfunction, the induction of
tangles and dementia (Hardy & Higgins, 1992). The logical correlate
is that drugs that either block amyloid β-peptide (Aβ) generation or
increase its clearance, for example by vaccination, will cure or halt
the progression of AD. Although a great deal of evidence supports
this relatively simple and straightforward concept (Annaert & 

De Strooper, 2002; Hardy & Selkoe, 2002), there is no proof that this
theory has clinical relevance. As a result, the amyloid-cascade
hypothesis has received some criticism in recent years. The current
discussion revolves around presenilin 1 (encoded by PSEN1), and
the extent to which gain or loss of function of this gene (Fig 1) con-
tributes to the pathological spectrum of early-onset familial AD.
Presenilin 1—along with the closely related presenilin 2—is the cat-
alytic component of the γ-secretase enzyme, which cleaves the amy-
loid precursor protein (APP) into Aβs of varying lengths (De Strooper
et al, 1998). The discussion is complicated by the fact that
researchers use different strategies to evaluate PSEN function and,
although evidence indicates that PSEN mutations result in changes in
Aβ generation in accordance with the amyloid-cascade hypothesis
(Scheuner et al, 1996), the complete loss of Psen function in the
brains of mice results in neurodegeneration in the total absence of Aβ
generation (Saura et al, 2004). This latter research has led to the theory
that Aβ generation is not necessary for the development of AD.

Clinical mutations in PSEN1 cause AD
So far, more than 150 familial AD-causing mutations in PSEN1 have
been identified, approximately 10 additional mutations have been
found in the homologous gene PSEN2 and 25 mutations have 
been identified in the APP gene (http://www.molgen.ua.ac.be/
ADMutations). The study of PSEN1 is therefore crucial for understanding
the pathogenesis of familial AD.

Most mutations in PSEN1 are simple missense mutations that
result in single amino-acid substitutions in presenilin 1. Some are
more complex, for example, small deletions, insertions or splice
mutations. The most severe mutation in PSEN1 is a donor–acceptor
splice mutation that causes two amino-acid substitutions and an 
in-frame deletion of exon 9 (Fig 1). Significantly, however, the bio-
chemical consequences of these mutations for γ-secretase assembly
are limited (Bentahir et al, 2006; Steiner et al, 1999). Although as
many as one-third of the 467 amino acids in the open-reading
frame of presenilin 1 are affected by disease-causing mutations, a
truncation or absence of the protein has never been observed, indi-
cating that haploinsufficiency does not cause AD. Rather, at first
glance and from a strictly genetic perspective, these different clini-
cal mutations all seem to lead to a specific gain of toxic function for
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PSEN1. Investigations over several years, however, have not suc-
ceeded in translating this genetic concept into molecular terms—
that is, explaining how the mutations scattered over presenilin 1 all
cause a similar gain of toxic function in the protein.

Mutations in either presenilin or APP consistently increase the
relative ratio between the long (Aβ42) and short (Aβ40) amyloid
peptides (Aβ42/Aβ40; Borchelt et al, 1996; Scheuner et al, 1996).
Given that inactivation of Psen1 and Psen2 completely prevents Aβ
generation (Herreman et al, 2000; Zhang et al, 2000), this increase
can indeed be explained as a gain of toxic function. However, the
change in ratio can also be the consequence of a partial loss of Aβ40
generation, as is the case with several PSEN mutations discussed in
detail below. Indeed, several authors have challenged the dominant
gain-of-toxic-function hypothesis over the years. First, wild-type
human PSEN1 can effectively rescue the loss of its suppressor of
Notch-family member lin-12 (sel-12) homologue in Caenorhabditis
elegans, whereas a mutated PSEN1 is less effective or not effective at
all (Baumeister et al, 1997; Levitan et al, 1996). Second, Shen and
co-workers have shown that a total loss of Psen function in the fore-
brain of mice causes neurodegenerative disease in the absence of Aβ
(Saura et al, 2004). Third, several groups have reported that specific
loss of Psen1 in the mouse forebrain affects particular aspects of
memory (Feng et al, 2001; Yu et al, 2001). Both neurodegeneration
and memory deficits are important features of AD; however, it might
be dangerous to extrapolate these observations to human pathology.
Accordingly, it is difficult to correlate the total loss of four Psen alle-
les in a mouse model (Saura et al, 2004) with the relatively mild sin-
gle mutation of one PSEN allele in familial AD patients. Indeed,
neurodegenerative phenotypes have not been observed in animal
models with only one allele inactivated (Psen1+/– or Psen2+/–; for a
more detailed overview of the different Psen-knockout mouse mod-
els, see Marjaux et al, 2004). Furthermore, it is unclear whether the
memory deficits in mice with a forebrain-specific Psen1-knockout
can really be compared with the memory deficits in patients with
AD. In this regard, some of the memory deficits that result from APP
overexpression in AD mouse models can be alleviated by Psen1

inactivation (Dewachter et al, 2002; Saura et al, 2005). Fourth, in the
past few years, some studies have indicated that genuine loss-of-
function PSEN1 mutations could be involved in forms of fronto-
temporal dementia without the involvement of Aβ (Amtul et al,
2002; Dermaut et al, 2004; Raux et al, 2000). However, formal
genetic or molecular proof that these mutations are responsible for
the neurodegenerative process in these patients has not been prov-
ided. In fact, an additional mutation in the progranulin gene (Baker
et al, 2006; Cruts et al, 2006) in a patient with the presenilin 1
Arg352 insertion (Boeve et al, 2006) is probably the cause of the
dementia, which implies that, at least in this case, the mutation in
presenilin 1 is a polymorphism. Finally, promotor polymorphisms in
the PSEN1 gene that decrease its expression contribute to the risk of
early-onset AD (Theuns et al, 2000); however, whether these affect
amyloid generation is not yet known.

In conclusion, although the current research clearly indicates
that presenilin 1 is important for maintaining the integrity of the
brain, it is less clear whether the severe deficits in homozygous
loss-of-function mouse models are relevant to the pathology in
human patients. Furthermore, PSEN1 deficiency is unlikely to con-
tribute to the disease process in patients with APP mutations,
which implies that the effects of loss of PSEN1 function on APP
processing are crucial for our understanding of the pathogenesis of
AD. I do not, however, exclude the possibility that partial dysfunc-
tion of PSEN1—for example, in the Notch signalling pathway that
modulates neurite outgrowth and brain repair—makes the brain
more prone to Aβ toxicity. This would fit with the previously pro-
posed ‘two-hit’ model for AD (Marjaux et al, 2004), and would
also explain why familial AD generally strikes earlier and is more
aggressive than sporadic AD.

Presenilin as part of the γ-secretase complex
Presenilin provides the catalytic core of γ-secretase, which
removes short transmembrane protein fragments from the cell
membrane (De Strooper, 2003). γ-secretase is a highly hydro-
phobic complex (Fig 2) consisting of at least three additional sub-
units—nicastrin, Aph1 and Pen2—which, together with presenilin,
form a barrel-like structure in the membrane (Lazarov et al, 2006).
Water, which is necessary for the catalytic activity of the complex,
is present in this structure (Tolia et al, 2006). Considering the fact
that there are two PSEN genes and two APH genes, at least four dif-
ferent complexes with potentially different biological functions
(Serneels et al, 2005) could co-exist in cells and tissues (Hébert 
et al, 2004; Shirotani et al, 2004). The current models indicate that
the aminopeptidase-like domain of nicastrin, which functions as
an exosite on the protease, provides a docking site for γ-secretase
substrates (Shah et al, 2005). Significantly, more than 30 different
substrates have been identified, including APP. Following sequen-
tial cleavage of APP by the β-secretases and γ-secretases, the major
proteolytic products—Aβ and the APP intracellular domain
(AICD)—are released extracellularly and intracellularly, respec-
tively. Although it has been frequently proposed that AICD is a sig-
nalling molecule similar to the Notch intracellular domain (NICD;
Hébert et al, 2006; Kopan & Ilagan, 2004; Marambaud et al,
2003), this has not been rigorously proven.

Sequence determination of the carboxyl terminus of Aβ and the
amino terminus of AICD has revealed heterogeneity (Fig 3). There are
two γ-cleavage products, which end at either residue Val40 (Aβ40) or
residue Ala42 (Aβ42). The AICD peptide starts at Val51 or Met52 and
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these cleavages are recognized as the ε-site cleavage products (Fig 3).
Similar dual cleavages have been identified for Notch (Okochi et al,
2002) and CD44 (Lammich et al, 2002). Evidence indicates that 
γ-secretase cuts APP initially at the ε-site and then progressively
removes C-terminal residues until the γ-cleavage site has been
reached (Fig 2; Kakuda et al, 2006). It is likely that the hydrophobicity
of the remaining peptide is then sufficiently reduced to facilitate its
release into the extracellular medium. This model would explain the
following observations: neither AICD nor NICD peptide fragments
that extend N-terminally beyond the ε-site have been detected
(Chandu et al, 2006; Kakuda et al, 2006); longer Aβs—Aβ43 up to
Aβ49—can be detected in cell extracts (Qi-Takahara et al, 2005;
Yagishita et al, 2006; Zhao et al, 2005); tryptophan mutations intro-
duced between the ε- and γ-cleavage sites in APP block cleavage at
the γ-site (Sato et al, 2005); and a product–precursor relationship has
been detected between long and short forms of Aβ (Qi-Takahara et al,
2005; Yagishita et al, 2006).

Alternative models are more complicated, invoking, for example,
additional catalytic sites in γ-secretase or carboxypeptidases that act
after the initial ε-site cleavage. It remains unclear how substrates are
progressively cleaved in the same catalytic site. It is possible that the 
α-helix of putative substrates unfolds after ε-site cleavage, which, in
turn, advances the next bound peptide towards the catalytic site for
further cleavage. The consecutive cleavage of APP could provide an
explanation for how loss-of-function mutations in PSEN1 might result
in decreased Aβ generation and simultaneous increased production of
long Aβ (Bentahir et al, 2006; Kumar-Singh et al, 2006; Qi et al, 2003).

PSEN mutations are loss-of-function mutations
The first in vivo evidence that PSEN mutations cause a loss of
Notch signalling was provided in C. elegans (Baumeister et al,
1997; Levitan et al, 1996). However, two follow-up reports in
mice did not correlate with these observations (Davis et al, 1998;
Qian et al, 1998). The discrepancy in these studies might be
explained by the fact that in the mouse studies, the authors used a

Psen1 Ala246Glu mutation under a heterologous promotor in
their rescue experiments and observed only a partial rescue of the
phenotype. Furthermore, in cell-based assays, this mutation
resulted in only a 20% reduction in the cleavage of Notch
(Bentahir et al, 2006). These rescue experiments have not shed
light on PSEN loss-of-function mutations. Knock-in mutations
provide a better way to address this question. Several mutant mice
have been described with relatively mild phenotypes (Guo et al,
1999; Nakano et al, 1999; Siman et al, 2000). Memory deficits
were observed in one mouse model containing two diseased alle-
les, which were rescued in heterozygous mice indicating a loss-
of-function phenotype (Wang et al, 2004). Experiments in cell
lines unequivocally confirm that PSEN mutants decrease the
cleavage of Notch, syndecan and N-cadherin, and this can prob-
ably be extended to other substrates (Baki et al, 2001; Bentahir 
et al, 2006; Schroeter et al, 2003; Song et al, 1999). Therefore,
PSEN mutations result in a loss of function of the γ-secretase. In
fact, a wealth of additional experiments examining PSEN function
in protein trafficking, apoptosis, autophagy, calcium homeostasis,
β-catenin turnover, regulation of kinase pathways and tau phos-
phorylation all support the loss-of-function interpretation. These
topics are not discussed further within the scope of this review.

Loss of γ-secretase changes the Aβ42/Aβ40 ratio
The effects of PSEN clinical mutations on APP processing have mostly
been investigated by analysing the Aβ42/Aβ40 ratio; this permits the
normalization of differences in APP or presenilin expression in differ-
ent cell lines and is considered to be a prominent factor for disease
progression in familial AD patients (Borchelt et al, 1996; Duff et al,
1996; Scheuner et al, 1996). More than 10 years ago, Jarrett and
Lansbury described Aβ42 as a ‘nucleation’ factor, which notably
accelerates the aggregation of Aβ into amyloid in vitro ( Jarrett 
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& Lansbury, 1993). Direct evidence for the importance of Aβ42 in AD
came from a biochemical analysis of the APP Val717Ile clinical muta-
tion (Goate et al, 1991). This mutation and several others all cause an
increase in the generation of Aβ42 relative to Aβ40 (Suzuki et al,
1994). Finally, Aβ42, although generated by neurons at a tenfold
lower rate than Aβ40, is the main component of amyloid plaques in
the brains of AD patients (Iwatsubo et al, 1994).

Given the enormous differences in the biophysical properties of
the Aβ40 and Aβ42 peptides, it is surprising that the AD field has
spent so much time focusing on the quantitative rather than the qual-
itative aspects of this increased ratio. For instance, the combination
of a mutant Psen1 allele with a Psen1-null allele causes accelerated
amyloidosis, whereas the combination of the same mutant with a
wild-type Psen1 allele is protective, even with an absolute increase
in γ-secretase activity (Wang et al, 2006). Furthermore, expression of
Aβ42—but not Aβ40—alone is sufficient to cause amyloidosis in
transgenic mice (McGowan et al, 2005).

The effects of PSEN clinical mutations on APP processing were
recently re-evaluated in cell-culture systems. Mutants were either
expressed in a Psen-negative background (Bentahir et al, 2006;
Walker et al, 2005) or stably transfected (Kumar-Singh et al, 2006)
and the levels of expression were carefully monitored. These studies
analysed the absolute levels of Aβ40 and Aβ42, and, importantly, the
accumulation of APP C-terminal fragments, which are direct sub-
strates for γ-secretase. An increase in Aβ42/Aβ40 was confirmed;
however, this was due to a decrease in Aβ40 peptide levels in several
mutants. Importantly, all cell lines accumulated APP C-terminal frag-
ments and showed decreased generation of the cytoplasmic AICD
(Bentahir et al, 2006; Kumar-Singh et al, 2006; Walker et al, 2005;
Wiley et al, 2005), thereby establishing that PSEN mutations result in
a loss of γ-secretase cleavage of APP. This apparently translates into an
‘incomplete digestion’ of the APP substrate, generating fewer but
longer Aβs (Qi et al, 2003; Yagishita et al, 2006). It is therefore clear
that biochemical loss of function of presenilin can cause AD. The
confusion with the genetic gain-of-toxic-function view can, however,
be resolved because the loss-of-Psen mutations act indirectly in the
disease process, causing a gain of toxic function of the APP gene by
the incomplete digestion of Aβ.

Implications for the amyloid-cascade hypothesis
Since the original amyloid-cascade hypothesis for AD was put for-
ward (Hardy & Higgins, 1992), many modifications and refine-
ments have been proposed to incorporate new observations and to
resolve apparent conflicts. For example, no absolute relationship
exists between amyloid load in the brain and the clinical manifes-
tation of AD symptoms in humans (Price & Morris, 1999) or mice
(Games et al, 1995). This has led to the concept of Aβ-derived dif-
fusible ligands (Lambert et al, 1998) or ‘soluble toxic oligomers’
(Glabe, 2006; Lambert et al, 1998; Walsh et al, 2002). These Aβ
oligomers are intermediary forms between free soluble Aβs and
insoluble amyloid fibres, and seem to be toxic both in vitro and 
in vivo. Although the molecular nature of these oligomers remains
elusive, they have been isolated from transfected Chinese hamster
ovary cells (Walsh et al, 2002) and as a 56-kDa oligomer from
transgenic mouse brains (Lesne et al, 2006). The extent to which
PSEN1 mutations generate mixtures of Aβs that are more prone to
form toxic oligomers remains to be investigated; however, this con-
cept could explain cases of AD in which smaller amounts of Aβ are
generated. More research is needed to determine the biophysical

and biochemical properties of this species. However, we are clearly
moving away from amyloid plaques and fibrils towards a more
functional definition of Aβ toxicity, and it might be appropriate to
indicate this paradigm shift by addressing the ‘Aβ-tangle cascade’
hypothesis in the future.

There are important implications for therapeutic approaches to
AD. It is now essential to investigate how different Aβ-peptide
species contribute to the generation, stability and toxic properties of
the oligomers. The relative combination of these peptides could be
much more important than the total load of Aβ in the brain.
Inhibiting Aβ generation by β- or γ-secretase inhibitors might still be
a good idea, considering the fact that a reduction of the overall load
of free peptide will probably influence the balance between Aβ in
free, oligomeric and amyloid fibril conformations; however, it is
becoming increasingly crucial to elucidate the extent to which the
last of these is in equilibrium with the toxic oligomer conformation.
γ-secretase inhibitors might provide additional possibilities because
some have been shown to modulate the activity of the enzyme by
shifting the spectrum of Aβs to shorter, probably more soluble forms,
like the non-steroidal anti-inflammatory drugs (Weggen et al, 2003),
or to longer membrane-bound peptides, such as the γ-secretase
inhibitor DAPT (Qi-Takahara et al, 2005; Yagishita et al, 2006). For
non-catalytic site-directed inhibitors of γ-secretase, the observed
paradoxical increases in Aβ42 might be explained by this vision.
However, before testing these drugs in the clinic, it will be important
to investigate the fate of the peptides in biological systems, and to
determine how the other forms of Aβ contribute to the generation
and stabilization of Aβ oligomers.
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