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Abstract

Introduction: Loss of histone H4 lysine 20 trimethylation (H4K20me3) is associated with multiple cancers, but its

role in breast tumors is unclear. In addition, the pathological effects of global reduction in H4K20me3 remain

mostly unknown. Therefore, a major goal of this study was to elucidate the global H4K20me3 level in breast cancer

tissue and investigate its pathological functions.

Methods: Levels of H4K20me3 and an associated histone modification, H3 lysine 9 trimethylation (H3K9me3), were

evaluated by immunohistochemistry in a series of breast cancer tissues. Univariate and multivariate

clinicopathological and survival analyses were performed. We also examined the effect of overexpression or

knockdown of the histone H4K20 methyltransferases, SUV420H1 and SUV420H2, on cancer-cell invasion activity

in vitro.

Results: H4K20me3, but not H3K9me3, was clearly reduced in breast cancer tissue. A reduced level of H4K20me3

was correlated with several aspects of clinicopathological status, including luminal subtypes, but not with HER2

expression. Multivariate analysis showed that reduced levels of H4K20me3 independently associated with lower

disease-free survival. Moreover, ectopic expression of SUV420H1 and SUV420H2 in breast cancer cells suppressed

cell invasiveness, whereas knockdown of SUV420H2 activated normal mammary epithelial-cell invasion in vitro.

Conclusions: H4K20me3 was reduced in cancerous regions of breast-tumor tissue, as in other types of tumor.

Reduced H4K20me3 level can be used as an independent marker of poor prognosis in breast cancer patients.

Most importantly, this study suggests that a reduced level of H4K20me3 increases the invasiveness of breast

cancer cells in a HER2-independent manner.

Introduction
The heterogeneous nature of breast cancer has been well

established [1]. Various types of prognostic factors such

as nuclear grade, hormone receptor status, human epi-

dermal growth factor receptor (HER2) expression, and

MIB-1 index have been used to determine therapeutic

approaches. In addition, breast tumors can be classified

into subtypes based on their expression profile, and each

subtype is associated with distinct histological markers

and clinical parameters: luminal A (estrogen receptor

alpha (ER)- and/or progesterone receptor (PgR)-positive,

HER2-negative), luminal B (ER- and/or PgR-positive, HER2-

positive), HER2 (ER- and PgR-negative, HER2-positive),

basal-like (ER-, PgR-, and HER2-negative; cytokeratin 5- and

cytokeratin 6 (CK5/6)-positive and/or epidermal growth fac-

tor receptor (EGFR)-positive), and unclassified (negative for

all five markers) [2,3]. Luminal types (luminal A and B) are

associated with less aggressive metastatic disease and longer

disease-free survival [4]; within luminal types, Luminal B is

associated with poorer survival [5]. However, more effective

markers for prediction of patients’ outcomes are still

needed.

Epigenetic alterations such as DNA methylation and

histone modifications occur in many cancers (reviewed

in [6-9]). Aberrant histone modifications are associated

with carcinogenesis and cancer progression, and global
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histone modification patterns can predict clinical out-

come, as recently shown for many types of cancer [10-12].

Loss of histone H4 lysine 20 trimethylation (K20me3) is

considered a hallmark of human cancer and a potential

prognostic marker in many types of cancer other than

breast cancer [10,13-15].

The loss of H4K20me3 has been observed in animal

models of breast carcinogenesis [16] and H4K20me3

levels are reduced in malignant breast cancer-derived

cell lines relative to those in nontumorigenic breast epi-

thelial cells [17]. The data, however, are not entirely con-

sistent: at least one study reported that H4K20me3 was

present at relatively high levels in the majority of breast-

tumor cases [18]. Therefore, the H4K20me3 level in

breast cancer is not well defined, and the clinical signifi-

cance of H4K20me3 as an independent factor in breast

cancer is not understood. This study aimed to determine

whether the level of H4K20me3 is reduced in breast cancer,

whether H4K20me3 level is associated with clinicopatholog-

ical data, and whether H4K20me3 is an independent prog-

nostic marker. We observed that H4K20me3 level was

reduced in cancer cells in breast-tumor tissue, and that loss

of H4K20me3 significantly correlated with some aspects of

clinicopathological status; in particular, loss of H4K20m3

predicted poor prognosis in patients. Furthermore, we also

showed that H4K20me3 is associated with behavior of

breast cancer cell, specifically in regard to invasive potential.

Materials and methods
Immunohistochemical staining

Samples were obtained from benign and tumor tissue

from 112 patients with breast cancer who underwent op-

erations between 2000 and 2004 at Osaka Police Hos-

pital (Osaka, Japan). The samples were immunostained

with the informed consent of patients and the approval

of the Osaka Police Hospital Ethics Committee accord-

ing to the institutional ethics and legal rules. The de-

tailed clinical subtypes of these patients are enumerated

in Table S1 in Additional file 1. Formalin-fixed, paraffin-

embedded specimens were stained as described previ-

ously [19]. Sections (2 μm thick) were deparaffinized in

xylene, dehydrated in a graded series of ethanol, and proc-

essed for antigen retrieval in 0.01 M citrate buffer using a

Pascal pressure chamber (DAKO, Glostrup, Denmark).

Endogenous peroxidase was blocked in 3% H2O2 in

methanol. The sections were blocked with 5% bovine

serum albumin (BSA) and incubated with primary mono-

clonal antibodies (mAbs) against H3K9me3 (CMA318)

and H4K20me3 (CMA423); the performance of these

antibodies has been validated in Western blotting,

immunofluorescence microscopy, and enzyme-linked

immunosorbent assay (ELISA) ([20,21], and Hayashi-

Takanaka et al., (manuscript to be submitted). Next,

sections were incubated with a biotinylated anti-mouse

immunoglobulin G (IgG) antibody (DAKO) and further in-

cubated with peroxidase-conjugated streptavidin (DAKO).

Samples were visualized with 3,3-diaminobenzidine (DAB)

solution (Sigma-Aldrich, St Louis, MO, USA) and counter-

stained with hematoxylin. The immunohistochemical stain-

ing of tissues were assessed by at least two pathologists.

Staining scores

Immunohistochemical staining of tissues was evaluated

based on the percentage of cancer cells stained. Either

intermediate or strong nuclear staining was considered

positive. The percentage of positive cancer cells was graded

using the following categories: negative (score 0) = less than

5% of cancer cells positively stained; weak positive (score

1) = 5 to 20% of cancer cells positively stained; strong posi-

tive (score 2) =more than 20% of cancer cells positively

stained. Noncancerous mammary epithelial cells were

scored as 2 (Figure 1A, a), and could be used as internal

positive controls for staining.

Statistical analysis

Results were tabulated as a Microsoft Excel worksheet,

and then exported into and analyzed in Ekuseru-Toukei

2012 (Social Survey Research Information Co., Ltd.,

Tokyo, Japan). For clinicopathological analysis (Table 1),

the chi-squared test was applied. Univariate survival ana-

lyses were carried out according to Kaplan-Meier and

log-rank tests. A multivariable Cox proportional hazard

regression analysis was performed by using the JMP soft-

ware version 10 (SAS Institute Inc., Cary, NC, USA).

MIB-1 index were excluded because they correlated sig-

nificantly with H4K20me3 level (Table 1, P <0.01). Multi-

collinearity within these predictor variables was examined

by nonparametric test (Spearman’s rank correlation coeffi-

cient) using all combination (JMP software). PgR status

and intrinsic subtype, were excluded because they corre-

lated significantly with ER (Spearman’s rank correlation

coefficient was 0.709 and 0.904, respectively). Lymph node

metastasis was also excluded because the number of sam-

ples exhibiting such metastasis was too small to analyze.

Therefore, H4K20me3, nuclear grade, ER, and HER2 sta-

tus were used for the multivariate analysis described in

Table 2. Results were considered statistically significant

when the P value from a two-tailed test was <0.05.

Cell culture, transfection, and siRNA knockdown

The human breast cancer cell lines HBL-100, MDA-

MB-231, and BT-474 (American Type Culture Collec-

tion) were grown in Dulbecco’s modified Eagle’s medium

(DMEM) (Nissui Seiyaku, Tokyo, Japan) supplemented

with 10% (w/v) fetal bovine serum (FBS) (Biowest,

Kansas City, MO, USA), 100 U/ml penicillin, and 100

μg/ml streptomycin (Life Technologies, Carlsbad, CA,

USA). MCF-7 cells were grown in RPMI1640 (Nissui
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Figure 1 Immunohistochemical staining for H4K20me3 and H3K9me3. (A and B) Specimens of breast tumor were stained using

anti-H4K20me3 (A) and anti-H3K9me3 (B) mAbs. Representative cases of noncancerous (a) and cancerous regions (b, c, d) are shown.

Staining of cancerous regions was assessed using a three-point scoring system based on the percentage of positively stained cells. Bar, 20 μm.

(C) H4K20me3 staining of tumor and nontumorigenic region. Within each specimen, the tumor region included cancerous and noncancerous regions. A

high level of H4K20me3 staining in noncancerous regions (arrow) in comparison with the surrounding malignant cells (arrowhead) was observed. The

lower panels were acquired at higher magnification. Bar, 50 μm. H & E, hematoxylin and eosin staining; mAbs, monoclonal antibodies.
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Table 1 Clinicopathological parameters in patients with breast cancer

H3K9me3 H4K20me3

score 0 1+ 2+ score 0 1+ 2+

N = 71 25 22 24 N = 93 36 23 34

35.2 31.0 33.8 (%) 38.7 24.7 36.6 (%)

N P* N P*

Pathological classification 71 0.503 Pathological classification 93 0.478

DCIS, microinvasive 1 5 3 DCIS, microinvasive 1 3 4

idc, pap 9 9 7 idc, pap 11 8 10

idc, sol 4 3 3 idc, sol 10 3 3

idc, sci 8 2 6 idc, sci 8 4 10

special type 3 3 5 special type 6 5 7

Lymph node metastasis 64 0.493 Lymph node metastasis 83 0.060

0-3 20 15 16 0-3 22 19 25

3< 3 4 6 3< 11 3 3

Nuclear grade 70 0.838 Nuclear grade 91 0.022

1 12 12 9 1 8 10 21

2 4 4 4 2 7 4 6

3 9 6 10 3 19 9 7

ER 70 0.707 ER 93 0.027

Negative 9 9 11 Negative 21 10 9

Positive 16 13 12 Positive 15 13 25

PgR 68 0.590 PgR 91 0.019

Negative 10 9 12 Negative 21 13 10

Positive 14 13 10 Positive 13 10 24

HER2 71 0.580 HER2 93 0.082

Negative (0/1) 20 15 19 Negative (0/1) 29 14 29

Positive (2/3) 5 7 5 Positive (2/3) 7 9 5

Intrinsic subtype 69 0.462 Intrinsic subtype 91 0.002

Luminal 18 14 12 Luminal 14 14 28

Non-luminal 7 8 10 Non-luminal 20 9 6

MIB-1 index 69 0.482 MIB-1 index 91 0.001

<30 14 9 9 <30 9 8 24

30≦ 11 13 13 30≦ 25 15 10

*Chi-squared test. Bold indicates values that are statistically significant. DCIS, ductal carcinoma in situ; idc, invasive ductal carcinoma; pap, papillotubular

carcinoma; sol, solid-tubular carcinoma; sci, scirrhous carcinoma; ER, estrogen receptor; PgR, progesterone receptor; luminal, ER positive and/or PgR positive.

Table 2 Multivariate analysis of clinicopathological parameters

Overall survival Disease-free survival

Variables HR (95% Cl) P* HR (95% Cl) P*

H4K20me3 score (score2 : score 0,1) 2.85 (0.52 to 53.37) 0.263 3.37 (1.09 to 14.80) 0.033

Nuclear grade (G1, G2 : G3) 5.60 (1.19 to 41.07) 0.028 2.52 (0.97 to 6.75) 0.059

ER (positive : negative) 0.93 (0.18 to 3.70) 0.920 1.70 (0.65 to 4.38) 0.272

HER2 (positive : negative) 2.62 (0.67 to 9.30) 0.158 1.43 (0.46 to 3.70) 0.509

*Cox proportional hazards model was used to assess the independent prognostic contribution of H4K20me3 after accounting for other potentially important

covariates. HR, hazard ratio; Cl, confidence interval.
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Seiyaku) supplemented with 10% (w/v) FBS, 100 U/ml

penicillin, and 100 μg/ml streptomycin. MCF10A mam-

mary epithelial cells were grown in DMEM/F12 (Life

Technologies) supplemented with 5% (w/v) horse serum

(Life Technologies), 20 ng/ml epidermal growth factor

(EGF) (PeproTech, Rocky Hill, NJ, USA), 0.5 μg/ml hydro-

cortisone (Sigma-Aldrich), 100 ng/ml cholera toxin (Bio

Academia, Osaka, Japan), and 10 μg/ml insulin (Wako,

Osaka, Japan). Cells were purchased from ATCC via

Sumitomo Pharmaceuticals International (Osaka, Japan);

stocks were made at passage 2 or 3, and cells were used

for fewer than 15 passages. Cells were transfected using

Lipofectamine LTX (Life Technologies), Lipofectamine

2000 (Life Technologies), or Polyethylenimine ‘Max’

(Polysciences, Inc., Warrington, PA, USA). Small interfer-

ing RNAs (siRNAs) against the SUV420H2 coding region

(siGENOME SMARTpool siRNAs, a mixture of #1,

GUGAAGGUGCUCCGGGACA; #2, GCGGUGAAGA

GCUGUGACA; #3, CGACAGAGUGACAGCACGA; and

#4, CUCAGCGCUGGAAACUUU) and negative-control

siRNAs (siGENOME nontargeting siRNA pool, a mixture

of four nontargeting siRNAs) were obtained from Thermo

Fisher (Waltham, MA USA) and transfected into cells

using RNAiMax (Life Technologies).

Immunofluorescence microscopy and intensity

measurement

Cells grown on glass coverslips were fixed and perme-

abilized for 10 minutes with 4% paraformaldehyde con-

taining 0.5% Triton X-100, and then blocked with 5%

BSA. Next, cells were incubated with a primary antibody

against H4K20me3 and appropriate secondary antibodies

(Jackson ImmunoResearch Laboratories, West Grove, PA,

UK). Finally, coverslips were mounted in ProLong Gold

Antifade Reagent with 4′,6-diamidino-2-phenylindole

(DAPI) (Life Technologies). Fluorescence intensity was

analyzed using a fluorescence microscope (IX81; Olympus,

Tokyo, Japan). The staining intensities were measured using

MetaMorph version 7.1 (Molecular Devices, Sunnyvale, CA,

USA).

Construction of plasmids

Human SUV420H1 and SUV420H2 cDNAs were ampli-

fied from HBL-100 cDNA and inserted into the XhoI/

BamHI sites and EcoRI/BamHI sites of vector pEGFP-

C1, respectively. PCR reactions were performed using KOD

Plus high-fidelity DNA polymerase (Toyobo, Osaka, Japan).

All cDNA constructs were verified by DNA sequencing.

Real-time PCR

Total RNA was extracted from normal epithelial and

breast cancer cell lines as previously described [22]. The

mRNA levels of SUV420H1 and SUV420H2 were quanti-

tated by real-time PCR using a LightCycler 480 System

(Roche Diagnostics, Basel, Switzerland) and normalized to

the mRNA level of GAPDH (encoding glyceraldehyde-3-

phosphate dehydrogenase). Experiments were performed

in triplicate. Sequences of the primers used are as follows:

for SUV420H1, 5′-GCACGGCACTATTTTCTCAA-3′ and

5′-TCCACTGTCAGTTGCAAACA-3′; for SUV420H2,

5′-GGCCCGCTACTTCCAGAG-3′ and 5′-GCAGGA

TGGTAAAGCCACTT-3′; for GAPDH, 5′-CAATGAC

CCCTTCATTGACC-3′ and 5′-TTGATTTTGGAGGG

ATCTCG-3′.

Invasion assay

Matrigel invasion assay was performed using Chemotaxi-

cells (8-μm pore size; Kurabo, Osaka, Japan) as described

previously [23]. Briefly, transwell inserts were coated with

100 μg/ml matrigel (BD Biosciences, Franklin Lakes, NJ,

USA), which contains laminin, type IV collagen, and perle-

can; 10% FBS was used as chemoattractant. Twenty-four

hours after transfection, 2 × 105 or 1 × 105 cells were

added to the upper chamber and incubated for 24 or 48

hours (for MDA-MB-231 and BT-474 cells, respectively).

Cells were fixed with 3.7% formaldehyde and stained with

hematoxylin. Non-invading cells on the upper surface

were removed by scrubbing with a cotton swab, and the

invading cells were counted under a microscope (200×).

Each assay was carried out in triplicate.

For invasion assays using MCF10A, cells were trans-

fected with SUV420H2-targeted siRNA or nontargeted

negative control siRNA. Twenty-four hours after trans-

fection, cells were seeded in the upper chamber of trans-

wells. After an additional 48 hours (a total of 72 hours

after siRNA transfection), cells were fixed, stained, and

counted in five randomly chosen microscopic fields per

sample.

Results
Loss of H4K20me3 in breast cancer tissues

Loss of H4K20me3 has been reported in multiple types

of human tumors [10,13-15]. To date, however, no study

has demonstrated reduction of H4K20me3 in breast tu-

mors. To address this issue, we performed immunohisto-

chemistry with breast-tumor tissues using a mAb against

H4K20me3. Clear and strong H4K20me3 staining was ob-

served in mammary epithelial and myoepithelial cells in

the noncancerous acini of terminal-duct lobular units ad-

jacent to cancer cells (Figure 1A, a and C), as well as in

benign tumor tissues (Figure S1 in Additional file 2),

whereas various staining intensities were observed in

cancer cells (Figure 1A, b-d). The staining intensity in

the tumor cells in each case was homogenous, but the

intensities varied between individual cases. In order to

facilitate comparisons among cancer cases, we used a

three-point scoring system based on the percentage of

positively stained cancer cells (Figure 1A): score 0, less
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than 5% of cancer cells positively stained; score 1, 5 to

20% of cancer cells positively stained; score 2, more than

20% of cancer cells positively stained. Either intermediate

or strong nuclear staining was considered as positive.

Score was evaluated based on staining in cancer cells, but

not in adjacent noncancerous acini. More than half of

cancer cases (59 of 93, 63.4%) scored as 0 or 1 (Table 1,

upper right), indicating a reduction of H4K20me3 staining

in cancer cells relative to the adjacent noncancerous re-

gions, which stained positive and were scored as 2

(Figure 1A, a and C). A single specimen often exhib-

ited different levels of staining between noncancerous

and cancerous regions (Figure 1C, lower).

Decreased H4K20me3 level is associated with

clinicopathological status

Although loss of H4K20me3 was observed in many

cancer cases (63.4%), in 36.6% of cases more than 20%

of cancer cells stained positively (Table 1, upper right),

suggesting that the differences in the H4K20me3 levels

among different tumors might be related to clinicopath-

ological factors. In order to examine this possibility, we

evaluated the correlation between histone H4K20me3

levels and various clinicopathological data using the semi-

proportional score described above. As shown in Table 1,

H4K20me3 status was not associated with pathological

classification such as ductal carcinoma in situ (DCIS), in-

vasive ductal carcinoma (IDC), or more detailed classifica-

tion of IDC [24], but it was negatively correlated with

nuclear grade (P <0.05) and MIB-1 index (P <0.01).

H4K20me3 status also positively correlated with ER

expression (P <0.05) and PgR expression (P <0.05), but

not with HER2 expression. H4K20me3 staining score

associated with each subtype (P <0.01, Table S2 in

Additional file 3), although H4K20me3 did not associ-

ate with Luminal A/Luminal B distribution (P = 0.482,

Table S3 in Additional file 4). Therefore, we analyzed

the association between H4K20me3, luminal subtype,

and non-luminal subtype (Table 1). Luminal intrinsic

subtype (ER- and/or PgR-positive) was also significantly

correlated with loss of H4K20me3 (P <0.01). These results

implied that the diversity of H4K20me3 staining patterns

might result from the heterogeneous nature of breast can-

cer, as reflected by these aspects of clinicopathological

status.

H3K9me3 does not correlate with clinicopathological

status

H4K20me3 is a heterochromatic mark, as is H3K9me3.

Formation of H4K20me3 requires previous formation of

H3K9me3 by the SUV39H1 and SUV39H2 enzymes

[25,26]. In several cancers, such as gastric adenocarcin-

oma and non-small cell lung cancer, H3K9me3 staining

positively correlates with cancer recurrence and poor

survival rate [27,28]; consistent with this, in a mouse

model of colorectal cancer, H3K9me3 level is elevated in

invasive regions and drives tumorigenesis [19]. There-

fore, we also evaluated H3K9me3 staining in breast can-

cer tissue. Similar to H4K20me3 staining, all mammary

epithelial and myoepithelial cells in noncancerous acini

were stained by an H3K9me3 mAb (Figure 1B, a), but

diverse staining patterns were observed in cancerous re-

gions (Figure 1B, b-d). However we could not find any

association between H3K9me3 status and clinicopatho-

logical data (Table 1, left). In these experiments, the

evaluation of immunohistochemical staining levels was

performed as described above for H4K20me3.

H4K20me3 level is associated with patient disease-free

survival

Next we compared overall and disease-free survival rates

among cases with different levels of H4K20me3 (Figure 2A

and B) and H3K9me3 (Figure 2C and D), using the log-

rank test. In this analysis, the three-point scoring system

described above (Figure 1A) was consolidated into a two-

point scale: cases with scores of 0 and 1 constitute the

low-staining group, and cases with a score of 2 constitute

the high-staining group. For H4K20me3, the high-staining

group had higher overall and disease-free survival rates

than the low-staining group (Figure 2A). In particular,

H4K20me3 staining score positively associated with

disease-free survival rate in a statistically significant

manner. ER status positively associated with overall

and disease-free survival rate, but this relationship was

not statistically significant (Figure S2 in Additional file 5).

On the other hand, as with the clinicopathological data,

the H3K9me3 staining pattern did not show any asso-

ciation with either overall or disease-free survival rate

(Figure 2C and D). To further evaluate the potential

prognostic value of clinical variables including the

H4K20me3 score, we performed a multivariable Cox

proportional hazards regression analysis using H4K20me3,

nuclear grade, ER, and HER2 expression. As expected, in-

creasing nuclear grade was correlated with overall survival

(hazard ratio for recurrence = 5.60, 95% confidence

interval = 1.19 to 41.07; P <0.05, Table 2). The result

also showed that lower H4K20me3 score was associ-

ated with a significant decrease in disease-free survival

(hazard ratio for recurrence = 3.37, 95% confidence

interval = 1.09 to 14.80; P <0.05, Table 2). These results

demonstrate that H4K20me3 is an independent prog-

nostic marker for disease-free survival in breast cancer.

Upregulation of H4K20me3 represses breast cancer cell

invasion

Both the univariate and multivariate analyses demon-

strated that loss of H4K20me3 staining is associated with

shorter disease-free survival (Figure 2 and Table 2).
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Therefore, we focused on the H4K20me3-specific his-

tone methyltransferases SUV420H1 and SUV420H2. Ac-

cording to the public database MENT (Methylation and

Expression database of Normal and Tumor tissues; [29,30]),

whose contents were obtained from selected datasets from

GEO (Gene Expression Omnibus) and TCGA (The Cancer

Genome Atlas), breast cancer tissues tend to express lower

levels of SUV420H2 than normal breast tissue. Furthermore,

real-time PCR analysis revealed that invasive cells, such as

MDA-MB-231 or BT-474, tend to express lower levels of

SUV420H1 and SUV420H2 than other breast cancer cells

(Figure 3A). Immunofluorescence microscopy revealed that

ectopic expression of both enzymes could upregulate

H4K20me3 (Figure 3B). Nuclei lacking exogenous expres-

sion of SUV420H1 or SUV420H2 exhibited very faint

H4K20me3 staining (Figure 3B). To quantitate this ob-

servation, we plotted H4K20me3 staining intensity

against GFP intensity (Figure 3C). The result revealed

that H4K20me3 level was positively correlated with the

levels of ectopically expressed SUV420H1 and SUV420H2

(Figure 3C).

Cell invasion is a critical step in tumor metastasis.

Our results suggest a negative correlation between in-

vasiveness and the level of H4K20me3 expression, as

evidenced by the reduction of H4K20me3 level in inva-

sive breast tumor (Table 1), a positive correlation be-

tween loss of H4K20me3 and reduction in disease-free

survival, which was associated with metastasis (Figure 2B

and Table 2), and lower expression of SUV420H2 in more

aggressive MDA-MB-231 and BT-474 breast cancer

cells (Figure 3A). Therefore, we investigated the func-

tional relationship between global loss of H4K20me3 and

cancer cell invasion by monitoring the expression of

SUV420H1 and SUV420H2, which regulate the global level

of H4K20me3 [24]. Overexpression of SUV420H1 and

SUV420H2 caused clear reduction in the invasive activity

of both cell lines (Figure 3D). It is to be noted that BT-474

and MDA-MB-231 cells are HER2-positive and -negative,

respectively [31].

To confirm the effect of SUV420H2 on cell invasion, we

used MCF10A, an immortalized but nontumorigenic

mammary epithelial cell line widely used as a normal con-

trol for breast cancer cells. These cells express higher levels

of SUV420H2 (Figure 4A). Knockdown of SUV420H2

in MCF10A upregulated cell invasion (Figure 4B and C).

Taken together, these results suggest that the H4K20me3

level may play a role in determining the invasive activity of

cancer cells.
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Figure 2 Kaplan-Meier analysis of H4K20me3 and H3K9me3 levels in breast cancer patients. The three-point scoring system used in

Figure 1 was consolidated into a two-point scale. Cases with scores of 0 and 1 constitute the low-staining group, and cases with a score

of 2 constitute the high-staining group. Then patient overall survival time (A and C) and disease-free survival rate (B and D) were compared between

the H4K20me3 low- and high-staining groups (A and B), and between the H3K9me3 low- and high-staining groups (C and D), by Kaplan-Meier analysis.

This method yields a survival curve that considers both outcomes (death) and censored cases. Significance is calculated by log-rank test between two

groups (low- and high-staining).
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Discussion
This study reveals three main findings. First, there is a

striking reduction of H4K20me3 level in breast cancer

tissue. Second, loss of H4K20me3 is a marker of poor

prognosis in breast cancer. Moreover, our data also show

that the level of H4K20me3 is involved in the regulation

of cell invasion. This is the first evidence indicating that

the H4K20me3 level may be associated with cancer-cell

invasiveness.

H4K20me3 level is reduced in breast cancer

Loss of H4K20me3 is a hallmark of various cancers, and

predicts poor prognosis of several types of cancer other

than breast cancer [10,13-15]. Here we showed that, as

in other tumor types, most breast cancer cells (63.4%,

n = 93) contained less trimethylated H4K20 than non-

cancerous mammary epithelial cells (Figure 1 and Table 1)

or benign tumor cells (Figure S1 in Additional file 2).

Some data contradicting these findings has been re-

ported, including a study showing that most cases (69.8%)

of invasive breast tumors exhibit intense H4K20me3 stain-

ing [18]. This discrepancy may be due to the different

image-analysis method used by those authors: they per-

formed semiquantitative assessment of both the intensity

of staining and the percentage of positive cells using tissue

microarrays and digital image analysis [18], whereas

we performed manual scoring that depended only on the

cancerous region in each specimen. Because malignant

cells with low levels of H4K20me3 staining were often

surrounded by noncancerous regions with high levels of

H4K20me3 (Figure 1C), these specimens would score
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Figure 3 Overexpression of SUV420H1 and SUV420H2

represses breast cancer cell invasion. (A) SUV420H1 and

SUV420H2 mRNA expression levels in a several normal and breast

cancer cell lines were examined by real-time PCR. The relative levels

of SUV420H1 and SUV420H2 mRNA were normalized against the level

of GAPDH mRNA. Average values with standard deviation are shown.

(B) To assess the effects of SUV420H1 and SUV420H2 overexpression

on the level of H4K20me3, MDA-MB-231 cells were transfected with

GFP-tagged SUV420H1 and SUV420H2. pEGFPC1, which carries GFP

alone, was used as the empty-vector (negative) control. Cells were

fixed, visualized by GFP fluorescence, and simultaneously stained

with anti-H4K20me3 mAb. Cells were counterstained with DAPI.

Histone H4K20 trimethylation was increased by SUV420H1 and

SUV420H2 expression. Arrowheads indicate SUV420H1- or

SUV420H2-transfected cells. Bar: 20 μm. (C) MDA-MB-231 cells

were transfected with the indicated plasmids. The intensity of GFP

and H4K20me3 staining were measured (n = 200) using MetaMorph

version 7.1. X axis shows GFP intensity. Y axis shows H4K20me3

intensity. (D) Overexpression of SUV420H1 and SUV420H2 represses

breast cancer cell invasion. GFP, GFP-SUV420H1, or GFP-SUV420H2

were transfected into MDA-MB-231 or BT-474 cells, and invasive

capacities were measured using matrigel-coated Chemotaxicells.

Results are presented as means ± standard deviation (SD). * and **

indicate significant differences (P <0.05 and P <0.01, respectively)

relative to the mock transfectant.
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higher if the noncancerous regions were not excluded

manually. Alternatively, the discrepancy might be related

to differences in the genetic backgrounds of the specimens

[32]. In any case, our data also demonstrate loss of

H4K20me3 in the breast cancer tissue associates with clini-

copathological status (Table 1) and poor prognosis (Table 2,

Figure 2, discussed below). These results are supportive of

the finding that H4K20me3 is lost in breast cancer.

Loss of H4K20me3 could be a marker of poor prognosis

in breast cancer

Our results demonstrate that H4K20me3 levels are asso-

ciated with the patient outcomes in breast cancer. In

particular, low-staining cases exhibited a reduction in

disease-free survival rate relative to the high-staining

cases (Figure 2), and multivariate analysis also revealed

an independent statistically significant association between

H4K20me3 and disease-free survival (Table 2). These re-

sults collectively indicate that loss of H4K20me3 is a po-

tential independent marker of poor prognosis in patients

with breast cancer.

Association between H4K20me3 level, hormone-receptor

status, and disease-free survival

We showed a distinct relationship between H4K20me3

level and disease-free survival (Figure 2 and Table 2). In

addition, we also demonstrated a positive relationship

between H4K20me3 level and status of hormone recep-

tors such as ER and PgR, but not HER2 (Table 1). Breast

cancer can be divided into two intrinsic subtypes in

regard to hormone-receptor expression: luminal and non-

luminal. The luminal subtype includes ER- and/or PgR-

positive cases, and non-luminal subtypes include ER- and

PgR-negative cases, regardless of HER2 expression. Luminal

subtypes are associated with less aggressive metastatic dis-

ease and longer disease-free survival than non-luminal

subtypes [4]. The luminal subtype can be divided into two

groups, luminal A (HER2-negative) and luminal B (HER2-

positive); of the two, luminal A is less aggressive [5].

H4K20me3 level associates with intrinsic subtypes including

luminal A and B (P= 0.002) more strongly than either ER

(P= 0.027) or PgR (P = 0.019) alone, and independently as-

sociates with disease-free survival, but not with luminal A

and luminal B distribution (Table S3 in Additional file

4). At this point, however, the causal relationships be-

tween H4K20me3, intrinsic subtypes, and disease-free sur-

vival remain unclear at the molecular level.

These results raise the question of whether H4K20me3

regulates ER/PgR expression or vice versa. If H4K20me3

acted upstream of ER and PgR expression, ER and PgR

expression levels would exhibit the same associations,

but this is not the case. Thus, we can envisage a scenario

in which hormone-receptor signaling (reflected in either

ER or PgR status) could positively regulate H4K20me3.

A possibility: loss of H4K20me3 could be involved in

regulation of cell invasion independently of the HER2

signaling pathway

The pathological functions of H4K20me3 reduction in

cancer cells have been explained by proposing that loss
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of H4K20me3 induces genome instability and is related

to DNA hypomethylation [17,33,34]. In addition to these

known functions of H4K20me3, here we demonstrated a

strong negative correlation between H4K20me3 and inva-

siveness: ectopic expression of SUV420H1 and SUV420H2

increased H4K20me3 level and concomitantly repressed

cancer-cell invasion. This is the first report to demonstrate

a pathological function of loss of H4K20me3 in cell inva-

sion, which could promote metastasis in vivo. The results

of previous studies support this idea: HBL-100 and MCF-7

cells, which endogenously express higher levels of

SUV420H2 (Figure 3A), are less invasive than BT-474

and MDA-MB-231 cells [35,36], which express SUV420H2

at lower levels.

H4K20me3 is a repressive mark related to heterochroma-

tin formation [25,26]. Another heterochromatin-associated

histone modification, H3K9me3 has been implicated in cell

migration [19,37-39]. Several cancers, such as colon cancer,

exhibit global upregulation of H3K9 methylation during

cancer progression. Recently we observed that upregulation

of H3K9me3 activates cell migration [19]; in this study,

however, we did not identify any association between

H3K9me3 status in breast cancer tissues and clinicopatho-

logical status, or between H3K9me3 status and patient sur-

vival (Table 1 and Figure 2). Therefore, we concluded that

H4K20me3-associated invasiveness is independent of cell

migration induced by H3K9me3.

HER2 expression and activity are well known to confer

invasive and metastatic ability on breast cancer cells

[40-42]. For the following three reasons, however, we

hypothesize that H4K20me3-associated invasiveness is

independent of the HER2 signaling pathway. First, loss

of H4K20me3 is not associated with HER2 expression.

Second, loss of H4K20me3 is correlated with non-luminal

subtype, in which HER2 expression is irrelevant (Table 1).

Third, overexpression of SUV420H1 and SUV420H2 sup-

pressed cell invasion in both HER2-positive (BT-474) and

-negative (MDA-MB-231) cells. Together, these results in-

dicate that H4K20me3-associated invasiveness is inde-

pendent of the HER2 signaling pathway, although the

underlying molecular mechanism remains unknown.

Several lines of evidence support a relationship between

histone modifications and cancer invasion: overexpression

of EZH2, which catalyzes histone H3 lysine 27 trimethyla-

tion (H3K27me3), is associated with prostate- and breast-

cancer aggressiveness [43-45]; and G9a, which catalyzes

histone H3 lysine 9 dimethylation (H3K9me2), promotes

lung-cancer invasion [46]. These enzymes promote cancer-

cell invasion by repressing cell-adhesion molecules such as

E-cadherin and Ep-CAM. Thus, one plausible explanation

for the association between global loss of H4K20me3 and

cell invasion is that H4K20me3 represses some key genes

that are required for the suppression of cell invasion. Al-

though H4K20me3 is associated with repressed chromatin

at the centromere and telomere, recent studies have dem-

onstrated the existence of H4K20me3-mediated transcrip-

tional repression [47-49].

How does the H4K20me3 level decrease in breast tumors?

There are several possible explanations for the decreased

H4K20me3 level in breast cancers. A recent chemoge-

netic analysis revealed that the human genome encodes

96 protein methyltransferases, which can be classified

into two families [50]. According to cancer genome da-

tabases, at least 20 of these enzymes are misregulated or

genetically altered in hematological or solid malignancies

[51]. Therefore, H4K20me3 might be lost because the

expression of the H4K20-specific histone methyltransfer-

ases, SUV420H1 and SUV420H2, might be decreased, as

previously reported for cancers of other tissues [15,17].

Indeed, the contents of the public database MENT (see

above) revealed that SUV420H2 expression is reduced

in breast cancer tissue. Alternatively, the activity of

SUV420H1 and/or SUV420H2 might be decreased. It

is also possible that a histone demethylase specific for

H4K20me3, as yet unidentified, might contribute to

H4K20me3 reduction. Future studies should investigate

the causes of H4K20me3 reduction in breast cancer tis-

sues, as these findings would contribute to the develop-

ment of new treatments for breast cancer that suppress

invasion by preventing of the loss of H4K20me3.

Epigenetic alterations, including DNA methylation and

histone modifications, are thought to play important roles

in carcinogenesis and cancer progression. Therefore, many

drugs targeted at epigenetic pathways, such as DNA meth-

yltransferase and histone deacetylase inhibitors, have been

developed, and some have been approved as cancer therap-

ies [52]. Our results suggest that aberrant H4K20me3

levels affect cancer-cell invasiveness, and are therefore as-

sociated with breast cancer progression. The level of

H4K20me3 is potentially useful as a prognostic marker in

novel strategies that target metastasis.

Conclusions
In this study, we demonstrated that the loss of H4K20me3

is a novel candidate for an independent prognostic marker

for use in breast cancer patients. Moreover, the level of

H4K20me3 influences cancer cell invasiveness in vitro;

therefore, this protein may be involved in regulation of

breast cancer progression in vivo. Our results also indicate

that the H4K20me3-associated invasiveness is independ-

ent of the HER2-signaling pathway.

Additional files

Additional file 1: Table S1. Clinical subtype of patients. The detailed

clinical subtypes of the patients used in this study.
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Additional file 2: Figure S1. H4K20me3 staining in benign tumor

tissue. Specimens of benign tumor tissue were stained using anti-

H4K20me3 (left) and HE staining (right).

Additional file 3: Table S2. H4K20me3 staining score associates with

subtype. H4K20me3 staining score was classified by the hormone

receptor expression.

Additional file 4: Table S3. H4K20me3 staining and Luminal A/Luminal

B distribution. H4K20me3 staining score was classified by the Luminal A

and Luminal B. H4K20me3 staining score did not associate with Luminal

A/Luminal B distribution.

Additional file 5: Figure S2. Kaplan-Meier analysis of estrogen receptor

expression in breast cancer patients. The patient overall survival time and

disease-free survival rate were compared between the estrogen receptor

expression low- and high-staining groups by Kaplan-Meier analysis.
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