
Loss of Hsp70 Exacerbates Pathogenesis But Not Levels of
Fibrillar Aggregates in a Mouse Model of Huntington's Disease

The MIT Faculty has made this article openly available. Please share 
how this access benefits you. Your story matters.

Citation Wacker, Jennifer L. et al. “Loss of Hsp70 Exacerbates Pathogenesis
But Not Levels of Fibrillar Aggregates in a Mouse Model of
Huntington's Disease.” J. Neurosci. 29.28 (2009): 9104-9114.

As Published http://dx.doi.org/10.1523/jneurosci.2250-09.2009

Publisher Society for Neuroscience

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/56557

Terms of Use Attribution-Noncommercial-Share Alike 3.0 Unported

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/3.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/56557
http://creativecommons.org/licenses/by-nc-sa/3.0/


 1 

Loss of Hsp70 Exacerbates Pathogenesis but not Levels of Fibrillar Aggregates in a Mouse 

Model of Huntington’s Disease 

 

Jennifer L. Wacker1, Shao-Yi Huang2, Andrew D. Steele3, Rebecca Aron2, Gregor P. Lotz2, 

QuangVu Nguyen1, Flaviano Giorgini1,†, Erik D. Roberson2,††, Susan Lindquist3, Eliezer 

Masliah4 and Paul J. Muchowski1,2,5* 

  
1Department of Pharmacology, University of Washington, Seattle, WA 98195, USA  
2Gladstone Institute of Neurological Disease, University of California, San Francisco, California, 

94158, USA  
3Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, 

Cambridge, MA 02142, USA 
4Department of Neurosciences, University of California, San Diego, La Jolla, California 92093, 

USA 
5Department of Biochemistry and Biophysics, and Department of Neurology, University of 

California, San Francisco, California, 94158, USA 

†Current address: Department of Genetics, University of Leicester, Leicester LE1 7RH, UK 

††Current address: Department of Neurology, University of Alabama at Birmingham, 35294, 

USA 

*Contact information: pmuchowski@gladstone.ucsf.edu; Tel. 415-734-2515, Fax. 415-355-0824 



 2 

Summary 

 

Endogenous protein quality control machinery has long been suspected of influencing the 

onset and progression of neurodegenerative diseases characterized by accumulation of 

misfolded proteins. Huntington’s disease (HD) is a fatal neurodegenerative disorder caused 

by an expansion of a polyglutamine (polyQ) tract in the protein huntingtin (htt), which 

leads to its aggregation and accumulation in inclusion bodies. Here, we demonstrate in a 

mouse model of HD that deletion of the molecular chaperones Hsp70.1 and Hsp70.3 

significantly exacerbated numerous physical, behavioral and neuropathological outcome 

measures, including survival, body weight, tremor, limb clasping and open field activities. 

Deletion of Hsp70.1 and Hsp70.3 significantly increased the size of inclusion bodies formed 

by mutant htt exon 1, but surprisingly did not affect the levels of fibrillar aggregates. 

Moreover, the lack of Hsp70s significantly decreased levels of the calcium regulated protein 

c-Fos, a marker for neuronal activity. In contrast, deletion of Hsp70s did not accelerate 

disease in a mouse model of infectious prion-mediated neurodegeneration, ruling out the 

possibility that the Hsp70.1/70.3 mice are non-specifically sensitized to all protein 

misfolding disorders. Thus, endogenous Hsp70s are a critical component of the cellular 

defense against the toxic effects of misfolded htt protein in neurons, but buffer toxicity by 

mechanisms independent of the deposition of fibrillar aggregates.  



 3 

Introduction 

 

Many neurodegenerative diseases, including Alzheimer’s disease (AD), Parkinson’s disease 

(PD), amyotrophic lateral sclerosis (ALS), prion disease and HD, are characterized by 

conformational changes in disease-causing proteins that result in misfolding and aggregation and 

have collectively been termed protein-conformational disorders. In contrast to AD, PD and ALS, 

in which the vast majority of cases are idiopathic, HD is one of a number of inherited 

neurodegenerative disorders, collectively termed polyQ diseases and caused by expansion of 

CAG repeats, coding for glutamine, in their respective disease proteins. The deposition of 

aggregation-prone proteins that contain expanded polyQ repeats in inclusion bodies is a 

neuropathological hallmark of the majority of these disorders.  

The accumulation of misfolded proteins in cells triggers a protective stress response that 

includes the upregulation of heat shock proteins (Hsps) that function as molecular chaperones to 

help to restore cellular homeostasis (Lindquist, 1986). Post-mitotic neurons, unable to dilute 

misfolded and/or aggregated proteins through cell division, are particularly vulnerable to the 

deleterious effects of misfolded proteins (Muchowski and Wacker, 2005). Accordingly, the 

endogenous protein quality control system is speculated to be critical in controlling the onset and 

severity of protein-conformational diseases that affect the brain.  

The 70 kDa Hsps (Hsp70s) are abundantly expressed molecular chaperones that participate in 

a variety of fundamental cellular processes. Hsp70s promote the renaturation of misfolded and/or 

aggregated proteins through ATP-dependent cycles of binding and release and are likely to 

provide a first line of defense against aggregation-prone disease proteins in vivo (Hartl and 

Hayer-Hartl, 2002). Indeed, genetic screens and directed studies have shown that Hsp70 and its 

partners potently modulate the aggregation and/or suppresses the toxicity of mutant polyQ 

proteins in cell-, yeast-, worm- and fly-based models of polyQ aggregation and disease (Warrick 

et al., 1998; Chai et al., 1999; Warrick et al., 1999; Jana et al., 2000; Krobitsch and Lindquist, 

2000; Muchowski et al., 2000; Kobayashi and Sobue, 2001; Zhou et al., 2001; Gunawardena et 

al., 2003; Nollen et al., 2004). Hsp70 overexpression also conferred a dose-dependent 

improvement in behavioral phenotypes of transgenic mouse models of Spinocerebellar ataxia-1 

(SCA1) and Spinal and bulbar muscular atrophy (SBMA) (Cummings et al., 2001; Adachi et al., 

2003). Conversely, overexpression of Hsp70 in the R6/2 mouse model of HD had only a 
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marginal effect on weight loss and no effect on other behavioral and neuropathological features 

(Hansson et al., 2003; Hay et al., 2004). 

The goal of this study was to determine if endogenous Hsp70s can modulate the onset, 

progression and/or severity of pathogenesis in a mouse model of HD. We used the well-

characterized R6/2 transgenic model of HD, in which expression of htt exon 1 with ~150 CAG 

repeats causes a progressive HD-like behavioral phenotype, including a robust decline in motor 

performance, alterations in activity level, weight loss and premature death (Mangiarini et al., 

1997). R6/2 mice also accumulate mutant htt exon 1 in intranuclear and cytoplasmic inclusion 

bodies (Davies et al., 1997), a feature of HD brains (DiFiglia et al., 1997). To determine if 

inducible Hsp70s play a protective role in the R6/2 model of HD, we crossed transgenic R6/2 

mice with knockout mice that lack both Hsp70.1 and Hsp70.3.  
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Materials and Methods  

 

Animals and Breeding Strategy 

The University of Washington Animal Care and Use Committee or the MIT Committee on 

Animal Care approved all experiments and procedures involving mice. Mice were maintained 

and bred in accordance with National Institutes of Health guidelines. Hemizygous transgenic 

R6/2tg/- male founder mice were kindly provided by Dr. James Olson (Fred Hutchinson Cancer 

Research Center, Seattle, WA). The R6/2tg/- male mice were backcrossed five times to C57B6 

female mice to generate a colony of R6/2tg/- mice. The Hsp70.1/3 knockout mice were generated 

by simultaneously targeting the Hsp70.1 and Hsp70.3 genes so that homologous recombination 

with the targeting construct resulted in a 12-kb deletion of both Hsp70.1 and Hsp70.3 coding 

regions as well as insertion of a neomycin-resistance gene (Hampton et al., 2003). A breeding 

pair of double knockout Hsp70.1/3-/- mice (herein referred to as Hsp70-/- mice) were obtained 

with the permission of Dr. David Dix from Dr. Philip Mirke (University of Washington, Seattle, 

WA) and used to establish a colony of Hsp70-/- mice that was maintained on a C57Bl/6 

background for R6/2 studies and on 129Sv/Ev for prion studies. Hsp70-/- females were mated 

with R6/2tg/- males. Resulting R6/2tg/-;Hsp70-/+ males were mated with Hsp70-/- females to yield 

four genotypes: R6/2-/- ;Hsp70-/+, R6/2tg/-;Hsp70-/+, R6/2-/-;Hsp70-/-, and R6/2tg/-;Hsp70-/-. Female 

mice of these four genotypes were analyzed alongside female R6/2tg/-;Hsp70+/+and R6/2-/-

;Hsp70+/+ mice for a total of six genotypes. The number of mice in each cohort that was analyzed 

in the behavioral paradigms was as follows: R6/2tg/-;Hsp70+/+ (n=21), R6/2tg/-;Hsp70+/+ (n=18),  

R6/2-/- ;Hsp70-/+ (n=27), R6/2tg/-;Hsp70-/+ (n=22), R6/2-/-;Hsp70-/-(n=18), and  R6/2tg/-;Hsp70-/- 

(n=18). The experimenter was blind to the genotype during all testing paradigms.  At four weeks 

of age the mice were weaned and housed randomly in groups of five. Mice were allowed access 

to water and food ad libitum and maintained on a 12–hour light-dark cycle. At 10 weeks of age, 

mice were given powdered chow mixed with water (mash) to provide adequate nutrition and 

hydration.  

 

Genotyping 

Mouse tail DNA was analyzed by PCR to determine the genotype.  The R6/2 transgene was 

identified as described using the following primer sequences to identify the R6/2 transgene: 
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forward-CGCAGGCTAGGGCTGTCAATCATGCT and reverse-

TCATCAGCTTTTCCAGGGTCGCCAT (Hockly et al., 2003). Hsp70-/- and Hsp70-/+ mice were 

genotyped using a protocol established by the mutant mouse regional resource center at UC 

Davis (http://www.mmrrc.org/strains/372/0372.html). The primer sequences used to identify the 

targeted knockout Hsp70.1/3-neo were: forward-GAACGGAGGATAAAGTTAGG and reverse-

AGTACACAGTGCCAAGACG. The primer sequences used to identify the wild-type Hsp70.3 

allele were: forward-GTACACTTTAAACTCCCTCC and reverse- 

CTGCTTCTCTTGTCTTCG.  

We used GeneMapper techniques to determine the CAG repeat number by measuring the 

size of fluorescently labeled PCR products that cover the CAG repeat region in the exon 1 of HD 

gene. GeneMapper results showed that the R6/2tg/-;Hsp70+/+ mice used in the behavioral assays of 

this study had a CAG repeat length of approximately 185. Genetic deletion of Hsp70.1/3 did not 

have a dramatic effect on CAG repeat length, which was approximately 181 in the R6/2tg/-

;Hsp70-/- mice used in the behavioral assays. 

 

Prion Studies 

Hsp70.1/3 knockout mice (Hsp70-/-) used for the prion studies were the same mice used for the 

R6/2 study, other than being maintained on a 129Sv/Ev pure background (Hampton et al., 2003). 

The Hsp70 overexpressing transgenic mouse was maintained on a hybrid C57Bl/6-SJL 

background and expresses the rat inducible Hsp70 gene of a rat under a β-actin promoter 

(Marber et al., 1995). Hsp70-/- (n= 19) and Hsp70+/+ (n= 12) mice were injected intracranially 

with 30 µl of the Rocky Mountain Laboratory (“RML”) strain of murine prions, corresponding to 

a dose of approximately 3.5 log LD50 / 30 µl. Hsp70 Tg+/- (n=14) and Hsp70 Tg-/- (n=10) mice 

were injected intracranially with 5.5 log LD50 / 30 µl. Hsp70-/-(n=19) and Hsp70+/+ (n= 11) mice 

were also injected with “22L” strain of murine prions at a dose of approximately 3.5 log LD50 / 

30 µl. Hsp70 Tg+/- (n=12) and Hsp70 Tg-/- (n=11) mice were injected intraperitoneally with 100ul 

of 4.5 log LD50 RML. Mice were monitored daily for typical prion symptoms, such as 

imbalance, priapism (males), and weight loss.  

 

Survival 
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For R6/2 study (performed at the University of Washington) mice were observed twice daily, in 

the early-morning and late afternoon.  Survival was evaluated as the time to which the mice 

either died spontaneously, or exceeded a defined endpoint criterion. Motor performance, 

neurobehavioral and physical symptoms, weight, and ability to feed were closely monitored. 

Mice were euthanized when they had lost more than 20% of their maximal weight, and were no 

longer actively eating or drinking. For the prion studies (performed at MIT), mice were closely 

monitored and euthanized when they were unable to reach the food bin or water spout or regain 

posture after being placed on their side.  

 

Rotarod experiments 

A Rotamex rotarod (Rotamex 4/8, Columbus Instruments International, Columbus, OH) was 

programmed to accelerate from 4–40 rpm over a period of ten minutes and measure the latency 

to fall. Testing was performed every two weeks, starting at week four. During the first week of 

testing (week 4) the mice performed three trials per day on four consecutive days. Data from day 

one of week four was excluded from the analysis as the mice were learning the task. During the 

subsequent weeks of testing (6, 8, 10, 12 and 14 weeks), the mice were tested on three 

consecutive days for three trials per day and all of the trial data were included in the analysis. For 

each week, the trials were pooled and used to calculate the average latency to fall for each 

mouse. 

 

Weight loss 

Starting at 28 days, the mice were weighed twice weekly, at the same time of day, to the nearest 

0.1 g. 

 

Neurobehavioral and Physical Phenotype Assessment 

Beginning week 6, mice were evaluated once a week, as described (S. Ditzler, 2003) to 

extensively characterize their neurobehavioral and physical phenotype.  Each mouse was 

removed from its home cage and placed into a new, sterile cage where it was observed for 2 min. 

Briefly, to assess the neurobehavioral phenotype mice were scored for grooming, spontaneous 

activity, and locomotor activity. During the same 2-min period the physical phenotype of each 

mouse was scored for palepbral closure, coat appearance, body position and tail position. The 
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scoring protocol for the neurobehavioral and physical assessment is detailed in Table 1.  At the 

end of the 2-min period the mouse was removed and suspended by the tail approximately 10 cm 

above the cage for 30 sec to analyze pathogenic clasping behavior. Paw clasping behavior was 

scored from 0–2 points as described in Table 1.  

 

Statistics 

All data are expressed at the mean ± SEM.  For each outcome measure a two-way ANOVA was 

performed to determine whether there was a significant interaction between the R6/2 transgene 

and the Hsp70.1/3 genes. Specifically, the Mixed Models ANOVA in SPSS 13 was used with 

week as a repeated variable, mouse as a subject variable and the R6/2 transgene or Hsp70 

deletion as factors. An unstructured repeated covariance was used to analyze weight, rotarod, 

clasping, tremor, body postion, tail position, grooming, locomotor activity, and spontaneous 

activity outcome measures. A compound asymmetry repeated covariance was used to evaluate 

eye closure and fur phenotypes. In cases where differences between the various genotypes were 

examined at a single time-point, a one-way ANOVA in conjunction with the Bonferroni post test 

was performed in Graph Pad Prism. The Kaplan-Meier method was used to evaluate survival, 

followed by the log rank test to identify significant changes in Graph Pad Prism.  

Biochemical Experiments 

At 14 weeks of age mice were euthanized with CO2. The brains were removed and homogenized 

with 5 µl/mg tissue RIPA buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% NP40, 0.5% 

sodium deoxycholate, 0.1% SDS, 1 mM β-mercaptoethanol, 1 mM PMSF, and a protease 

inhibitor cocktail (Roche Diagnostics) and centrifuged at 10,000 x g for 90 min at 4°C. A 

Bradford assay was used to determine protein concentration of the supernatant fraction. For 

western blots, 3X SDS sample buffer was added, and the samples were heated at 95°C for 5 min. 

Equal amounts of protein (25 µg) were loaded in each well, separated by 4–20% SDS/PAGE, 

transferred to nitrocellulose membranes, blocked for 30 min at room temperature in 5% 

milk/TBST. After overnight incubation with primary antibody (made in 5% milk/TBST, blots 

were rinsed three times in TBST, incubated with secondary antibodies for 2 h at room 

temperature, rinsed three times in TBST and detected with enhanced chemiluminescence (GE 

Healthcare). Antibodies and concentrations were as follows: EM48 (1:500, a kind gift of Dr. 
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Xiao-Jiang Li, Emory University), GAPDH (1:200, Chemicon), secondary antibodies (1:5000, 

Jackson ImmunoResearch). All chaperone antibodies were from Stressgen biotechnologies, 

Victoria, Canada and dilutions were as follows: Hsp70 (1:1000), Hsp40 (1:10,000), Hsp27 

(1:1000), Hsp25 (1:5000), Hsc70 (concentration 1:1000), Hsp90 (1:5000). To detect formic acid-

sensitive monomer/oligomers, 100 µg of total protein lysate was incubated with 100 µl formic 

acid at room temperature for 1 h. Treating the lysate with formic acid releases mutant htt species 

that migrate at the approximated molecular weight of a trimer/tetramer, although it is possible 

that this species is an aberrantly migrating monomer. Formic acid was removed in a speed 

vacuum and 30 µl of SDS loading buffer was added. The samples were neutralized with 2 µl 5 M 

NaOH and heated at 95°C for 5 min. For the filter assay, 30 µl of 1X SDS sample buffer (4% 

SDS) were incubated with 100 µg of total protein lysate at 95°C for 5 min and then filtered onto 

a cellulose acetate membrane with a slot blot manifold. For densitometry films were scanned 

using ArcSoft PhotoStudio 5.5, and analyzed with ImageQuant V2005 (GE Healthcare). 

Neuropathology 

At 14 weeks of age, mice were deeply anesthetized with halothane and perfused with 100 ml 

of phosphate buffer, followed by 100 ml of 4% paraformaldehyde in phosphate buffer (pH 7.4). 

Brains were removed, cyroprotected overnight in 30% sucrose and frozen in cooled isopentane. 

To investigate the effects of Hsp70.1/Hsp70.3 deletion on levels of mutant htt immunoreactivity 

in R6/2 mutant mice, the sections were immunolabeled overnight with a rabbit polyclonal 

antibody (EM48, Chemicon) against a glutathione S-transferase fusion protein containing the 

first 256 amino acids of htt lacking the polyQ and polyproline streches. Sections were washed in 

PBS and then placed in biotinylated secondary antibody (1:100) (Vector Laboratories, 

Burlingame, CA) for 2 h. Sections were placed in 20% diaminobenzidene (DAB) (Vector 

Laboratories), mounted, dried, and coverslipped with Entillin (Fisher). Three immunostained 

sections per mouse were imaged with an Olympus digital microscope. A total of 10 digital 

images per section and region of interest were analyzed with Image-Pro Plus to determine the 

optical density per field and the mean diameter and number of intranuclear inclusions. Individual 
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values were averaged and expressed as mean value. To quantify microglial activation, microtome 

sections from R6/2 mice were immunostained with a mouse monoclonal antibody against Iba-1 

(1:1000, DakoCytomation, Carpinteria, CA) followed by biotinylated secondary antibody, avidin 

coupled to horseradish peroxidase and reacted with DAB. Sections were analyzed and the 

numbers of Iba-1 positive microglia were averaged and expressed as total number per 0.1 mm3. 

10 digital images per field were obtained and analyzed with Image-Pro Plus to determine the 

number of microglia per unit area. Similar immunohistochemical methods were performed to 

quantify astrocyte activation with a mouse monoclonal antibody against GFAP (1:1000, AbCam, 

Cambridge, MA), c-Fos with a rabbit polyclonal antibody (1:500, AbCam, Cambridge, MA) and 

synaptophysin with a mouse monoclonal antibody (1:200, Sigma, St. Louis, MO). From each 

animal at least 3 blind-coded random sections were analyzed, and the results were averaged and 

expressed as mean value. Two sets of mice were used for the pathology experiments. For the first 

analysis, the mice that remained alive after the 14-week behavioral study were perfused and the 

brains were harvested. For the second analysis, mice were bred specifically for the biochemical 

and pathology experiments so that a more comprehensive analysis could be performed with a 

larger number of mice/genotype. Shown here are the results of the second analysis, but results 

were identical in both groups of animals.   
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Results 

 

Deletion of Hsp70.1 and Hsp70.3 Decreases Survival in the R6/2 mouse, but Not in Prion-

infected Mice 

To determine if endogenous Hsp70s play an important role in combating the toxic effects 

induced by a mutant htt fragment, we crossed the R6/2 mouse model of HD to knockout mice 

lacking the inducible Hsp70.1 and Hsp70.3 genes (herein referred to as Hsp70.1/3). We 

subsequently analyzed a number of physical and behavioral outcome measures in six genotypes 

of mice: R6/2-/-;Hsp70+/+, R6/2-/-;Hsp70-/+, R6/2-/-;Hsp70-/-, R6/2tg/-;Hsp70+/+, R6/2tg/-;Hsp70-/+, 

and R6/2tg/-;Hsp70-/-.  

Kaplan Meier Survival analysis demonstrated that deletion of one copy of Hsp70.1/3 did not 

alter the lifespan of the R6/2 mouse (details of all statistical analyses used in this study can be 

found in the Materials and Methods section). The survival curves of the R6/2tg/-;Hsp70+/+ and the 

R6/2 tg/-;Hsp70-/+ mice were indistinguishable, as were the endpoint survival rates of 83% and 

82%, respectively (Figure 1A). Strikingly, deletion of both copies of Hsp70.1/3 profoundly 

affected R6/2 survival: only 50% of the R6/2 tg/-;Hsp70-/- mice were alive at the study endpoint. 

Survival analysis demonstrated a significant decrease in the lifespan of the R6/2 tg/-;Hsp70-/- mice 

relative to the R6/2tg/- ;Hsp70+/+  (p = 0.033, log rank test) and the R6/2 tg/-;Hsp70-/+ mice (p = 

0.026). An intact endogenous Hsp70 response, thus, appears to be critical for survival in the R6/2 

mice.  

Hsp70s are presumed to be broadly protective against the toxic effects of misfolded protein 

in the central nervous system. Therefore, we examined the effect of deleting endogenous Hsp70s 

on survival in two mouse models of prion disease. A dose corresponding to approximately 3.5 

log LD50 of the 22L strain of murine prions was injected intracranially into Hsp70+/+ and Hsp70-/- 

mice. Surprisingly, the absence of endogenous Hsp70s had no effect on lifespan (Figure 1B). 

The survival curves of the Hsp70+/+ and Hsp70-/- mice were indistinguishable, and the median 

survival times of the Hsp70+/+ and Hsp70-/- mice injected with the 22L prion strain were 25.0 and 

24.1 weeks, respectively. Similarly, the median survival times of the Hsp70+/+ and Hsp70-/- mice 

injected with the RML prion strain were identical at 26.4 weeks post-prion inoculation, and the 

two survival curves were indistinguishable (Figure 1C). Moreover, transgenic overexpression of 

Hsp70 did not prolong survival of prion-infected mice (data not shown).  
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Deletion of Hsp70.1/3 Worsens Motor Deficits in R6/2 Mice  

We used a panel of diverse outcome measures to systematically characterize the effect of 

deleting endogenous Hsp70s on the phenotypes of R6/2 mice. We first evaluated the effects of 

Hsp70 deletion on motor performance, as measured by rotarod analysis, which is widely used to 

characterize the progressive decline in motor performance of R6/2 mice (Carter et al., 1999; 

Hockly et al., 2002). We found that deletion of Hsp70.1/3 significantly enhanced (p <0.05) the 

severity of rotarod deficits in R6/2 mice (Figure 2A). As expected, at the early time point of 4 

weeks the performances of wild-type and R6/2 mice were well matched. In contrast, the R6/2tg/-

;Hsp70-/- mice were already significantly impaired at 4 weeks (p < 0.001), demonstrating that the 

absence of inducible Hsp70s decreases the age of onset of the R6/2 motor phenotype. The 

intermediate motor phenotype of the R6/2tg/-;Hsp70-/+ mice, when compared to the R6/2tg/-

;Hsp70+/+ and the R6/2tg/-;Hsp70-/- mice, suggests that the relative expression levels of inducible 

Hsp70s modulate both the progression and severity of motor abnormalities in R6/2 mice. 

 

Deletion of Hsp70.1 and Hsp70.3 exacerbates neurobehavioral phenotypes in R6/2 mice  

To characterize the neurobehavioral and physical decline of our mice we utilized a modified 

SHIRPA assessment (Rogers et al., 1997). This behavioral protocol was recently refined to 

provide a rapid, reproducible and quantitative means of examining numerous outcome measures 

that clearly distinguish R6/2 transgenic mice from their wild-type littermates (S. Ditzler, 2003). 

The protocol includes a number of neurobehavioral (clasping, tremor, grooming, spontaneous 

and locomotor activities) and physical (weight, palpebral closure, coat appearance, body and tail 

position) outcome measures (Supplementary Table 1).  

Progressive clasping of the front and hind limbs that is triggered by a tail suspension test is a 

conserved motor abnormality observed in numerous mouse models of neurological disease and is 

widely used as a marker of neuronal dysfunction (Mangiarini et al., 1996; Carter et al., 1999; 

Stack et al., 2005). We analyzed clasping behavior once a week by suspending each mouse 

above its cage for 30 seconds and scoring 0 for no clasp, 1 for a mild clasp where only the fore or 

hind-limbs press into the stomach, and 2 for a severe clasp where both fore and hind-limbs touch 

and press into the stomach. Deletion of Hsp70.1/3 significantly worsened (p< 0.001) the average 

clasping score of the R6/2 mice (Figure 2B). In contrast to the R6/2tg/-;Hsp70+/+mice, the R6/2tg/-
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;Hsp70-/+ and the R6/2tg/-;Hsp70-/- mice already displayed significant clasping by 6 weeks 

(p<0.01). Moreover, the R6/2tg/-;Hsp70-/- mice consistently exhibited the most severe clasping 

score, followed by the R6/2tg/-;Hsp70-/+ mice and finally the R6/2tg/-;Hsp70+/+ mice, suggesting a 

gene dose-dependent effect on the onset, progression and severity of this R6/2 phenotype (Figure 

2B).  

R6/2 mice develop a progressive, resting tremor in the limbs, trunk and head, which was 

scored as 0 (no tremor,) 1 (mild tremor) or 2 (severe tremor) (Mangiarini et al., 1996; S. Ditzler, 

2003). Tremor analysis showed that deletion of Hsp70.1/3 significantly increased (p < 0.001) the 

score of the R6/2 mice (Figure 2C). At 6 weeks, the R6/2tg/-;Hsp70+/+ mice had a negligible 

tremor score, whereas the R6/2tg/-;Hsp70-/+ and the R6/2tg/-;Hsp70-/- mice exhibited an 

significantly higher average score of 0.5 (p < 0.001), demonstrating that deletion of one or both 

alleles of Hsp70.1/3 decreased the age of tremor onset. The consistently intermediate score of the 

R6/2tg/-;Hsp70-/+ mice relative to the R6/2tg/-;Hsp70+/+ and R6/2tg/-;Hsp70-/- mice suggests a gene 

dose-dependent effect of Hsp70.1/3 on the R6/2 tremor phenotype.  

As R6/2 mice become symptomatic, either a complete lack of grooming or a stereotypic, 

repetitive grooming behavior is often observed (Mangiarini et al., 1996; Carter et al., 1999). 

Repetitive hindlimb grooming is thought to mimic the choreiform movements displayed by HD 

patients (Mangiarini et al., 1996). Mice received a score of 1 for normal grooming and a score of 

2 for abnormal grooming. Analysis of cumulative grooming scores revealed that the deletion of 

Hsp70.1/3 genes significantly worsened (p<0.03) the abnormal grooming behavior of the R6/2 at 

later time points (Figure 2D). In this case, however, the loss of both alleles of Hsp70.1/3 was 

required to enhance the progression and endpoint severity of the R6/2 grooming phenotype. 

The progressive development of abnormalities in the activity level of R6/2 HD mice has been 

well characterized (Dunnett et al., 1998; Bolivar et al., 2003; Stack et al., 2005), and our 

modified SHIRPA protocol included two measures of activity. We first measured spontaneous 

activity by scoring the coverage of four delineated cage quadrants by each mouse during a two-

minute testing period. A score of 1 denoted movement into all four quadrants, 2 denoted slow 

movement in three or less quadrants, 3 denoted no movement or stereotypic darting/circling 

movements. We found that deletion of Hsp70.1/3 significantly exacerbated (p< 0.001) the 

spontaneous activity phenotype of the R6/2 mouse, most noticeably after 8 weeks of age (Figure 

2E). The absence of both alleles of Hsp70.1/3 had a marked effect on the onset, progression and 



 14 

endpoint severity. Despite the fact that deletion of one allele of Hsp70.1/3 also had a more 

moderate effect, there was still a trend towards gene dose-dependence for this outcome measure. 

We also performed the locomotor test as a second measure of activity by scoring the number of 

times that each mouse touched the side of the cage during a two-minute observation period. The 

locomotor activity test did not reveal a significant effect of the inducible Hsp70s on the R6/2 

phenotype, although there was a trend towards a gene dose-dependent effect of Hsp70.1/3 

deletion to enhance motor abnormalities (Figure 2F). Thus, two distinct outcome measures 

showed that Hsp70.1/3 affects the development, progression and severity of activity deficits in 

the R6/2 mouse.  

 

Deletion of Hsp70.1/3 Exacerbates the Physical Phenotypes of R6/2 Mice  

To characterize decline in the physical phenotypes of the R6/2 mice, we measured weight and 

scored for coat appearance, body position, tail position and palpebral closure. Female R6/2 mice 

show a characteristic weight loss pattern: weight plateaus around week 8 and declines 

significantly at 12 weeks (Hockly et al., 2003). The weights of the R6/2-/-;Hsp70+/+, R6/2-/-

;Hsp70-/+, and the R6/2-/-;Hsp70-/- mice were indistinguishable, demonstrating that the absence of 

inducible Hsp70s alone does not influence body weight (Figure 3A). Analysis of the weight of 

the R6/2tg/-;Hsp70+/+ and R6/2tg/-;Hsp70-/- mice showed a significant interaction (p<0.05) on this 

phenotype and a Hsp70.1/3 gene dose-dependent trend on weight loss was observed, suggesting 

that the inducible Hsp70s may modulate the onset, progression and endpoint severity of the R6/2 

weight loss phenotype. 

The coat appearance of the R6/2 mice declines as the disease state progresses and is 

characterized by a score of 1 for a shiny, well-groomed coat and a score of 2 for a scruffy and/or 

piloerected coat. Deletion of Hsp70.1/3 significantly worsened (p<0.001) the R6/2 coat 

appearance phenotype (Figure 3B). A decrease in the age of onset, enhanced progression and 

increase in endpoint severity were observed with a trend towards Hsp70.1/3 gene dose-

dependence. We also scored body position and tail position to further evaluate the effect of 

Hsp70.1/3 on the decline of the R6/2 physical phenotype. The R6/2 body position phenotype was 

scored as 1 for normal, and 2 for a hunched and rounded stature. Tail position was scored as 1 

for normal or horizontally extended, and 2 for dragging/straub. Deletion of Hsp70.1/3 

significantly enhanced the severity of the body position outcome measure (p<0.02, Figure 3C) 
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and the tail position outcome measure (p<0.001, Figure 3D). In both cases a trend towards an 

Hsp70.1/3 gene-dose dependent enhancement of phenotypic severity was observed. The only 

component of the physical phenotype test that was unaffected by the deletion of Hsp70.1/3 was 

palpebral closure (data not shown). Importantly, all outcome measures included in the 

neurobehavioral and physical phenotype assessment showed that there were no significant 

differences between the wild-type non-transgenic mice and the Hsp70.1/3 heterozygous or 

homozygous knockout mice. 

 

Deletion of Hsp70.1/3 Increases the Size of Inclusion Bodies in R6/2 Mice 

To determine if the exacerbated behavioral and physical phenotypes observed in R6/2 mice that 

lacked inducible Hsp70s correlated with changes in the density or size of inclusion bodies 

formed by mutant htt exon 1, we examined serial sections from the neocortex of 14-week-old 

mice with immunohistochemistry and the EM48 anti-htt antibody. As expected, the R6/2-/-

;Hsp70+/+, R6/2-/-;Hsp70-/- and R6/2-/-;Hsp70-/+ mice did not display EM48-positive inclusion 

bodies (data not shown). Immunohistochemical analyses on cortical brain sections with EM48 

suggested R6/2tg/-;Hsp70-/- had an increased density of inclusion bodies in comparison to R6/2tg/-

;Hsp70+/+  mice (Figure 4A). However, quantification of the number of inclusion bodies in a 

defined brain volume indicated this difference only showed a trend towards statistical 

significance (p = 0.086) (Figure 4B).  

Analysis of average inclusion body diameter demonstrated that the R6/2tg/-;Hsp70+/+ (4.22 ± 

0.55 µm) and R6/2tg/-;Hsp70-/+ (3.81 ± 0.34 µm) mice were indistinguishable (p > 0.05, Figure 

4D). In comparison, the R6/2tg/-;Hsp70-/- inclusion bodies (7.68 ± 0.44 µm) stained with EM48 

were dramatically and significantly larger (p< 0.001) than in R6/2tg/-;Hsp70+/+ mice (Figure 4C 

and D). The pixel intensity of EM48 staining in R6/2 mice lacking both alleles of Hsp70.1/3 also 

appeared greater than in R6/2 mice alone. In summary, these results indicate that the complete 

absence of inducible Hsp70s increased the size of inclusion bodies formed by mutant htt exon 1 

in R6/2 mice, consistent with in vitro data indicating Hsp70 can directly modulate the misfolding 

and aggregation of mutant htt (Muchowski et al., 2000; Wacker et al., 2004).  

 

Deletion of Hsp70.1/3 Does Not Modulate Levels of SDS-insoluble Fibrillar Protein 

Aggregates Formed by Mutant Htt Exon 1 in R6/2 Mice  
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We next sought to determine if the increased size of inclusion bodies in the absence of inducible 

Hsp70s in R6/2 mice was attributed to increased levels of aggregates formed by mutant htt exon 

1. We used western immunoblots, filter-trap assays and agarose gels to measure the relative 

levels of SDS-insoluble aggregates and formic acid–sensitive htt species in the brains of 14-

week-old R6/2tg/-;Hsp70+/+  and R6/2tg/-;Hsp70-/- mice.  

Western blots probed with the EM48 antibody on total brain homogenates from R6/2tg/-

;Hsp70+/+ mice showed that all of the reactivity corresponded to large SDS-insoluble aggregates 

that were retained in the stacking portion of the gel (Figure 5A) as described (Davies et al., 

1997). An identical pattern of reactivity is observed on western blots that contain purified mutant 

htt exon 1 with 53Q that has been aggregated into fibrillar protein assemblies (Wacker et al., 

2004). Surprisingly, analysis of the pixel intensities relative to the GAPDH loading controls 

showed that the average EM48 reactivities for the R6/2tg/-;Hsp70+/+ and R6/2tg/-;Hsp70-/- mice 

were indistinguishable (Figure 5A and B). Previous studies showed that HD brain homogenates 

treated with formic acid liberate a SDS-resistant oligomer as analyzed by western immunoblots 

(Iuchi et al., 2003; Hoffner et al., 2005). Similar to the results observed in HD brain 

homogenates, we found that treatment of total brain homogenates from R6/2tg/-;Hsp70+/+ mice 

with formic acid released two bands that reacted with EM48 which migrated at an apparent 

molecular mass of 70–85 kDa, while concomitantly leading to nearly a complete loss of 

reactivity in the stacking gel (Figure 5C). Based on their apparent molecular mass, these bands 

may reflect a low molecular mass SDS-resistant oligomer or aberrantly migrating monomers of 

mutant htt exon 1. The levels of formic acid-sensitive monomers/oligomers (normalized to 

GAPDH reactivity) appeared to increase in the absence of Hsp70.1/3, but did not reach statistical 

significance (Student t-test p=0.15). (Figure 5D). Identical findings were observed using the 

3B5H10 antibody generated by the Finkbeiner laboratory (not shown).  

We next used filter-trap assays as an independent method to evaluate total SDS-insoluble 

material formed by mutant htt exon 1 in R6/2 brains in the presence and absence of inducible 

Hsp70s. In this assay, total brain homogenates were boiled in SDS and filtered through a 

cellulose acetate membrane that contains 0.2 µm pores. Previous studies with brains from R6/2 

mice showed that this method traps large (>0.2 µm) SDS-insoluble aggregates of fibrillar 

material (Scherzinger et al., 1997). Consistent with the western immunoblots, we found that the 

levels of SDS-insoluble material detected by EM48 in filter-trap assays were not significantly 
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different between R6/2tg/-;Hsp70+/+ and R6/2tg/-;Hsp70-/- mice (Figure 5E and F). Interestingly, 

total brain homogenates treated with formic acid and SDS were still detected by EM48 in filter 

assays (Figure 5G), suggesting that this treatment releases oligomeric species larger than 0.2 µm 

in size. However, as with the other assays, no significant differences were observed in brain 

homogenates analyzed in this manner between R6/2tg/-;Hsp70+/+ and R6/2tg/-;Hsp70-/- mice 

(Figure 5G and H). Similar results were also obtained when agarose native gels were used to 

detect oligomeric species in total brain homogenates from R6/2tg/-;Hsp70+/+ and R6/2tg/-;Hsp70-/- 

mice (Figure 5I). Thus, three independent approaches used to evaluate mutant htt exon 1 

aggregates in 14-week-old R6/2 brain homogenates showed no significant differences in 

aggregate levels in the presence or absence of inducible Hsp70s. Similar results were obtained in 

7-week-old R6/2 brain homogenates (data not shown).  

Previous studies demonstrated changes in the relative levels of chaperone proteins in mouse 

models over the course of polyQ disease (Cummings et al., 2001; Hay et al., 2004). For example, 

expression of mutant ataxin-1 in a mouse model of SCA1 elicits an increase in Hsp70 expression 

(Cummings et al., 2001), while levels of Hsp70 and other chaperones decreased progressively in 

R6/2 mice (Hay et al., 2004). To test if deletion of Hsp70.1/3 caused compensatory changes in 

the relative levels of other heat shock proteins, we performed western immunoblots on brain 

homogenates from R6/2tg/-;Hsp70+/+, R6/2tg/-;Hsp70-/-, R6/2-/-;Hsp70+/+ and R6/2-/-;Hsp70-/- mice. 

At 14 weeks of age, no significant changes were detected in the levels of Hsp27 and Hsp90 

(Supplemental Figure 1), or Hsp25, Hsp40 and Hsc70 (not shown), relative to a GAPHD loading 

control. Thus, the lack of both Hsp70 alleles on a wild-type or R6/2 strain background did not 

appear to confer compensatory changes in levels of other major heat shock proteins.   

 

Deletion of Hsp70.1/3 Exacerbates the Loss of c-Fos Immunoreactivity and Other 

Neuropathological Deficits in R6/2 Mice  

To determine the effect of Hsp70 deletion on neuronal loss in R6/2 mice we used 

immunohistochemistry and unbiased stereology with an antibody against the neuronal-specific 

protein NeuN in brain sections from 14-week-old mice. These analyses showed no significant 

change in NeuN immunoreactivity in the cortex or striatum of R6/2tg/-;Hsp70+/+ mice in 

comparison to WT animals, and no significant difference in NeuN levels between R6/2tg/-

;Hsp70+/+ and R6/2tg/-;Hsp70-/- mice (data not shown). In an independent study, we recently found 



 18 

that immunoreactivity for the pre-synaptic protein synaptophysin and the calcium regulated 

immediate early gene product c-Fos, a surrogate marker for neuronal activity, were decreased in 

R6/2 mice relative to non-transgenic littermate controls, and that these changes were attenuated 

in R6/2 mice treated with a small molecule inhibitor of kynurenine 3-monooxygenase in a 

manner that correlated with survival (Guidetti, et al., manuscript in review). In the current study 

immunohistochemical analysis of brain sections from R6/2tg/-;Hsp70+/+ mice showed a significant 

(p< 0.05) decrease in c-Fos immunoreactivity relative to WT mice in the cortex and striatum, and 

this loss was further and significantly exacerbated (p< 0.05) in R6/2tg/-;Hsp70-/- mice (Figure 6A 

and B). Importantly, levels of c-Fos were not significantly different between R6/2-/-;Hsp70+/+ and 

R6/2-/-;Hsp70-/-  mice. Levels of synaptophysin immunoreactivity also appeared to be decreased 

in the cortex and striatum of R6/2tg/-;Hsp70-/- mice in comparison to R6/2-/-;Hsp70-/- mice, 

although this decrease did not reach statistical significance possibly explained by the lack of 

statistical power due to the small numbers of mice analyzed (n=4−6 per group) (Figure 6C and 

D). A recent study showed increased levels of immunoreactivity for the microglia-specific 

protein Iba1 in R6/2 mice (Simmons et al., 2006). We observed a significant (p = 0.0297) 

increase in immunoreactivity for Iba1, and a trend towards an increase in the astrocyte-specific 

marker GFAP in the cortex of R6/2tg/-;Hsp70-/- mice in comparison to R6/2-/-;Hsp70+/- and -/- mice 

(Figure 6E and F). Insufficient brain material unfortunately precluded the analysis of other 

genotypes in these studies. Our results demonstrate that endogenous Hsp70s protect against the 

loss of c-Fos in a highly significant manner, and suggest these chaperones are critical regulators 

of neuronal activity and inflammatory responses in R6/2 mice.  
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Discussion 

 

Here we showed that endogenous Hsp70s critically regulate the toxicity of a disease-causing 

misfolded protein in a mouse model of HD. The absence of even one allele of the 

Hsp70.1/Hsp70.3 genes significantly exacerbated the severity of a number of outcome measures 

for the R6/2 mouse model of HD (rotarod, clasping, activity, weight, coat appearance and body 

position). The absence of both alleles of Hsp70.1/3 profoundly enhanced the onset, severity and 

progression of behavioral phenotypes in R6/2 mice, including a significant decrease in median 

lifespan. R6/2 mice completely lacking inducible Hsp70s showed an increase in the number and 

size of inclusion bodies, although these findings did not correlate with a biochemical changes in 

the relative levels of SDS-insoluble fibrillar aggregates as measured by multiple independent 

approaches. Finally, we found that deletion of Hsp70.1/3 exacerbated the loss of c-Fos, a 

surrogate marker for neuronal activity, in a highly significant manner. These findings indicate 

that the absence of inducible Hsp70s increased neuronal sensitivity to mutant htt exon 1 in the 

R6/2 mouse model of HD, without affecting htt expression or its accumulation into SDS-

insoluble aggregates.  

Deletion of Hsp70.1/3 had no significant effect on lifespan in two mouse models of 

transmissible prion disease. This is not simply because prion diseases are so extreme that they 

can’t be modified. Indeed, deletion of HSF1, a master regulator of homeostatic stress responses, 

has a pronounced effect on the course of these same prion models (Steele et al., 2008). Thus, the 

striking effect of the absence of inducible Hsp70s on R6/2 mice indicates that a specific genetic 

interaction occurs between the inducible Hsp70s and the mutant htt fragment in vivo. Although 

the inducible Hsp70s may play a pivotal role in prion propagation in yeast (Tutar et al., 2006; 

Loovers et al., 2007), our results suggest that the inducible Hsp70s do not influence toxicity in 

mice infected with established strains of prions. Importantly, unlike HD, which is an autosomal 

dominant inherited neurodegenerative disorder, prion disease encompasses diverse etiologies in 

addition to acute infection (Kingsbury et al., 1983). The inducible Hsp70s may possibly play a 

role in suppressing toxicity in other mouse models of spontaneous and/or genetically derived 

prion disease. 

The loss of one copy of Hsp70.1/3 did not decrease the lifespan of R6/2 mice, suggesting a 

potent activity of endogenous Hsp70 chaperones, even when present at half of their normal 
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concentration, to mitigate pathogenic cascades and modulate disease onset, progression and 

severity in vivo. However, the decrease in the age of onset observed for the majority of 

behavioral and physical testing parameters in both the R6/2tg/-;Hsp70-/+ and the R6/2tg/-;Hsp70-/- 

mice demonstrates that an intact inducible Hsp70s response is required to limit mutant htt 

toxicity at the earliest stages of pathogenesis in R6/2 mice.  

The absence of both alleles of Hsp70.1/3 significantly increased the average size and 

appeared to increase the number of inclusion bodies in R6/2 brains, yet paradoxically did not 

alter the total load of fibrillar aggregates detected biochemically. What mutant htt species 

detected by EM48 in brain sections can account for the increased size and abundance of 

inclusion bodies? Our biochemical studies excluded the possibility that the increased size and 

abundance of inclusion bodies were due to any significant changes in fibrillar and/or large 

oligomeric species that are insoluble in SDS. In addition, formic acid-treated R6/2 brain lysates 

had similar levels of mutant htt monomers and oligomers in the presence or absence of Hsp70s. 

Our previous in vitro studies used atomic force microscopy and biochemical approaches to 

demonstrate that the cooperative activity of Hsp70 and Hsp40 stabilized a monomeric 

conformation of a mutant htt fragment (HD53Q), while concomitantly suppressing the 

accumulation of annular and spherical oligomeric assemblies (Wacker et al., 2004). However, a 

recent study indicated Hsp70 and Hsp40 can also partition onto SDS-soluble mutant htt 

oligomers in an ATP-dependent manner (Lotz et al., manuscript in review). Therefore we 

speculate that, in the absence of inducible Hsp70s in R6/2 mice, small, SDS-soluble mutant htt 

exon 1 assemblies that accumulate may account for the increase in inclusion body density and 

size in the R6/2tg/-;Hsp70-/- mice. Consistent with this interpretation, deletion of C-terminus of 

Hsp70 interacting protein (CHIP) in a mouse model of Spinocerebellar Ataxia Type 3 (SCA3) 

markedly increased levels of ataxin-3 microgaggregates in a manner that correlated with 

exacerbated behavioral phenotypes in these mice (Williams et al., 2009). We hypothesize that 

inducible Hsp70s buffer toxicity by binding monomeric and/or low molecular mass SDS-soluble 

oligomers that are likely off-pathway to fibril formation, but may be potentially pathogenic. 

However, based on the multi-functional nature of Hsp70 it is very likely that this chaperone can 

also suppress protein misfolding toxicity by multiple mechanisms independent of its direct 

effects on misfolded protein (see below).     
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Although larger inclusion bodies were observed in R6/2 mice in the absence of Hsp70s, this 

does not necessarily suggest that inclusion bodies are toxic entities. Indeed, in direct contrast to 

the current study, we recently observed a strong positive correlation between survival and 

inclusion body size in mice treated with an inhibitor of the mitochondrial enzyme kynurenine 3-

monooxygenase (Guidetti et al., manuscript in review). Furthermore, systematic analysis of the 

effects of genetic enhancers (Willingham et al., 2003) or suppressors (Giorgini et al., 2005) of 

mutant htt exon 1 toxicity in yeast showed no correlations between toxicity and inclusion bodies. 

These experiments underscore the inherent limitations of quantifying inclusion body size and 

abundance in mouse brain sections using immunohistochemistry to draw meaningful deductions 

of the role of these abnormal brain deposits on in vivo pathogenesis. We propose that the 

molecular composition of SDS-soluble conformers that may exist in a diffuse fraction or in 

inclusion bodies, be they monomers or small oligomers, will be the key to understanding which 

structures mediate pathogenesis. Thus, tools to identify and track such structures in situ, such as 

antibodies, will be required before unequivocal experiments can determine which are the toxic 

species of mutant htt in mouse models of HD.  

Although a primary function of Hsp70s in animal models of polyQ disease may be to 

counteract the assembly process that leads to the accumulation of toxic monomers/oligomers, the 

inducible Hsp70s may also buffer the toxicity of mutant htt monomers/oligomers by masking 

surfaces that promote pathogenic interactions with essential cellular proteins. For example, in 

one study, a mutant htt monomer underwent an intramolecular transition that facilitated an 

interaction with the Tata binding protein (TBP) and ultimately resulted in the functional 

inactivation of this important transcription factor (Schaffar et al., 2004). Addition of Hsp70 to 

the in vitro system prevented the conformational rearrangement of mutant htt and thus inhibited 

the pathogenic interaction with TBP, suggesting that the activity of Hsp70 to bind and hold 

mutant htt monomers can prevent aberrant protein-protein interactions that lead to neuronal 

dysfunction. Mutant htt, in addition to causing transcriptional repression, has also been shown to 

upregulate p53 associated transcriptional events in neuronal cultures (Bae et al., 2005). p53 is a 

strong suppressor of Hsp70 expression in specific neuronal subtypes that are affected in HD 

(Tagawa et al., 2007), and, moreover, genetic deletion of p53 ameliorates behavioral 

abnormalities in the N171-82Q mouse model of HD (Schilling et al., 1999; Bae et al., 2005). 
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Thus, it is tempting to speculate that the effect of p53 on HD pathogenesis may be at least 

partially mediated by changes in the expression of inducible Hsp70s.  

The exacerbation of R6/2 phenotypes in mice lacking Hsp70s may also be due to an overall 

disruption in the protein homeostasis network, as suggested from studies in C. elegans by 

Morimoto and colleagues (Gidalevitz et al., 2006). Consistent with this scenario, we observed 

that levels of the calcium regulated immediate early gene c-Fos and the pre-synaptic protein 

synaptophysin were decreased in R6/2 mice lacking Hsp70s relative to controls, while levels of 

protein markers for inflammatory responses (Iba1 and GFAP) were increased. Although the 

functional significance of these changes in R6/2 mice has not yet been investigated, the levels of 

c-Fos, which is used a surrogate marker for neuronal activity, are tightly linked to cognitive 

deficits in mouse models of AD (Palop et al., 2003). The apparent loss of synaptophysin in R6/2 

mice lacking Hsp70 is consistent with previous studies in R6/2 mice (Cepeda et al., 2003) and, 

more broadly, with studies that suggest synaptic loss may be important for pathogenesis in HD 

(Li et al., 2003). Interestingly, as mutant htt inhibits the acetyltranferase activity of CREB-

binding protein (CBP)(Steffan et al., 2000; Steffan et al., 2001), which itself controls c-Fos 

expression(Yuan et al., 2009), it is possible that aberrant protein interactions between mutant htt 

and CBP, and suppression of these interactions by Hsp70 (Schaffar et al., 2004), mediate in part 

the effects we observed on c-Fos expression in R6/2 mice. Our results also indicate endogenous 

Hsp70s may influence inflammatory responses, consistent with previous reports (Van Molle et 

al., 2002; Hampton et al., 2003; Singleton and Wischmeyer, 2006; Mycko et al., 2008). 

Collectively these studies strongly suggest that Hsp70s may modulate pathogenesis of protein 

misfolding diseases in vivo by direct and indirect effects in multiple cell types that may only be 

dissected by modulating levels of these proteins and their interacting proteins in specific cell 

types in vivo.   

The majority of the behavioral outcome measures that we examined in R6/2 mice showed a 

trend towards Hsp70.1/3 gene dose dependence, demonstrating that the relative levels of 

inducible Hsp70s can dramatically alter pathogenesis in vivo. A recent study used RNA 

interference (RNAi) to show that the expression levels of Hsp70 dictate the susceptibility of 

primary neurons to mutant htt toxicity (Tagawa et al., 2007). Thus, even a modest increase in the 

levels of molecular chaperones may suffice to decrease the severity of protein-conformational 

disorders. Indeed, treatment with arimoclomol, a compound that acts to amplify the endogenous 



 23 

heat shock response to the accumulation of misfolded disease-causing proteins, significantly 

delayed disease progression in a mouse model of ALS (Kieran et al., 2004) and is being 

evaluated in a clinical trial in ALS patients. In addition, geranylgeranylacetone, which acts to 

increase the levels of heat shock proteins in vivo, significantly decreased the severity of the 

neuromuscular phenotype in a mouse model of SBMA (Katsuno et al., 2005). Pharmacological 

strategies aimed at enhancing the production or activity of molecular chaperones, such as Hsp70, 

may prove beneficial in the treatment of protein-conformational disorders.  

The demonstration in this study that the endogenous Hsp70.1 and Hsp70.3 chaperones are an 

integral component of the physiological response to an aggregation-prone disease protein in vivo 

highlights the importance of investigating genetic modifiers of disease pathogenesis as potential 

therapeutic targets. The multi-functional activity of Hsp70 in vivo contributes to its attraction as 

a potential therapeutic target for diseases associated with protein misfolding and aggregation. 

Modification of the levels and/or activity of Hsp70 can potentially impact a number of important 

cellular pathways that influence HD pathogenesis, and likely plays similar role in modulating 

pathogenic cascades in diverse protein-conformational disorders.    
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Figure Legends 

 

Figure 1. Deletion of Hsp70.1 and Hsp70.3 Decreases Survival in the R6/2 mouse, but Not in 

Mice Infected with Prions 

(A) Kaplan-Meier survival curve for the indicated genotypes: R6/2-/-;Hsp70+/+ (n=21), R6/2tg/- 

(n=18),  R6/2-/- ;Hsp70-/+ (n=27), R6/2tg/-;Hsp70-/+ (n=22), R6/2-/-;Hsp70-/-(n=18), and  R6/2tg/-

;Hsp70-/- (n=18) demonstrates that the absence of Hsp70.1/3 significantly decreased survival of 

R6/2 mice (Log rank: p = 0.033). No non-transgenic, Hsp70 heterozygous knockout, or Hsp70 

homozygous knockout mice died during the 14–week time course. (B and C) Kaplan-Meier 

survival curves for Hsp70+/+ (n=11, and 12 respectively) and Hsp70-/- (n=19) mice inoculated 

intracranially with 3.5 LD50 22L prion or 3.5 LD50 RML prion indicates that deletion of 

Hsp70.1/3 did not affect survival (Log rank: p = 0.207 and 0.495, respectively).  

 

Figure 2. Deletion of Hsp70.1/3 Worsens Motor Deficits in R6/2 Mice  

(A) Deletion of Hsp70.1/3 decreases the latency to fall of R6/2 mice (Two-way ANOVA: p < 

0.05), and (B) increases severity of clasping (Two-way ANOVA: p < 0.001), (C) tremor (Two-

way ANOVA: p < 0.001), and (D) grooming (Two-way ANOVA: p < 0.03). (E) Deletion of 

Hsp70.1/3 decreases R6/2 spontaneous activity (Two-way ANOVA: p < 0.001), but (B) has only 

a moderate effect on locomotor activity. Error bars indicate SEM. Note that in the absence of the 

R6/2 transgene, the loss of one or both copies of Hsp70.1/3 does not influence any of the 

presented outcome measures.  

 

Figure 3. Deletion of Hsp70.1/3 Exacerbates the Physical Phenotypes of R6/2 Mice  

(A) The absence of Hsp70.1/3 significantly exacerbates the weight loss phenotype (Two-way 

ANOVA: p < 0.05), (B) worsens the coat appearance (Two-way ANOVA: p < 0.001), (C) body 

position (Two-way ANOVA: p < 0.02), and (D) tail position (Two-way ANOVA p < 0.001) of 

R6/2 mice.  Error bars indicate SEM. Note that in the absence of the R6/2 transgene, the loss of 

one or both copies of Hsp70.1/3 does not influence any of the presented outcome measures.  

 

Figure 4. Deletion of Hsp70.1/3 Increases the Size of Inclusion Bodies in R6/2 Mice 
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(A) Representative images (600 x) of inclusion bodies in the neocortex of R6/2 mice as detected 

with the anti-htt antibody EM48. (B) Quantification of inclusion body number in the neocortex 

shows that R6/2tg/-;Hsp70-/- mice have an increase in the density of inclusion bodies in 

comparison to R6/2tg/-;Hsp70+/+ mice, although this difference only showed a trend towards 

statistical significance (p = 0.086). (C) Representative images (1000 x) illustrating the size of 

inclusion bodies in the neocortex of R6/2 mice as detected with the anti-htt antibody EM48. (D) 

Quantification of inclusion body size shows that the average size of the inclusion bodies was 

significantly larger (p< 0.001) in R6/2tg/-;Hsp70-/- mice in comparison to R6/2tg/-;Hsp70+/+ mice. 

Statistical comparisons were performed by one-way ANOVA (n = 6–11 mice per group). 

 

Figure 5. Deletion of Hsp70.1/3 Does Not Modulate Levels of SDS-insoluble Fibrillar 

Protein Aggregates Formed by Mutant htt exon 1 in R6/2 Mice  

(A and B) Deletion of Hsp70.1/3 does not alter the levels of EM48 reactive SDS-insoluble 

aggregates (normalized to GAPDH reactivity) measured with western immunoblots in 14-week-

old R6/2 brain homogenates (Student t-test p=0.96). (C and D) Treatment of brain homogenates 

with formic acid liberates an SDS-resistant monomeric/oligomeric mutant huntingtin exon 1 

species. The levels of formic acid-sensitive monomers/oligomers (normalized to GAPDH 

reactivity) appeared to increase in the absence of Hsp70.1/3, but did not reach statistical 

significance (Student t-test p=0.15). (E and F) The levels of SDS-insoluble EM48-positive 

fibrillar aggregates in brain measured by a filter-trap assay do not change in the absence of 

Hsp70.1/3 (Student t-test p=0.89). (G and H) Formic acid treated brain homogenates were 

subjected to the filter-trap assay, which showed no change in EM48 immunoreactivity in the 

absence of Hsp70.1/3 (Student t-test p=0.90). (I) A native agarose gel used to examine EM48 

immunoreactive oligomeric species in R6/2 brain homogenates shows no change in the absence 

of Hsp70.1/3.  

 

Figure 6. Deletion of Hsp70.1/3 Exacerbates the Loss of c-Fos Immunoreactivity and Other 

Neuropathological Deficits in R6/2 Mice 

(A and B) Quantification of c-Fos immunohistochemistry in the neocortex from 14-week-old 

mice shows that R6/2tg/-;Hsp70-/- mice have a significant decrease (p< 0.05) in c-Fos levels in 

comparison to R6/2tg/-;Hsp70+/+ mice. (C and D) Quantification of synaptophysin 
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immunohistochemistry in the neocortex from 14-week-old mice shows that R6/2tg/-;Hsp70+/- and -/- 

mice have a significant decrease (p< 0.05) in synaptophysin levels in comparison to R6/2-/-

;Hsp70-/- mice. (E and F) Quantification of Iba1 and GFAP immunohistochemistry in the 

neocortex from 14-week-old mice shows that R6/2tg/-;Hsp70+/- and -/- mice have a significant 

increase (p = 0.0297) in Iba1 levels, and a trend towards increased GFAP levels (p = 0.1048), 

respectively, in comparison to R6/2-/-;Hsp70-/- mice. 
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Supplemental Table 1. Scoring protocol for the neurobehavioral and physical phenotype 
assessment. 

 
  NEUROBEHAVIORAL ASSESSMENT  PHYSICAL PHENOTYPE ASSESSMENT 

    

Clasping Weight 

0 = none or forepaws pressed together Measured twice weekly  

1 = fore or hind paws press into stomach   

2 = fore and hindpaws touch OR   

      fore and hindpaws press into 

stomach   

    

Tremor Palpebral closure 

0 = none 1 = wide open 

1 = mild 2 = flattened, swollen, squinty 

2 = marked   

    

Grooming Coat Appearance 

1 = normal- occasional 1 = normal-shiny and well groomed  

2 = none or excessive and repetitive 2 = fur erected and/or scruffy  

    

Spontaneous Activity Body Position 

1 = moderate:covers all quadrants 1 = elongated, normal gait 

2 = slow:covers 1-3 quadrants 2 = hunched, rounded 

3 = no movement or darting/circling   

    

Locomotor Activity Tail Position 
Number of times that the mouse places 1 = horizontally extended 

at least one paw on the side of the   2 = dragging/straub 

cage during a 2 minute period   
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Supplemental Figure 1. Deletion of Hsp70.1/3 Does Not Modulate Levels of the Major 

Inducible Heat Shock Proteins in R6/2 Mice  

(A) Deletion of Hsp70.1/3 in WT and R6/2 mice has no effect on levels of Hsp27 and Hsp90 as 

analyzed by western immunoblots. Deletion of Hsp70.1/3 in WT and R6/2 mice also has no 

effect on levels of Hsp25, Hsp40 and Hsc70 (not shown). (B and C) The levels of Hsp27 and 

Hsp90 in brain homogenates from mice of the indicated genotypes are not significantly different 

in the absence of Hsp70.1/3 (One-way ANOVA: p=0.59 and p=0.24, respectively). Shown is the 

average from three independent experiments.  

 


