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Abstract

Sex determination in mammals is controlled by the presence or absence of the Y-linked gene SRY. In the developing male
(XY) gonad, sex-determining region of the Y (SRY) protein acts to up-regulate expression of the related gene, SOX9, a
transcriptional regulator that in turn initiates a downstream pathway of testis development, whilst also suppressing ovary
development. Despite the requirement for a number of transcription factors and secreted signalling molecules in sex
determination, intracellular signalling components functioning in this process have not been defined. Here we report a role
for the phylogenetically ancient mitogen-activated protein kinase (MAPK) signalling pathway in mouse sex determination.
Using a forward genetic screen, we identified the recessive boygirl (byg) mutation. On the C57BL/6J background, embryos
homozygous for byg exhibit consistent XY gonadal sex reversal. The byg mutation is an A to T transversion causing a
premature stop codon in the gene encoding MAP3K4 (also known as MEKK4), a mitogen-activated protein kinase kinase
kinase. Analysis of XY byg/byg gonads at 11.5 d post coitum reveals a growth deficit and a failure to support mesonephric
cell migration, both early cellular processes normally associated with testis development. Expression analysis of mutant XY
gonads at the same stage also reveals a dramatic reduction in Sox9 and, crucially, Sry at the transcript and protein levels.
Moreover, we describe experiments showing the presence of activated MKK4, a direct target of MAP3K4, and activated p38
in the coelomic region of the XY gonad at 11.5 d post coitum, establishing a link between MAPK signalling in proliferating
gonadal somatic cells and regulation of Sry expression. Finally, we provide evidence that haploinsufficiency for Map3k4
accounts for T-associated sex reversal (Tas). These data demonstrate that MAP3K4-dependent signalling events are required
for normal expression of Sry during testis development, and create a novel entry point into the molecular and cellular
mechanisms underlying sex determination in mice and disorders of sexual development in humans.
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Introduction

Sex determination is the process by which an embryo develops

into a male or female, namely, the formation of testes in an XY

embryo and ovaries in an XX embryo. In the mouse, this process

begins with commitment of cells of the bipotential genital ridge to

either the testicular or ovarian fate at 11.5 d post coitum (dpc) [1].

In mammals such as mice and humans, this commitment depends

on the presence or absence of the Y-linked testis-determining gene,

SRY [2–4].

During the search for the elusive mammalian testis-determining

factor, it was a criterion of correct identification that any candidate

gene be associated with mutations that cause pure (gonadal) XY

sex reversal: the development of an ovary in an XY individual.

Such mutations in SRY were readily discovered in mice [5] and

humans [6] exhibiting sex reversal, and this link with sex reversal

has been a constant theme in the subsequent identification of

novel, mostly autosomal, genes functioning in sex determination.

Instances of XY sex reversal in the mouse associated with single

gene mutations remain relatively uncommon. Excluding Sry, they
include targeted mutations of Sox9 [7,8], Dax1 [9], Fgf9 [10], Fgfr2

[11,12], Gata4/Fog2 [13,14], Cbx2 (M33) [15], and Wt1(+KTS)
[16]. Mice harbouring targeted mutations in three members of the

insulin-receptor signalling pathway also exhibit XY sex reversal
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[17]. In several of these cases, variability exists in the degree of sex

reversal observed, depending on genomic context. The C57BL/6J

background often biases gonadal development in favour of ovarian

tissue in mutant XY embryos and this ‘‘B6 sensitivity’’ increases

still further if the AKR/J Y chromosome (YAKR) is present [14].

Additional genes have been identified that disrupt testis develop-

ment, affecting testis cord formation or the differentiation of testis-

specific cell lineages. These include Dhh [18–20], Pdgfra [21], Pod1

[22], Arx [23], Wnt4 [24], and Spry2 [25]. The contribution of

other protestis genes to sex determination, such as Sf1 [26], Dmrt1

[27], and Sox8 [7], can be difficult to discern owing to functions of

such genes earlier in gonad development or functional redun-

dancy.

In addition to the contribution of specific genes, other

autosomal loci have been reported to control sex determination

in the mouse. Such loci have been identified on the basis of genetic

segregation in cases of sex reversal observed when the Y

chromosome of the C57BL/6 strain is replaced by that of Mus

domesticus poschiavinus [28], or on the basis of their modifying the

phenotypic effect of another sex determining locus [29,30].

The search for novel sex determining genes has been driven in

recent years by the transcriptional properties of candidate genes

identified by expression profiling [31–35]. However, such gene-

driven approaches have not yielded a significant number of novel

sex reversal phenotypes or abnormalities of gonadal differentiation

that could act as important models for the investigation of the

molecular genetic basis of sex determination. Notable exceptions

to this general observation include the genes Cyp26b1 [36,37] and

Pgds [38,39], whose roles in germ cell and somatic cell

development, respectively, were established partly on the basis of

earlier observations on their male-specific expression derived from

systematic expression screens.

As an alternative to expression-based screens, we have

employed a forward genetic approach to identifying loci

controlling sexual development in the mouse. Using N-ethyl-N-

nitrosourea (ENU) mutagenesis and a three-generation (G3)

breeding scheme, we screened for abnormalities of the developing

gonads in embryos homozygous for induced mutations. In one

mutant pedigree, RECB/31, we identified XY embryos exhibiting

abnormal testis cord development and, in some cases, gonadal sex

reversal. We have named this mutant line boygirl (byg). Genetic

mapping placed byg on the proximal region of mouse Chromo-

some 17 and molecular studies revealed that the byg phenotype is

caused by a point mutation in the Map3k4 (Mekk4) gene. Embryos

doubly heterozygous for both the Map3k4byg allele and a targeted

null allele of Map3k4 (Map3k4tm1Flv) exhibited neural tube defects

and XY gonadal sex reversal, confirming that Map3k4 is the causal

gene. Map3k4 encodes a mitogen-activated protein kinase (MAPK)

kinase kinase, demonstrating for the first time a role for MAPK

signalling in mammalian sex determination. We describe molec-

ular and cellular studies on the byg mutant that demonstrate a

requirement for mitogen-activated protein kinase kinase kinase 4

(MAP3K4) in regulating XY gonadal growth, mesonephric cell

migration, and the expression of Sry, and hence Sox9, during XY

gonad development. We also describe genetic experiments that

suggest that loss of Map3k4 is responsible for a previously reported

autosomal sex reversal phenomenon, T-associated sex reversal

(Tas) [40,41].

Results

Identification and Molecular Characterisation of byg
Mutant
Line 31 (RECB/31) was identified in a forward genetic

(phenotype-driven) screen for embryonic gonad abnormalities

after ENU mutagenesis (see Materials and Methods for details).

Embryos homozygous for ENU-derived mutations were isolated

and examined for a variety of morphological abnormalities. One

RECB/31 embryo, dissected at 13.5 dpc, exhibited spina bifida,

mild oedema, and also contained gonads shaped like normal testes

but with no visible testis cords (Figure 1A and 1B). A second,

independent RECB/31 litter contained an embryo with spina

bifida and testes that had fewer cords than normal with an

irregular morphology (Figure 1C). Having identified these

individuals, subsequent RECB/31 embryos were examined and

gonads were collected for sexing and wholemount in situ

hybridisation (WMISH). In this manner, another XY individual

was identified in which the gonads were morphologically ovarian

at the same stage (Figure 1D). WMISH analysis of gonads from

these three abnormal embryos using the Sertoli cell marker Sox9

confirmed the disruption to testis development and its variable

severity as described above (Figure 1B–1D). In each case, Sox9

expression was still prominent. However, in the case of the XY

gonad with an ovarian appearance, expression was restricted to

the central portions of the gonad and absent from the poles. This

observed phenotypic variability, and that of subsequent mutants

identified in the RECB/31 pedigree, is likely due to the mixed

genetic background of the embryos examined. All embryos with

abnormal XY gonads exhibited failure of neural tube closure,

either spina bifida or exencephaly (unpublished data). Embryonic

death of homozygous mutants was commonly observed after

15.5 dpc. Because of the observed gonadal abnormalities and

apparent XY gonadal sex reversal, this mutant line was named

boygirl (byg).

During subsequent generations of backcrossing onto C3H/HeH

the gonadal phenotype was still robust, although the majority of

RECB/31 XY gonads had the appearance of ovotestes, in which

the central portion of the gonad shows evidence of cord formation,

but the poles are ovarian in both appearance and marker

expression (Figure 1E–1N). No overt abnormalities were observed

in XX byg/byg gonads in these marker studies.

Author Summary

In mammals, whether an individual develops as a male or
female depends on its sex chromosome constitution:
those with a Y chromosome become males because of the
development of the embryonic gonad into a testis. The Y-
linked sex determining gene SRY regulates this process by
initiating a pathway of gene and protein expression,
including the expression of critical autosomal genes such
as SOX9. We identified a mouse mutant that causes
embryonic gonadal sex reversal: the development of
ovaries in an XY embryo. This mutant, which we called
boygirl (byg), was shown to contain an early stop codon
that disrupts the autosomal gene encoding MAP3K4, a
component of the mitogen-activated protein kinase
(MAPK) signaling pathway. Analysis of embryonic XY
gonads suggests that sex reversal is caused by delayed
and reduced expression of the sex-determining gene SRY.
Our data indicate, for the first time, a requirement for
MAPK signaling in the developing XY gonad in order to
facilitate normal expression of SRY and the downstream
testis-determining genes and also suggest that reduced
dosage of MAP3K4 may be the cause of a previously
described autosomal sex-reversing mutation in the mouse.
We predict that loss of MAP3K4 or other MAPK compo-
nents may underlie disorders of sexual development (DSD)
in humans as well.

MAP3K4 Is Required for Mouse Sex Determination
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Identification of additional affected XY gonads permitted

mapping of the byg mutation. Abnormal embryos (n=9) were

typed with a genome-wide panel of 55 SNP markers in order to

identify chromosomal regions that were consistently homozygous

for the C57BL/6-derived allele. Only one region, on proximal

mouse Chromosome 17, showed this feature of genetic association

with byg. This initial linkage was refined by subsequent

backcrossing of byg carrier males with C3H/HeH females and

intercrossing of carrier progeny, identified by SNP haplotype

analysis. Additional SNPs were then used to identify a critical

region, in which the byg mutation must reside, between 9.66 Mb

(rs3665053) and 15.32 Mb (rs13482889) on Chromosome 17. We

used an informatics-based approach to identify candidate genes in

the byg critical region. One such candidate was the gene Map3k4

(also known as Mekk4, GenBank [http://www.ncbi.nlm.nih.gov/

Genbank] number NM_011948), which encodes a MAPK kinase

kinase [42,43]. Mice lacking this gene, which were generated

previously by gene targeting, are associated with perinatal lethality

on the C57BL/6 background [44]. Because homozygous Map3k4

mutant embryos also exhibit neural tube defects and because

Map3k4 is expressed in most embryonic tissues between 9.5 and

15.5 dpc [42,44,45], including the gonads (Figure 2A and 2B), we

examined the sequence of Map3k4 in affected byg/byg embryos. A

single nucleotide substitution at nucleotide position 1,144 of the

Map3k4 open reading frame was identified in the homozygous

form in two independent byg/byg mutants (Figure 2C and 2D).

This substitution replaces an arginine with a premature stop codon

at amino acid position 382 of the 1,597 amino acid MAP3K4

protein. The predicted truncated protein lacks the critical kinase

domain of MAP3K4 and, therefore, lacks any MAPKKK function

(Figure 2E). Absence of full-length (180 kDa) MAP3K4 protein in

byg homozygous mutants was confirmed by Western blotting with

an anti-MAP3K4 antibody (Figure 2F). A kinase-inactive allele of

Map3k4 has previously been shown to have very similar

phenotypic consequences to the null allele [45]. Thus, because

of the effect of the premature stop codon causing loss of the kinase

domain, we conclude that the Map3k4byg allele is a null allele. The

entire colony of byg mice was typed for the presence of the

mutation in Map3k4 and all known byg carriers were heterozygous

for the mutation. The mutation was not found in any wild-type

C57BL/6J or C3H/HeH mice. We concluded, therefore, that the

gonadal phenotype in mutant byg embryos is caused by loss of

MAP3K4 function.

To confirm this, and discount the possibility that a second,

closely linked mutation in an unrelated gene was responsible for

the gonadal phenotype, we studied a second Map3k4 mutant allele

Figure 1. Identification of the byg mutant. (A) Line RECB/31 (boygirl, byg) mutant embryo dissected during the screen at 13.5 dpc. The embryo
shown here has exencephaly, spina bifida, and mild oedema. On the mixed genetic background used for the forward genetic screen, the boygirl XY
gonadal phenotypes observed at 13.5/14.5 dpc ranged from testis-shaped gonads that lacked cords (B), to testes with abnormal cord morphology
and ‘‘missing’’ cords (arrowhead, C) through to XY gonads with an overt ovarian morphology (right, D). All gonads shown here were hybridised with a
Sox9 probe to assess cord structure and differentiation of Sertoli cells. Note the higher than normal (with respect to ovary development) levels of Sox9
transcript in the boygirl XY ‘‘ovary’’ in (D) and the absence of Sox9 from the poles of this gonad (arrowheads, D), a characteristic of ovotestis
development. Wild-type littermate gonads from unaffected XY and XX embryos are shown for comparison. (E–G) After further out-crossing of the byg
mutation to C3H/HeH for mapping purposes, XY byg/byg gonads exhibited further signs of ovotestis formation. For example, expression of the germ
cell marker Oct4 at 13.5 dpc revealed a cord-like pattern only in the centre of the gonad shown here (bracket, E), made clearer by sectioning (bracket,
F). Note also the thickened capsule over the central testicular area. Control gonads exhibited robust cord formation throughout their length (G). (H)
XX byg/byg gonads exhibited a normal pattern of Oct4 expression. (I) The poles of XY byg/byg gonads were also characterised by loss of male-specific
genes, such as the Leydig cell marker 3b-HSD (bracket). (J) Abnormal expression of female-specific marker Wnt4 at the gonadal poles (arrowheads
next to gonad on left) at 14.5 dpc. (K) Normal expression ofWnt4 in XX byg/byg gonad. (L) Absence of expression of meiotic marker Stra8 in wild-type
XY gonad. (M) Prominent Stra8 expression in XX byg/byg gonad. (N) Expression of Stra8 at gonadal poles in XY byg/byg gonad (brackets).
doi:10.1371/journal.pbio.1000196.g001

MAP3K4 Is Required for Mouse Sex Determination
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Figure 2. The byg phenotype is caused by a point mutation in Map3k4. (A) WMISH of 12.5 dpc XY gonads with a Map3k4 probe revealing
widespread expression, including in newly formed testis cords. (B) Longitudinal section through male gonad at 13.5 dpc, after WMISH, showing
Map3k4 expression in testis cords. (C, D) Sequence traces from heterozygous (byg/+, C) and homozygous (byg/byg, D) individuals reveal an A to T
transversion at nucleotide position 1,144 of the Map3k4 open reading frame of the byg allele. (E) This mutation replaces an arginine with a premature
stop codon (asterisk) at amino acid position 382 of the 1,597 amino acid MAP3K4 protein. The predicted truncated protein lacks the critical kinase
domain (S_TKc) and, therefore, any MAPKKK function. (F) Western blotting of protein extracted from byg/byg and +/+ embryos shows absence of full-
length (180 kDa) MAP3K4 in mutant homozygotes. The position of size markers is shown on the left. The upper band found in both lanes is due to
cross-reaction of the antibody with an unrelated protein. (G) A genetic complementation test was performed to confirm that homozygosity for the
Map3k4 point mutation caused the byg gonadal phenotype. XY mutant embryos heterozygous for both the Map3k4byg and targeted Map3k4tm1Flv

alleles were dissected at 14.5 dpc and contained gonads with an overt ovarian morphology (central gonad). XX and XY littermate controls are also
shown. (H) Hybridisation of a Sox9 probe to a doubly heterozygous XY gonad (left) reveals little expression of the Sertoli cell marker, in contrast to an
XY control (right). (I) XY gonad from 14.5 dpc embryo homozygous for the Map3k4tm1Flv allele (2/2) exhibits overt ovarian morphology and an
absence of Sox9 (right), in contrast to XY littermate control (left). (J) XY gonad from homozygous knockout embryo (2/2) also expresses high levels
of Wnt4 (central gonad). XY and XX control gonads are shown on left and right, respectively.
doi:10.1371/journal.pbio.1000196.g002

MAP3K4 Is Required for Mouse Sex Determination
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(Map3k4tm1Flv) generated by gene targeting [44]. Embryos

homozygous for the Map3k4tm1Flv allele exhibit neural tube defects

and die perinatally, although there have been no descriptions of

sexual development in these individuals. Embryos doubly

heterozygous for both Map3k4byg and Map3k4tm1Flv were examined

at 14.5 dpc and exhibited neural tube defects (unpublished data).

All XY embryos contained gonads with an overt ovarian

appearance (Figure 2G), and these failed to express Sox9 at

significant levels (Figure 2H). The absence of any overt testicular

tissue in these XY embryonic gonads is likely due to the increased

contribution from the C57BL/6J genome in these individuals.

Embryos homozygous for the targeted allele, which was

maintained on the C57BL/6J background, also exhibited gonadal

sex reversal, with affected XY embryos containing gonads with

ovarian morphology, lacking Sox9 and expressing Wnt4, a marker

of ovarian differentiation (Figure 2I and 2J). Thus, these data

confirm that Map3k4 is the gene disrupted in the byg mutant and

that MAP3K4 is required for testis determination in mice.

Phenotypic Characterisation of the byg Mutant
Evidence exists that the C57BL/6J background is sensitised to

disruptions to XY gonad development, and this conclusion

appeared to be supported by the increased severity of the XY

gonadal phenotype observed in embryos heterozygous for both

Map3k4byg and Map3k4tm1Flv, and homozygous for Map3k4tm1Flv, in

which the contribution from C57BL6/J was greater. Thus, we

performed a detailed examination of embryos homozygous for

Map3k4byg after backcrossing to C57BL6/J for at least two

generations. We examined cell proliferation, mesonephric cell

migration, and cellular differentiation in mutant and wild-type

gonads because all these processes are required for normal testis

development [1,46,47].

Cellular proliferation is an important component of the

organogenetic programme of testis development [48,49]. Gonadal

cell proliferation was examined at 11.5 dpc (17–18 tail somites

[ts]), 12.0 dpc (20–22 ts), and 12.25 (24 ts) in the coelomic region

of gonads from byg/byg and control littermates using immuno-

staining with an antibody for the mitotic marker phosphorylated

histone H3 (pHH3). Somatic cell proliferation in XY byg/byg

gonads appeared reduced in the coelomic region in comparison to

wild-type XY embryonic gonads at all stages examined (Figure 3;

Table 1). Moreover, at the 22- and 24 ts stages (12.0–12.25 dpc),

the coelomic region of control XY gonads was thickened and

contained a larger number of somatic cells, in contrast to byg/byg

XY gonads, which had fewer cells in this region and resembled

wild-type XX gonads of the same stage (Figure 3). We conclude

that cellular proliferation, and thus gonadal growth, in the

coelomic region is severely compromised in byg/byg XY gonads

at an early stage.

Increased levels of apoptosis have previously been described in

the neural tube of mice lacking Map3k4 [44]. For this reason we

examined levels of apoptosis in the byg/byg XY gonad and controls

at 17 ts using an antibody to cleaved caspase 3. We observed very

few positive cells in mutant and control gonads, although large

numbers of apoptotic cells were observed in a positive control

(interdigital mesenchyme of the developing limb) using this assay

(unpublished data). Thus, we cannot attribute impaired gonadal

growth in XY byg/byg embryos to increased levels of apoptosis.

Testis cord formation in the mouse requires cell migration from

the associated mesonephros into the XY gonad in a male-specific

fashion [50–53]. To examine mesonephric cell migration into the

XY byg/byg gonad we first examined development of mutant

gonads when explanted from the embryo at 11.5 dpc and cultured

in vitro. Control gonads (wild-type and byg/+ littermates) formed

clear testis cords after 2 d of culture and expressed the Sertoli cell

marker, Sox9 (n=3) (Figure S1A). In contrast, we did not observe

any testis cords in cultured XY gonads from byg/byg embryos

(n=3) (Figure S1B and S1D). WMISH analysis revealed that these

cord-free XY gonads failed to express Sox9 (Figure S1B), indicating

a failure to execute the program of testis differentiation. In

contrast, high levels of Wnt4 expression in the mutant XY gonads

indicated an activation of the ovarian pathway (Figure S1D).

To examine whether the severe disruption to cord formation in

the byg/byg gonad was associated with any loss of mesonephric cell

migration, we performed recombination experiments in which

mesonephroi ubiquitously expressing green fluorescent protein

(GFP) were cultured adjacent to a byg/byg XY gonad from

11.5 dpc. Cell migration into control XY gonads was prominent

after 48 h of culture (Figure S1E). In contrast, little or no cell

migration was detected in cultured byg/byg gonads (Figure S1F).

These data suggest that two early cellular processes associated

specifically with XY gonad development, cell proliferation in the

coelomic growth zone and mesonephric cell migration, are

disrupted in the absence of MAP3K4.

In order to address the molecular basis of these defects, we next

investigated the expression of key male- and female-determining

genes and gene-products between 11.5 and 14.5 dpc, stages of

gonad development between which the male and female fates are

established and the programme of sexually dimorphic morpho-

genesis is executed. Several molecules have been shown to be

required for normal testis determination, including SRY [5],

fibroblast growth factor 9 (FGF9) [10], FGFR2 [11,12], and SRY-

like HMG box 9 (SOX9) [7,8]. Current understanding suggests

that SRY, in concert with SF1, acts to up-regulate Sox9 expression

in the XY gonad at 11.5 dpc [54,55]. Sox9 expression is then

maintained at a high level by a positive feedback loop with FGF9/

FGFR2, and acts to antagonise function of the ovary-determining

gene Wnt4 [56]. A role for prostaglandin D2 in the regulation of

Sox9 expression has also been proposed [12,39,57,58]. Down-

stream of SOX9, genes such as Amh [59] and Vanin-1 [31,32,60],

with male-determining effects, are transcriptionally activated, and

germ cell fate is established by modulation of retinoic acid

signalling [36,37]. These molecular events are associated with

precise spatial (cellular and subcellular) and temporal expression

profiles of genes and their protein products, often in a sexually

dimorphic manner.

Given its central role in testis development we began our study

with an analysis of Sox9 expression. From 11.5 dpc onwards Sox9

transcription in control XY gonads is prominent, initially in pre-

Sertoli cells and subsequently in Sertoli cells of the seminiferous

cords/tubules. However, analysis of byg/byg homozygotes revealed

dramatically reduced levels of Sox9 transcript (Figure 4). At

14.5 dpc the byg/byg XY gonad resembles an ovary morpholog-

ically and no significant Sox9 transcription was detectable

(Figure 4A). This loss of a Sertoli cell marker in mutant XY

gonads was accompanied by elevated expression of two known

female-specific markers at the same stage, Stra8 and Wnt4

(Figure 4B and 4C). Expression of these genes indicates that the

ovarian pathway of development, including entry of germ cells

into meiosis, is activated in vivo in the absence of MAP3K4.

At 11.5 dpc, the sex-determining stage of gonadogenesis, little

or no Sox9 transcript was observed (Figure 4E), and this loss of

expression was confirmed by immunostaining of mutant and

control gonads at the same stage with an anti-SOX9 antibody

(Figure 4G–4I). However, Wnt4 expression was prominent in the

XY byg/byg gonad at 11.5 dpc, in contrast to wild-type controls

(Figure 4F). Interestingly, Sox9 transcription at 11.5 dpc in mutant

gonads on the C3H/HeH background was reduced in comparison

MAP3K4 Is Required for Mouse Sex Determination
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Figure 3. Reduced gonadal growth in XY byg/byg embryos between 11.5 and 12.25 dpc. (A) Somatic cell proliferation in the coelomic
region of control and XY byg/byg gonads was analysed by confocal imaging of wholemount organs after immunostaining with anti-PECAM (green)
and anti-phospho-histone H3 (red) antibodies. Cell nuclei were visualised using DAPI staining (blue). All gonads were staged accurately by counting ts
(ts number shown on left). The coelomic growth zone characteristic of XY gonads is shown with white brackets in the 22 ts and 24 ts samples. This
thickened zone of proliferating somatic cells is not found in XY byg/byg or XX +/+ gonads at any of the stages analysed. (B) Counts in the coelomic
region of total number of somatic cells and mitotic (pHH3-positive) cells in XX/XY wild-type (wt) and XY byg/byg (mut) gonads at the stages shown in
(A). Cell counts were performed on limited numbers of XX byg/byg gonads at 18 ts and 20–22 ts. Numbers were comparable with wild-type XX and XY
byg/byg samples (unpublished data). For details of cell counting methodology and statistical tests see Materials and Methods and Table 1.
doi:10.1371/journal.pbio.1000196.g003

MAP3K4 Is Required for Mouse Sex Determination
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to controls (Figure 4D), but not to the same degree as the C57BL/

6J-derived mutant gonads at the same stage. Loss of Sox9

expression is associated with XY sex reversal in a number of

genetic contexts, and mice homozygous for a loss-of-function allele

of Sox9 targeted to the developing XY gonads by Cre-mediated

excision exhibit immediate, complete gonadal sex reversal, as

evidenced by the expression of female-specific markers and the

absence of testis cord formation [8]. Thus, loss of Sox9 expression

is sufficient to explain the failure of male-specific events in XY byg/

byg homozygotes, such as enhanced coelomic region growth,

mesonephric cell migration, and testis cord formation.

We next analysed expression of several other important markers

of male and female gonad development around 11.5 dpc (16 to 19

ts) using immunohistochemical staining of transverse sections. SF-

1 (NR5A-1) is thought to mediate up-regulation of Sox9

transcription in the early XY gonad by acting on a specific

gonadal enhancer (TESCO) in synergy with SRY [55]. We

observed no significant difference in the expression of SF-1

between wild-type and byg/byg XY gonads at this stage, with large

numbers of somatic cells exhibiting nuclear staining in both

genotypic classes (Figure S2A and S2B). FGFR2, a gonadal

receptor for FGF9, has been reported to exhibit a sexually

dimorphic profile of expression in the gonads at 11.5 dpc, with

somatic cells in the body of the XY gonad exhibiting nuclear

localisation of the protein and XX somatic cells, in contrast,

exhibiting a cytoplasmic localisation [12,61]. We also observed

nuclear localisation of FGFR2 in somatic cells of control XY

gonads at 11.5 dpc (Figure S2F and S2G), but in XY byg/byg

gonads, although FGFR2 expression was still prominent, its

localisation was cytoplasmic, resembling XX control gonads at the

same stage (Figure S2H–S2J).

Next, we examined the early expression of FOXL2, a protein

required for normal ovary development [62–65]. Foxl2 transcrip-

tion has been reported to be up-regulated in the developing mouse

gonad around the time of sex determination [66] and restricted to

somatic cells [62,63]. In newborn mice FOXL2 protein is

expressed in the nuclei of pregranulosa cells [63]. We observed

expression of FOXL2 in the nuclei of somatic cells in wild-type

XX gonads at 11.5 dpc (Figure S2E), but negligible expression was

observed in wild-type XY gonads (Figure S2C). However, striking

up-regulation of FOXL2 was observed in the nuclei of somatic

cells of byg/byg XY mutants (Figure S2D). Together with

prominent expression of Wnt4 transcript in mutant gonads at the

same stage (Figure 4F), these data suggest that the ovarian

determining pathway is activated at an early stage in the gonads of

XY byg/byg embryos lacking MAP3K4.

Absence of a number of molecules has been reported to cause

reduction or loss of Sox9 expression in mutant mouse gonads,

including FGF9 [56], FGFR2 [12], WT1 [16,67], and DAX1

[9,29]. Recently, it has been shown that SRY and SF-1

cooperatively bind a specific enhancer element (TESCO) to up-

regulate Sox9 transcription during XY gonad development and

that SOX9 subsequently acts to maintain its own expression by

binding to the same enhancer [55]. Because of this central role for

SRY in regulation of Sox9 expression, we investigated the

expression of Sry in XY byg/byg gonads (Figure 5). Sry transcription

reaches a peak at 11.5 dpc (17–18 ts) in XY mouse gonads, and so

we studied expression at this stage using in situ hybridisation. At

17 ts we observed Sry transcripts in wild-type XY gonads using

WMISH. However, no significant Sry transcription was observed

in XY mutant gonads at the same stage (Figure 5A). At the 19 ts

stage, Sry transcription is reduced in the wild-type gonads and still

absent from mutant (Figure 5B). We utilised quantitative real time-

PCR (qRT-PCR) to confirm this reduction in Sry expression in

mutant gonads at 11.5 dpc (Figure 5C). This qRT-PCR study

revealed an almost 3-fold reduction in Sry transcript levels in XY

byg/byg gonads. Sf1 transcript levels did not differ significantly

between mutant and control gonads, in line with our immuno-

histochemistry data. Fgf9 transcript levels appeared to be reduced

in XY byg/byg gonads, although this difference was not statistically

significant. We then studied the expression of SRY protein in

mutant and control gonads at the same stage using a specific

antibody to SRY [39,68]. Expression of SRY was observed in

somatic cells of the developing gonad at 11.5 dpc in control XY

gonads (Figure 5D and 5F). In contrast, very few SRY-positive

cells were detected in XY byg/byg gonads, which resembled XX

control gonads at the same stage of development (Figure 5E, 5G,

and 5H). High magnification examination of XY byg/byg gonads at

these stages also revealed that those cells that did express SRY did

so at a greatly reduced level (Figure 5I and 5J). In contrast to wild-

type controls, no SRY-positive cells were detected at 11.0 dpc

(Figure 5K and 5L). These studies suggest that appropriate

expression of Sry in XY gonads, at both the transcript and protein

level, is dependent on the presence of MAP3K4. In the absence of

MAP3K4, Sry expression is delayed and, at 11.5 dpc, severely

reduced. Reduced or delayed expression of Sry is known to be a

cause of XY gonadal sex reversal [69,70].

Expression of MAPK Signalling Components in the
Developing XY Gonad
MAP3K4 activity results in activation of the p38 and JNK

MAPK pathways as part of a three-kinase phosphorelay module

[71]. This signalling module is thought to regulate, amongst other

things, the cell’s response to stress including ultraviolet radiation,

heat shock, and osmotic stress [72]. MAP3K4 regulates the

MAPKs p38 and JNK via the phosphorylation of the MAP2Ks

Table 1. Cell proliferation in the XY byg/byg gonad.

Genotype 18 ts 20–22 ts 24 ts

N Mitotic Somatic N Mitotic Somatic N Mitotic Somatic

XY +/+ 6 4.17 268.0 7 7.71 444.0 2 8.50 546.0

XY byg/byg 5 2.00*a 281.4 8 5.50*b 349.3*c 2 3.00 277.0*d

XX +/+ 5 4.20 306.6 6 6.50 340.0*e 4 4.25 317.8*f

Cell counts of somatic cells in mitosis (mitotic) and total somatic cells (somatic) in coelomic region of wild-type (+/+) and byg/byg gonads between 18 and 24 ts stages.
N, independent gonad samples examined.
*, Values are significantly different from respective wild-type values using a two-tailed t-test where p#0.05. Individual p-values: a0.01; b0.043; c0.001; d0.038; e0.002;
f0.003.
doi:10.1371/journal.pbio.1000196.t001
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MKK3/MKK6 and MKK4/MKK7, respectively [42,43]. A

reduction in the number of cells positive for activated MKK4

activity has been reported in the neuroepithelium of embryos

lacking MAP3K4 [44]. Therefore, we assayed for the presence of

activated MKK4 in wild-type XY gonads at 11.5 dpc using

antibodies specific for the phosphorylated form of this protein

(pMKK4). pMKK4-positive cells were observed in the gonad, but

these were primarily found in the coelomic region of the gonadal

periphery (Figure 6A and 6B), a profile reminiscent of pHH3-

positive mitotic cells (Figure 3A). A similar distribution was

observed when pMKK7-positive cells were imaged (Figure 6H).

Given these observations, we assayed directly for co-expression of

pMKK4 and pHH3 in the gonad at 11.5 dpc using immuno-

staining of sections. pMKK4-positive cells were found to be

positive for pHH3 too, both in the gonad and adjacent

mesonephros (Figure 6B–6D). We then assayed for the presence

of activated p38 (pp38) and pMKK7 in the same tissue sections,

and observed a similar pattern of pp38- and pMKK7-positive cells

at the gonadal periphery, which were also positive for pHH3

(Figure 6E–6J). The co-expression of pMKK4 and pHH3 was also

observed in XY byg/byg gonads at the same stage. In the case of

pMKK4, pMKK7, pp38, and pJNK, cells positive for these

activated proteins were still detectable in XY byg/byg gonads at

11.5 dpc (Figure S3), consistent with residual pMKK4 expression

Figure 4. Analysis of Sox9, Wnt4, and Stra8 expression reveals gonadal sex reversal in XY byg/byg embryos. (A) After back-crossing of
the byg mutation to C57BL/6J for at least two generations, XY byg/byg gonads expressed negligible levels of Sox9 (left) in comparison to control XY
gonads (right) at 14.5 dpc. (B) At 13.5 dpc, XY byg/byg gonads express Stra8, a marker of meiotic germs cells usually restricted to the ovary. (C) Wnt4,
a marker of ovarian somatic cells, is expressed in mutant XY gonads (right), in contrast to control gonads (left). (D) On the C3H/HeH background Sox9
transcription is detected at lower levels in the XY byg/byg gonad at 11.5 dpc (right) when compared to wild-type controls (left). Signal in the mutant
gonad appears concentrated towards the centre. (E) After backcrossing to C57BL/6J, Sox9 is expressed abundantly in the XY wild-type gonad at
11.5 dpc (left) but is now absent from XY byg/byg gonads, apart from just a few cells visible in the central region (asterisk, right). (F) XY byg/byg
gonads at 11.5 dpc express the ovarian somatic cell marker Wnt4 (top), in contrast to an XY control gonad (bottom). (G–I) Immunostaining of a
transverse section from a control C57BL/6J XY gonad at 11.5 dpc with anti-PECAM (germ cell, red) and anti-SOX9 (pre-Sertoli cell, green) antibodies
reveals large numbers of somatic cell nuclei (G), in contrast to XY byg/byg (H), and XX wild-type control (I), in which SOX9 protein is not detected at
significant levels.
doi:10.1371/journal.pbio.1000196.g004
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Figure 6. MAPK signalling and XY gonad development. (A–G) Gonadal expression of three activated MAPK signalling components was
examined: phospho-MKK4 (pMKK4), a product of MAP3K4-mediated phosphorylation of MKK4, phospho-p38 (pp38), and phospho-MKK7 (pMKK7). (A)
Anti-pMKK4 antibody detects activated MKK4 (red) in a number of somatic cells in the developing XY gonad at 11.5 dpc (21 ts) after wholemount
immunostaining. Note the concentration of pMKK4-positive somatic cells at the gonadal periphery in the coelomic region. Germ cells are marked by
anti-PECAM antibody (green) and cell nuclei by DAPI. (B–D) Transverse sections of 21 ts XY gonad showing co-expression of pMKK4 and the mitotic
marker pHH3 in cells at the gonadal periphery. The gonad (left) is separated from the mesonephros (right) by a dotted white line. (E–G) Transverse
sections of 21 ts XY gonad revealing co-expression of activated p38 (pp38) and pHH3 in cells at the gonadal periphery. (H–J) Transverse sections
showing similar co-expression of pMKK7 and pHH3. (K–N) The effect of two specific inhibitors of MAPK signalling on XY gonad development in vitro
was studied. (K) Culture of wild-type XY gonads from 11.5 dpc for 48 h in the presence anti-ERK inhibitor U0126 (+, upper three gonads in panel) has
no obvious effect on Sox9 expression in comparison to gonads cultured with vehicle control (v, lower three gonads). Testis cord formation in treated
samples is, however, not as pronounced as in controls. (L, M) Culture of wild-type XY gonads in the presence of p38 inhibitor SB202190 (+, upper rows
of gonads) results in striking, but variable, alterations to Sox9 expression patterns in contrast to vehicle control cultures (v, lower rows), ranging from
loss of transcription in the gonadal poles (asterisks) to complete absence of transcription (gonads beneath brackets). (N) Analysis of XY gonads
cultured in SB202190 also reveals up-regulation of Wnt4 transcription (open arrowheads, upper row) in contrast to vehicle controls, which lack Wnt4
(black arrowheads, lower row). These data suggest that, at least partial, XY gonadal sex reversal is caused by inhibition of p38 from 11.5 dpc. There
were no signs of tissue necrosis or excessive cell death during these experiments. All gonads were from embryos on the C57BL/6J background.
doi:10.1371/journal.pbio.1000196.g006

Figure 5. Loss of Sry transcript and protein expression in XY byg/byg gonads at 11.5 dpc on C57BL/6J. (A) At the 17 ts stage, Sry
transcript is detected throughout an XY control gonad (left) but is absent from the C57BL/6J XY byg/byg gonad (right). (B) By 19 ts, the signal is
diminishing in the XY control gonad (left) and is still not detectable in the XY byg/byg gonad (right). (C) qRT-PCR analysis of Sry, Sf-1, and Fgf9
transcription in XY +/+ and byg/byg gonads at 11.5 dpc (17–18 ts). Error bars for the relative quantitation (RQ) values represent variation across four
biological replicates for each genotype and three technical replicates for each sample. The 2.8-fold reduction in Sry levels in XY byg/byg gonads is
significant (p= 0.02) based on a t-test calculated using average dCT values for the above genes and those of Hprt1. Differences in the levels of Sf-1
(p=0.28) and Fgf9 (p=0.23) were not significant, although there is a trend for reduced expression of Fgf9 in byg/byg. (D) Immunostaining of a
longitudinal section of control XY gonad at 17 ts with anti-SRY (green) and anti-PECAM (red) antibodies reveals abundant expression of SRY in
somatic cell nuclei of the gonad. Tissue beneath the dotted white line in this and subsequent images is mesonephric. (E) In contrast, very few SRY-
positive cells are detectable in a longitudinal section from a XY byg/byg gonad at the same stage. (F) Confocal imaging of a control XY gonad after
wholemount immunostaining with anti-SRY and anti-PECAM antibodies reveals large numbers of SRY-positive somatic cells, in contrast to XY byg/byg
(G) and control XX (H) gonads. (I) High magnification confocal image of wild-type gonad at 11.5 dpc showing large numbers of SRY-positive somatic
cells (green) and germ cells (red). (J) Confocal image of SRY expression in XY byg/byg gonad at 11.5 dpc generated using the same settings as in (I).
Note the greatly reduced number of SRY-positive cells and the reduction in signal intensity in the mutant gonad. (K) A wild-type XY gonad at
11.0 dpc (13 ts) showing SRY-positive cells (green) amongst germ cells (red). (L) In contrast, no SRY-positive cells are detected at 11.0 dpc in an XY
byg/byg gonad.
doi:10.1371/journal.pbio.1000196.g005
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in the neural tube of embryos lacking MAP3K4 [44]. These data

suggest that MAPK signalling is active in the developing XY

gonad at early stages, and is associated with proliferating cells of

the coelomic growth zone, but that alternative pathways exist for

MAPK activation in the gonad in the absence of MAP3K4.

Moreover, given our observation that mitotic somatic cells in the

coelomic region are those cells with activated MKK4/7 and

activated p38, the reduction in the number of proliferative cells in

the XY byg/byg gonad (Figure 3) corresponds to a reduction in the

number of pMKK4/7- and pp38-positive cells. Whilst it is possible

that a gonadal somatic cell activates the MAPK pathway only

once it enters mitosis, it is more consistent with the known role of

MAPK signalling in cell proliferation to conclude that male-

enhanced proliferation in the coelomic region is a MAPK-

dependent process. The reduction of coelomic region growth in

the XY byg/byg gonad at 11.5 dpc is thus explicable by a reduction

in the number of cells exhibiting MAP3K4-mediated phosphor-

ylation of MKK4/7, p38, and possibly other MAPK signalling

components.

Inhibition of p38 MAPK Signalling Disrupts Testis
Development In Vitro
In order to address whether disruption to components of

MAPK signalling can disrupt testis development in vitro, we

cultured wild-type embryonic XY gonads from 11.5 dpc for 48 h

in the presence of highly selective inhibitors of the MAPKs

extracellular signal-related kinase (ERK) (U0126) and p38

(SB202190) [73]. We then assayed for the expression of Sox9

using WMISH (Figure 6K–6M). Similar experiments to address

the role of JNK were not performed because of the unavailability

of highly specific small molecule inhibitors. We observed little

affect on Sox9 expression in gonads treated with ERK inhibitor

when assayed by WMISH, although testis cord formation did not

occur in treated samples with the same efficiency as samples

cultured in vehicle control (Figure 6K). These data are consistent

with other reports that MEK1/ERK inhibitors fail to significantly

disrupt testis development in vitro [74]. In contrast, culturing in

the presence of p38 inhibitor resulted in dramatic reduction of

Sox9 expression, including an almost complete loss of signal in 50%

of treated samples (n=8) (Figure 6L and 6M). Examination of

Wnt4 expression in SB202190-treated cultured explants (n=3) also

revealed robust expression of this ovarian marker in contrast to

vehicle controls (Figure 6N), suggesting that at least partial gonadal

sex reversal was occurring during culture of XY explants because

of abrogation of p38 activity. In this context, it is interesting to

note that human SRY has been recently identified as a possible

target of p38 MAPK signalling in cultured keratinocytes [75].

FGF9-Mediated Activation of Sox9 Transcription Is Not
Abrogated In byg/byg Gonads
Given the importance of two components of the FGF signalling

pathway, FGF9 and FGFR2, in XY gonad development, we next

studied whether byg/byg gonads exhibited defects in this pathway

by determining whether FGF9 was able to activate Sox9

transcription in XY byg/byg gonads. It has previously been

reported that FGF9 is capable of activating Sox9 transcription in

developing XX gonads if they are cultured in the presence of

beads coated in this growth factor [56]. In an attempt to address

the question of which upstream, extracellular signals employ

MAP3K4-dependent phosphorylation during XY gonad develop-

ment, we determined whether FGF9-mediated activation of Sox9

transcription was abrogated in MAP3K4-deficient gonads. XY

gonads from byg/byg and control embryos were cultured at

11.5 dpc for 48 h in the presence of FGF9-coated beads (or beads

coated in bovine serum albumin [BSA]) and were then analysed

for the presence of Sox9 transcripts in cells contacting the bead

using in situ hybridisation. BSA-coated beads did not induce Sox9

transcription in any samples. In contrast, Sox9 transcripts were

clearly detected in the vicinity of beads in both cultured wild-type

XX gonads and in XY byg/byg gonads (Figure 7A and 7B). These

data suggest that MAP3K4 is not an obligatory component of

signal transduction pathways employed by FGF9 to activate

transcription of Sox9 in the developing gonad. However, failure of

normal SRY, and thus SOX9, expression in byg/byg XY gonads

may result in failure to establish the positive feedback loop

between SOX9 and FGF9/FGFR2 [56].

Map3k4 Haploinsufficiency Contributes to Tas
A locus on mouse Chromosome 17 associated with XY sex

reversal and ovotestis formation has previously been described

[40]. This mutation, known as Tas, was identified in a mouse stock

carrying the hairpin-tail (Thp) deletion whilst being crossed to the

C57BL/6J background. The presence of an AKR/J-derived Y

chromosome is also required for the development of ovarian tissue

in XY C57BL/6J Thp/+ individuals. It has been hypothesized that

the Tas mutation resides within the region of the t complex deleted

in Thp and hemizygosity for the relevant locus causes varying

Figure 7. Exogenous FGF9 can activate Sox9 transcription in
gonads lacking functional MAP3K4. (A) Culture of a wild-type XX
gonad (left) from 11.5 dpc for 48 h in the presence of a bead coated in
BSA does not activate Sox9 transcription based on in situ hybridisation
analysis. In contrast, a bead coated in FGF9 does result in up-regulation
of Sox9 in both XX control gonads (centre) and XY byg/byg gonads
(right). The small circle adjacent to each gonad shows the approximate
position of the bead during culture. (B) In a separate experiment, FGF9-
coated beads again activate Sox9 transcription in wild-type XX and XY
byg/byg gonads, but a bead coated in BSA does not activate Sox9
transcription in XY byg/byg gonads. Note the increased size of gonads,
both XX and XY, after exposure to exogenous FGF9. All gonads were
from embryos on the C57BL/6J background.
doi:10.1371/journal.pbio.1000196.g007
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degrees of sex reversal when on the C57BL/6J YAKR background

[41]. This genetic background is known to be very sensitive to

disturbances in the early events of testis development induced by

gene mutation [14], and thus one potential explanation for the Tas
phenotype is haploinsufficiency for a t complex locus that is

ordinarily testis determining. Map3k4 is located on proximal

mouse Chromosome 17 in the region of the t complex and, in the

form of the previously anonymous DNA marker D17Rp17 (still a

synonym of Map3k4, see http://www.informatics.jax.org/search-

es/accession_report.cgi?id =MGI%3A1346875 and GenBank en-

try NM_011948), has been shown to map within the Thp deletion

[76]. Given this map position and the gonadal phenotype of XY

embryos lacking functional Map3k4 on C57BL/6J, we hypothe-

sized that haploinsufficiency for this gene might be, at least

partially, responsible for the Tas gonadal sex reversal phenotype.

We tested this model in two ways. First, we generated embryos

doubly heterozygous for the byg mutation and the Thp deletion. If

Map3k4 resides within the Thp deletion these embryos will lack

Map3k4 function because of failure of complementation and will

recapitulate the phenotype of byg/byg homozygous embryos.

Figure 8 shows that XY byg/+, Thp/+ embryos exhibited

abnormalities of testis development. XY gonads dissected from

doubly heterozygous embryos at 13.5/14.5 dpc showed disruption

to cord morphology or gonadal sex reversal, in which Sox9

transcription is lost (Figure 8A) and Wnt4 transcription is activated

(Figure 8B). Doubly heterozygous mutants also exhibited neural

tube defects (unpublished data). We performed this cross on the

C3H/HeH background because this strain has not previously

been associated with sensitisation to events disrupting testis

development, even given the presence of the YAKR chromosome

[41]. We confirmed, therefore, that Map3k4 resides in the Thp

deletion and that this deletion, combined with a loss-of-function

allele ofMap3k4, causes varying degrees of disruption to XY gonad

development even in the absence of any other predisposing genetic

factors.

Secondly, we performed a cross to test directly whether Map3k4
haploinsufficiency might account for the development of ovarian

tissue in XYAKR Thp/+C57BL/6J individuals. We generated XYAKR

mice after backcrossing of YAKR to C57BL/6J for six generations.

These males were then crossed with females heterozygous for the

targeted null allele of Map3k4 (Map3k4tm1Flv), also on C57BL/6J, to

generate XYAKR Map3k4tm1Flv/+ heterozygotes on a C57BL/6J

background. Nine of these individuals were generated in five litters

and seven were scored as normal males based on examination of the

external genitalia. However, two were scored as phenotypic females

on the basis of external genitalia morphology. Examination of these

sex-reversed individuals revealed the presence of ovaries and uterine

horns. Histological examination of the ovaries from one of these

Figure 8. Hemizygosity for Map3k4 contributes to Tas. (A, B) A genetic complementation test demonstrates that Map3k4 resides in the Thp
deletion of proximal mouse Chromosome 17. XY embryos doubly heterozygous for the Map3k4byg allele and the Thp deletion (XY Thp/+, byg/+), on
the C3H/HeH background, exhibit a range of defects of gonad development similar to byg/byg homozygotes, including testes with regions lacking
clear cord morphology (bracket, A) and XY gonads with an overt ovarian appearance that lack Sox9 transcription (right-hand side gonad, A). Sex-
reversed XY gonads express Wnt4, a marker of ovary development (central gonad, B), in contrast to XY controls. (C) Ovotestis development in
embryos heterozygous for the Map3k4tm1Flv knockout allele, on the C57BL/6J XYAKR background (B6YAKR), characterised by gonadal poles (brackets)
lacking markers of testis development (Sox9), and expressing markers of ovary development (Wnt4).
doi:10.1371/journal.pbio.1000196.g008
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individuals showed them to be smaller than controls and lacking

clearly discernible follicles or ova (unpublished data). Examination of

four other heterozygous males at approximately 11 wk of age

revealed that these had testes of reduced size (ranging from 0.03 g to

0.08 g, mean=0.06 g60.015), in contrast to wild-type controls

(n=6, ranging from 0.08 g to 0.11 g, mean=0.093 g60.009). Small

testes are sometimes an indication of earlier ovotestis development.

To test this possibility, we performed timed matings in order to

examine gonadal morphology in XYAKR Map3k4tm1Flv/+ embryos at

14.5 dpc. Of four XYAKR Map3k4tm1Flv/+ embryos examined, one

contained gonads with an overt ovarian morphology, whilst three

contained ovotestes identified by morphology and the familiar

variegated expression of Sox9 and Wnt4 (Figure 8C). On the basis of

the XY gonadal sex reversal, complete and partial, observed in adult

and embryonic Map3k4tm1Flv/+ individuals on C57BL/6J-XYAKR,

we conclude that haploinsufficiency for Map3k4 is a major

contributory factor to male-to-female sex reversal observed in

XYAKR C57BL/6J Thp/+ individuals.

Discussion

Here we describe evidence demonstrating, for the first time to

our knowledge, an in vivo role for the phylogenetically ancient

MAPK signalling cascade in mammalian sex determination. XY

embryos lacking functional MAP3K4 on a predominantly

C57BL/6J background exhibit embryonic gonadal sex reversal

associated with failure of a number of cellular and molecular

events, paramount amongst these being failure to transcriptionally

up-regulate Sry and, presumably as a consequence, Sox9 in the

developing gonad at 11.5 dpc. Previous studies, often involving

analyses of Mus domesticus-derived Sry alleles on a C57BL/6

background, have suggested that the testis determining pathway is

exquisitely sensitive to levels and timing of Sry: if a threshold level

is not met in a critical time window, ovary development is likely to

ensue [69,70,77]. Thus, attention is naturally focussed on the

possible explanation for reduced Sry expression, at the transcript

and protein levels, in XY byg/byg gonads. Three potential

explanations exist: (i) that a transcriptional regulator (or regulators)

required for transcription of Sry in pre-Sertoli cells does not

function appropriately because of, either directly or indirectly, the

absence of MAP3K4-mediated signalling; (ii) that insufficient

numbers of pre-Sertoli cells are established in the XY byg/byg

gonad; (iii) a combination of both of the above effects. With respect

to the second hypothesis, the coelomic epithelium is thought to be

a source of pre-Sertoli cells in the early XY gonad (prior to

11.5 dpc) [78]. Thus, the reduction in cell proliferation and

gonadal growth in the coelomic region of XY byg/byg mutant

embryos might be considered evidence of a wider range of defects

in the developmental potential of the mutant coelomic epithelium

and associated mesenchyme, perhaps extending to a reduction in

the provision of pre-Sertoli cells, or the provision of pre-Sertoli

cells competent to activate transcription of Sry. This hypothesis is

consistent with the active MAPK signalling that we report in the

coelomic region at 11.5 dpc in XY gonad. However, it should be

noted that in other genetic contexts in which cell proliferation in

the coelomic region of the developing XY gonad is disrupted, such

as in gonads lacking Fgf9 [10,61], Sry transcription is reported to be

unaffected [56]. Thus, there is no established mechanistic link

between prior proliferative defects in the early gonad and

subsequent loss of Sry expression. However, given the reported

role of FGF9 in promoting gonadal cell proliferation [61], it is

possible that loss of MAP3K4 results in an inability of coelomic

region cells to efficiently transduce FGF9 signal produced by initial

SRY-positive pre-Sertoli cells. This, in turn, would result in failure

to establish a positive feedback mechanism by which cell

proliferation and SRY expression mutually promote each other,

causing insufficient provision of pre-Sertoli cells. This model would

explain the reduced numbers of SRY-positive cells detected in XY

byg/byg gonads between 11.0 and 11.5 dpc (Figure 5). In order to

establish whether there is a paucity of cells migrating into the XY

byg/byg gonad at around 11.2–11.4 dpc to populate the pre-Sertoli

cell niche, it will be necessary to perform single-cell labelling

experiments similar to those used to establish the role of the

coelomic epithelium in this process [78]. However, establishing

whether a marked cell was undergoing, or had undergone, active

MAPK signalling of the appropriate sort would be technically

daunting.

With respect to the first hypothesis, little is known about the

transcriptional control of Sry, although several potential activators

have been described including M33, WT1(+KTS), GATA4/

FOG2, and SF1 [79]. This hypothesis is supported by the presence

of a few SRY-positive cells in the XY byg/byg gonad at 11.5 dpc

that exhibit a significant reduction in the intensity of the SRY

signal, and also the existence of FOXL2-positive cells in the XY

byg/byg gonad at 11.5 dpc, since this lineage is arguably the

ovarian equivalent of the pre-Sertoli cell lineage of the testis.

Evidence already exists for MAPK-dependent phosphorylation of

SF1 [80,81] and GATA4 [82] in other contexts, as a means of

increasing their transcriptional activation potency. It is also

noteworthy that SRY, which is phosphorylated in humans [83],

has recently itself been proposed to be a target of p38-mediated

signalling pathways on the basis of cell line studies in vitro [75].

We are currently attempting to identify reduced phosphorylation

of candidate testis-determining proteins in MAP3K4-deficient

embryonic gonads. However, we cannot rule out the possibility

that previously uncharacterised molecules are the key effectors of

MAPK-mediated events during gonadogenesis. Moreover,

MAP3K4-mediated events required for normal Sry transcription

may occur in the progenitors of pre-Sertoli cells, in the form of

programming, rather than pre-Sertoli cells themselves. In

conclusion, the data suggest that the third hypothesis may best

explain the observations concerning SRY expression.

The similarity in the phenotypes of mice lacking the Map3k4

gene [44] and those merely lacking a functional kinase domain of

the same gene [45], strongly argues that MAP3K4 functions

primarily to regulate MAPK signalling through its kinase domain.

Thus, although we cannot formally exclude additional functions,

we conclude that loss of functional MAP3K4 in the byg mutant

results in disrupted MAPK signalling during gonad development.

Although ours is the first report of a requirement for MAPK

signalling in sex determination in vivo, one previous report has

implicated a MAPK scaffolding protein, Vinexin-c, in regulation

of Sox9 transcription during gonad development [84]. However,

the fetal gonads of both XX and XY embryos lacking Vinexin-c
are morphologically normal and adult mice of the same genotypes

are viable and fertile. Moreover, Sox9 transcript levels in Vinexin-c
2/2 XY gonads at 12.5 dpc are 75% that of Vinexin-c 2/+

gonads, suggesting that any modulation of Sox9 transcription by

Vinexin-c is relatively modest. These data appear to be consistent

with reported organ culture studies in which the MAPK inhibitor

PD98059 did not significantly inhibit testis cord formation in XY

gonad explants [74]. In contrast to the Vinexin-c studies, we

observe an almost complete absence of Sox9 at the sex determining

stage of gonad development (11.5 dpc) in C57BL/6J XY embryos

lacking MAP3K4 and a complete failure of testis cord formation at

later stages.

One possible explanation of the apparent discrepancy in these

observations with respect to the role of MAPK signalling in testis
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development is the focus in other studies on the MEK-ERK

pathway of MAPK signalling, sometimes called the classical

MAPK cascade [73]. It has been proposed that Vinexin-c

mediates its effects on Sox9 transcription in vitro via male-specific

activation of the MAPK, ERK [84], and PD98059 is a specific

MEK-ERK inhibitor [73,85]. The focus on MEK-ERK in other

studies is likely a consequence of the inviting similarities between

requirements for Sox9 up-regulation during gonad development

and chondrogenesis. FGF-mediated activation of Sox9 transcrip-

tion during chondrogenesis has been shown to be blocked by the

MAPK inhibitor U0126 [86]. U0126 is also a specific MEK-ERK

inhibitor [73,85]. Given that MAP3K4 is thought to act ultimately

by activation of the MAPKs p38 and JNK [42,43], the focus on

ERK activation and the consequences of its disruption as a means

of determining the role of MAPK signalling during gonad

development may have been overly restrictive and resulted in

misleading conclusions. Our studies utilising specific small

molecule inhibitors of MAPK signalling in organ culture assays

corroborate previous observations that MEK-ERK inhibition does

not significantly disrupt Sox9 expression in vitro. However, in

contrast, they do suggest a possible role for p38 in gonadal Sox9

transcriptional regulation and testis cord formation. The signifi-

cance of these in vitro observations for the possible role of p38 in

the aberrant phenotype of the MAP3K4-deficient gonad is

unclear, given that Sry transcription is already at its peak at

11.5 dpc, the approximate stage at which gonadal explants were

employed for in vitro culture experiments. Inhibition of p38 at

these stages may disrupt testis-determining events downstream of

regulation of Sry transcription, perhaps related to regulation of

Sox9 expression, in a manner analogous to that reported for the IL-

1b-dependent induction of SOX9 expression in human articular

chondrocytes [87], or disruption of SOX9 function itself. Mice

constitutively lacking the alpha isoform of p38 die at around

10.5 dpc, before gonadogenesis can be fully examined [88]. For

this reason, it is important to remain open-minded about how

many distinct steps in testis development require MAPK-

dependent events. Teasing these out genetically will require a

conditional null allele of Map3k4 (and genes encoding other

MAPK signalling elements) and inducible, cell-type-specific Cre

lines. It will also be important to determine whether disruption to

individual MAP2Ks and MAPKs also results in abnormal gonad

development in vivo, or whether loss of MAP3K function is

disruptive to a broader range of MAPK signalling events,

including potential compensatory ones, and thus more likely to

result in phenotypic abnormalities.

In addition to downstream events mediated by MAP3K4, it is

not yet clear which upstream signals employ MAP3K4 for their

transduction. Analogies with chondrogenesis, as described above,

have tended to focus attention on the role of FGF signalling and its

use of MAPK for its transduction. Moreover, FGF9 is known to be

required for the male-specific elevated proliferation rate in the

gonadal coelomic region at around 11.5 dpc [61]. However, we

have demonstrated that the ability of exogenous FGF9 to activate

Sox9 transcription during gonad culture remains unaltered in the

absence of MAP3K4. These data do not definitively demonstrate

that FGF9 does not employ MAP3K4-mediated signal transduc-

tion during regulation of Sox9 expression during male gonad

development in vivo, but they do suggest that such a pathway is

not obligatory. Moreover, initial up-regulation of Sox9 transcrip-

tion, along with Sry transcription, proceeds as normal in

embryonic gonads lacking FGF9 [56]. It is, rather, the

maintenance phase of Sox9 transcription in developing male

gonads that is disrupted in the absence of FGF9. Taken together,

these observations suggest that we should look at other pathways,

in addition to FGF, for the activating signals that require

MAP3K4 for their transduction. Although activation of MAPK

is a widespread phenomenon, ligand binding to receptor tyrosine

kinases (RTK) is commonly associated with activation of this

intracellular signalling cascade [89]. Interestingly, the insulin

receptor tyrosine kinase gene family (Ir, Igf1r, and Irr) has

previously been shown to be required for testis determination

through its regulation of Sry expression [17], and a number of

reports describe a requirement for MAPK in signal transduction

through this family of receptors in different biological contexts

[90,91]. Similarly, loss of another RTK, PDGFRa, also disrupts

testis development [21] and PDGF signalling is reported to employ

MAPK [92]. Finally, in addition to RTK activity, prostaglandin

D2 (PGD2) has been shown to influence Sertoli cell differentiation

and SOX9 activity [39,57,58], presumably through its G-protein

coupled receptors, DP and CRTH2 [93], although this is not

established. PGD2 signalling in other contexts has been shown to

require MAPK [94,95]. Although the details of MAPK activation

in these disparate systems vary, they are all potentially relevant to

the phenotype of MAP3K4-deficient gonads because evidence

suggests cross-talk between distinct MAPK pathways [75].

Despite the above observations, we cannot rule out the

possibility of a role for a hitherto unrecognised growth factor or

other extracellular signal in the employment of MAP3K4 during

testis development. One virtue of invoking a requirement for

MAP3K4 in FGF9-mediated signalling during gonadogenesis in

vivo is that this model does not predict a requirement for sexually

dimorphic expression of MAP3K4, consistent with Map3k4

expression data. We observed near ubiquitous expression of

Map3k4, including male and female gonads, although higher levels

were detected in particular cell types. Because of a lack of the

relevant antibodies, we were unable to assay for the presence of

activated MAP3K4 specifically in XY gonads, although such

activation is predicted by the existence of MAP4Ks [96]. It should

also be noted that the same explanatory virtue applies to invoking

a requirement for MAP3K4 in activation of Sry transcription.

We also report here data indicating that haploinsufficiency for

Map3k4 is sufficient to account for Tas [40], a phenomenon that

has remained unexplained at the molecular level since its discovery

more than 20 y ago. XY embryos heterozygous for the

Map3k4tm1Flv mutation on the C57BL/6J-YAKR background

exhibit testicular abnormalities, including XY ovary and ovotestis

development, reminiscent of XYAKR C57BL/6J Thp/+ embryos

[40]. Moreover, two adult XY Map3k4tm1Flv/+ individuals

developed as phenotypic females, and both contained ovaries.

Four others exhibited testicular hypoplasia, which is associated

with prior ovotestis development. It is unclear, however, despite

the role for Map3k4 haploinsufficiency established here, whether

additional testis-determining genes exist in the region deleted in

Thp, or whether chromosome deletions themselves predispose XY

embryos to sex reversal by inhibitory effects on fetal

growth [97].

Significantly, it has been demonstrated that, on the appropriate

genetic background, the loss of a single copy of a male-determining

gene can result in XY gonadal sex reversal [14]. It has been

proposed that such phenotypic effects in mice caused by a single

disrupted allele mimic the more common situation in humans,

where loss of a single functional copy of genes such as SF1, SOX9,

orWT1 can result in the development of XY females [98,99]. Our

findings suggest that the loss of a single copy of Map3k4, caused by

the Thp deletion or targeted gene deletion, is another example of

such a case. Thus, we propose that haploinsufficiency of MAP3K4

could be the cause of previously unassigned cases of XY gonadal

dysgenesis in humans [100]. A second, independent case of Tas on
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the C57BL/6J XYAKR background (B6-TAS) is caused by the T-

Orleans deletion (TOrl), which overlaps with the hairpin tail

deletion and also includes Map3k4/D17Rp17 [41]. Interestingly, it

has been proposed that B6-TAS in TOrl/+ XYAKR mice is due to

biologically insufficient levels of Sry expression [101]. An

analogous explanation of the mechanism underlying the Thp/+

XYAKR phenotype is consistent with the report here of delayed

and reduced levels of Sry transcription in byg/byg XY gonads at

11.5 dpc. Levels of Sry transcription in XY embryonic gonads of

Map3k4byg/+ or Map3k4tm1Flv/+ heterozygotes on the C57BL/6J-

YAKR background have yet to be determined, but this experiment

will form part of a more extensive analysis of gonadogenesis in

these individuals.

Our data have opened a novel entry point into the molecular

genetic control of mammalian sex determination and, in particular,

the regulation of Sry expression. We know of no other higher

organisms in which MAPK signalling is thought to regulate sexual

development, although pheromone response during mating in yeast

and other fungi is known to require a highly related pathway of

kinase activity [102–104]. We are currently investigating the role of

other proteins required for MAPK signalling in mouse gonad

development, utilising in vivo and in vitro methods. The ultimate

aim of these studies is to clarify the pathway of MAPK signalling

that operates during gonadogenesis and determine precisely how it

interacts with the molecular events constituting sex determination.

Finally, our study suggests that forward genetic screens in the mouse

should be considered as another important tool for identifying

vertebrate sex determining genes.

Materials and Methods

Forward Genetic Screen, Mouse Breeding, and Embryo
Generation
We have previously described the mutagenesis and screening

methodology employed here [105]. Briefly, a three-generation

(G3) recessive mutagenesis screen was used in which C57BL/6J

males were injected with ENU and outcrossed to C3H/HeH

females; F1 (founder) males were used to establish pedigrees by

mating to C3H/HeH and F2 female offspring were backcrossed to

their father. Using this breeding scheme it is expected that

approximately one in eight embryos in a pedigree will be

homozygous for any given ENU-induced mutation. G3 embryos

were examined at 13.5 and 14.5 dpc for developmental abnor-

malities. Examination of pedigree RECB/31 (byg) revealed several

embryos with abnormal male gonad development. Affected

embryos were used for genetic mapping with a 55-marker genome

wide SNP panel (sequences available on request). byg was

maintained by backcrossing to C3H/HeH and, following

identification of the Map3k4 mutation, genotyped for the mutant

SNP by pyrosequencing. Timed matings were used to generate

embryos at specific stages. Breeding pairs were set up at

approximately 3 pm and vaginal plugs were checked the following

morning. Noon on the day of the plug was counted as 0.5 dpc.

Embryos were typed for chromosomal sex as previously described

[106].

Genotyping for the byg mutation was performed using a PCR-

based pyrosequencing assay using the following primers: Forward

PCR primer: 59-AGGACTATGAACGGTACGC-39; Reverse

PCR primer: 59-Bio-CGCAGCTTCTGATTTAGATC-39; Se-

quencing primer 59-GCCAAGGACTTTGAGG-39. byg was

backcrossed to C3H/HeH and C57BL/6J. Analysis of byg/byg

embryos on C57BL/6J was performed between generations n=2

to n=5.

The generation and maintenance of mice lacking Map3k4 has

been previously described [44,107]. Map3k4-deficient mice utilised

here were maintained on a C57BL/6J background. Hairpin tail

(Thp) mice, originally archived on a mixed genetic background,

were rederived using independent in vitro fertilisation (IVF) with

both C57BL6/J and C3H/HeH oocytes. Thp was maintained on

both C57BL/6J and C3H/HeH. XY sex reversal was observed on

the former, but not the latter, genetic background. Thp carriers

were identified by the shortened tail [108]. Confirmation of the

presence of the AKR-derived Y chromosome was performed by

using a PCR assay based on that described in [109], which exploits

a Zfy-2 polymorphism between M. domesticus and M. musculus.

Expression Studies
WMISH to explanted gonads was performed as previously

described [31,106]. The following probes were used for WMISH:

Sox9 [110]; Oct4 [111]; 3b-HSD [112]; Wnt4 (IMAGE clone

40044945), Sry [113], Stra8 (IMAGE clone 40045823), Map3k4

(IMAGE clone 5705378).

qRT-PCR
Total RNA and protein were extracted from individual 11.5 dpc

(17–18 ts) mouse urogenital ridges (comprising gonad and mesoneph-

ros) using the Nucleospin RNA/protein isolation kit (MACHEREY-

NAGEL) following manufacturer’s instructions. The quantity and

quality of the RNA was assessed using the Nanodrop ND1000 (Isogen

Life Science) and by gel electrophoresis. A two-step real-time analysis

approach was taken. First, cDNA was synthesised using the AB High

Capacity cDNA Reverse Transcription Kit using 1 mg of total RNA.

The following TaqMan assays (Applied Biosystems [AB])

were used: Sf1 (Mm00496060_m1); Fgf9 (Mm00442795_m1); Sry

(Mm00441712_s1); Hprt1 (Mm01545399_m1). For each assay,

reactions were performed in triplicate using AB Fast Mastermix in a

final volume of 20 ml (5 mg of cDNA added). Real-time amplification

was performed on an AB 7500 Fast machine, using the manufacturer’s

recommended program for Fast Mastermix. Analysis of the results was

performed using AB software, employing a ddCt method with the gene

Hprt1 as the endogenous control. For each assay four biological

replicates and three technical replicates were performed. Statistical

analysis was performed using a non-paired t-test on the average dCt

values calculated for the three technical replicates of each independent

sample (biological replicate).

Immunohistochemistry and Confocal Imaging
The following antibodies were used in this study: SRY [39];

SOX9 [39]; FGFR2 (Santa Cruz number sc-122); SF1, a kind gift

from K. Morohashi; FOXL2: antibodies were raised in rabbits

against the peptides MMASYPEPEDAAGAALL and

WDHDSKTGALHSRLDL, previously utilised in [114]. Anti-

bodies were affinity purified and tested prior to use: platelet/

endothelial cell adhesion molecule (PECAM) (BD Bioscience

number 553708); phospho-histone H3 (pHH3, Sigma number

HH908 or Upstate number 06-570); phospho-MKK4 (Cell

Signalling number 9151); phospho-MKK7 (Cell Signalling

number 4171); phospho-p38 (Cell Signalling number 4631);

phospho-JNK/SAPK (Cell Signalling number 9251); cleaved

caspase-3 (Cell Signalling number 9661S); MAP3K4 (Sigma

m7194). Wholemount immunohistochemistry was performed as

previously described [106]. Section immunohistochemistry was

performed on the basis of protocols described in [39]. Whole-

mount samples were imaged using a Leica TCS SP5 confocal

microscope. Sections were visualised using a Zeiss Axiophot 2.
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Gonadal Cell Proliferation
After immunostaining with anti-PECAM and anti–pHH3

(Upstate, number 06-570) and nuclear counterstaining with

aqueous DAPI, the central third of each gonad was imaged using

a Leica TCS SP5 confocal microscope (406). A Z-stack series

(10 mm steps) was generated for each sample and then three

central sections were chosen for cell counts in the coelomic region

(pHH3-positive cells and DAPI-stained nuclei). Sections were

separated by 20 mm to ensure that no cell was counted twice.

Differences between samples were assessed using a two-tailed t-

test.

Organ Culture
Culturing of embryonic gonads and recombination experiments

between subdissected gonads and marked mesonephroi were

performed based on methodologies described in [50] and [106].

Briefly, XY urogenital ridges (UGRs), consisting of gonad and

attached mesonephros, were collected at 11.5 dpc (16–19 ts stage)

and cultured to establish conditions under which testis cords

formed reliably after 48 h culture. Samples were incubated on

1.5% agar blocks at 37uC/5% CO2 in Dulbecco’s Minimal Eagle’s

Medium (DMEM)/10% fetal calf serum (FCS)/50 mg/ml ampi-

cillin/200 mM L-glutamine in the presence of MAPK inhibitors

or vehicle control. For recombination cultures, 11.5 dpc XY male

UGRs from byg/byg mutant embryos were subdissected into

component gonad and mesonephros in PBS. The gonads were

recombined with mesonephroi from XY Tg(GFPU)5Nagy/J

embryos (ubiquitously expressing GFP) and cultured for 48 h, as

above. Migration from the marked mesonephros into the attached

gonad was imaged using a Leica TCS SP5 confocal microscope.

No migration was observed into control XX gonads during these

experiments.

The following MAPK signalling inhibitors were used: SB202190

(p38 inhibitor, Sigma) and U0126 (ERK [Mek1] inhibitor, Sigma).

SB202190 was used at a final concentration of 25 mM in culture

medium, in line with previously reported in vitro studies

employing this inhibitor [115–117]. U0126 was also used at a

final concentration of 25 mM [86,118,119].

To examine the effects of exogenous FGF9 expression in XX

gonad development we employed the methodology described in

[56]. Briefly, agarose beads (Sigma-Aldrich) were incubated in

culture medium containing 50 ng/ml FGF9 protein (R&D

Systems), or 0.1% BSA, in a humidified chamber at room

temperature for at least 5 h. Beads were then placed adjacent to

gonads (n=3 for each genotypic class) and cultured for

approximately 42 h.

Ethics Statement
Animal procedures employed in this study were authorized by

UK Home Office Project License PPL 30/2381.

Supporting Information

Figure S1 Gonadal sex reversal and failure of meso-
nephric cell migration into XY byg/byg embryonic
gonads during organ culture. (A) In vitro culture of wild-

type XY embryonic gonads at 11.5 dpc for 48 h results in testis

cord formation visualised by in situ hybridisation with the Sertoli

cell marker, Sox9. The asterisk indicates Sox9 expression in the

metanephric kidney, which was still attached to this explant when

dissected prior to culture. (B) Culture of XY byg/byg gonads results

in no testis cord formation and very low levels of Sox9
transcription, which is limited to the gonadal region adjacent to

the mesonephros, as in wild-type female gonads. (C) Wild-type

explants do not express Wnt4 in the developing gonad after

culture, but do express this marker in the mesonephros. (D) XY

byg/byg explants exhibit high levels of Wnt4 expression in the

gonad, similar to XX gonads at 13.5 dpc, indicating gonadal sex

reversal in cultured XY mutant gonads. (E) Culture of a wild-type

XY gonad adjacent to a stage-matched mesonephros derived from

a line expressing GFP (recombination) reveals migration of

endothelial cells into the gonad to form cord-like structures and

an aggregation of cells in the coelomic region. (F) Culture of an

XY byg/byg gonad with a marked mesonephros reveals negligible

cell migration into the gonad (indicated by the region within the

white dotted line).

Found at: doi:10.1371/journal.pbio.1000196.s001 (2.28 MB TIF)

Figure S2 Analysis of SF1, FOXL2, and FGFR2 protein
expression in XY control and byg/byg gonads at
11.5 dpc. (A, B) Transverse section showing SF1 expression

(green) in a large number of somatic cells of control XY gonads (A)

and XY byg/byg gonads (B). SF1 signal is nuclear in contrast to the

cytoplasmic staining of germ cells with PECAM (red). (C–E)

FOXL2 is not detected in control XY gonads at this stage (C) but

nuclear signal (green) is detected in somatic cells of XY byg/byg (D)

and control XX gonads (E). (F–J) FGFR2 (green) is expressed in

somatic cell nuclei of control XY gonads (F, G). White arrowhead

indicates individual nucleus on section counterstained with DAPI

(blue). FGFR2 is still detected in XY byg/byg gonads (H, I), but

signal is restricted to the cytoplasm of somatic cells (arrowhead, I).

This cytoplasmic localisation is reminiscent of FGFR2 expression

in control XX gonads of the same stage (J). All gonads were from

embryos on the C57BL/6J background.

Found at: doi:10.1371/journal.pbio.1000196.s002 (2.60 MB TIF)

Figure S3 Immunohistochemical analysis of pMMK4,
pMKK7, pp38, and pJNK on transverse sections of wild-
type and byg/byg XY gonads at 11.5 dpc. In each case, the

activated MAPK signalling molecule is detected in somatic cells

(red), whilst germ cells and endothelial cells are detected by

PECAM staining (green). Counterstaining is with DAPI (blue).

The gonad is to the left of the dotted line in each image and the

mesonephros is to the right.

Found at: doi:10.1371/journal.pbio.1000196.s003 (2.91 MB TIF)
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