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Loss optimization of transverse Bragg resonance
waveguides
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Coupled-mode theory was used to analyze guiding in a transverse Bragg resonance (TBR) waveguide structure
composed of a GaAs substrate with air holes. This analysis predicts that propagation loss will be minimized
for discrete widths of the waveguide core. Although the coupled-mode theory is normally applied to structures
with small index perturbations, two-dimensional finite-difference time-domain simulations of the TBR wave-
guide show good quantitative agreement with the coupled-mode predictions, and these results corroborate the
previously predicted existence of discrete core widths for low-loss propagation. © 2004 Optical Society of
America
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1. INTRODUCTION
Optical waveguiding by Bragg reflection1–3 has garnered
much interest as a result of recent work in planar photo-
nic crystal waveguides.4–6 As a generalization of these
photonic crystal waveguides, the transverse Bragg reso-
nance (TBR) waveguide was recently proposed and
analyzed.7 Instead of relying on time-consuming nu-
merical solutions to Maxwell’s equations,8,9 a coupled-
mode formalism was applied to calculate the dispersion
and loss of a TBR waveguide composed of a GaAs sub-
strate with air holes. The results of the coupled-mode
analysis predict discrete, quantized values for the width
of the guiding channel for achieving low-loss TBR
waveguides. Comparisons with two-dimensional finite-
difference time-domain (2D FDTD) simulations indicate
that the coupled-mode theory can provide a valid model of
the waveguiding in a TBR waveguide even with a large
index contrast and, with an empirical coupling constant,
can quantitatively describe the propagation of the guided
modes.

2. COUPLED-MODE ANALYSIS
The waveguide geometry is shown in Fig. 1. Assuming a
small index pertrubation, the propagating field can be de-
scribed by the Helmholtz equation,

¹2E 1 me~r!v2E 5 0, (1)

which describes the E field out of the plane, correspond-
ing to a TM-like mode in a photonic crystal. Although
the dielectric constant e(r) can be complex,10 we will con-
sider only the passive case where e(r) is purely real. We
assume a solution of the form
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5 @A~x !exp~ikx !

1 B~x !exp~2ikx !#exp~ivt 2 ibz ! (2)

where the propagation constant is a complex quantity, b
5 bR 1 ibI , allowing the imaginary part of b to account
for the propagation loss due to leakage through a finite
cladding. From Eqs. (1) and (2) and assuming that ubIu
! ubRu (low loss) and u]2/]x2u ! u2k]/]xu (the slowly
varying approximation), we obtain the coupled-mode
equations, here presented in matrix form,
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De~r!exp~2i2kx !dxdz, (5)

Dk 5 kW 2 k, (6)

where ē is the average of e(r) over a unit cell of the clad-
ding, De(r) [ e(r) 2 ē, k0 5 ē1/2v/c, and, for a 2D trian-
gular lattice, k is defined as
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b
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c2
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. (7)

Equation (3) is solved separately in the core (k 5 0, Dk
5 0) and cladding, and the field and its derivative are re-
quired to be continuous at the interface, leading to
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where A1 , B1 , and A0 , B0 are defined by Fig. 1. Using
Eqs. (3)–(8), we can now solve for an analytic expression
for the transverse field of a guided mode and consider how
the waveguide design affects the loss that is due to leak-
age through the cladding layer.

The mirror symmetry with respect to the center of the
core (x 5 0) allows the modes to be classified by their
parity: even, A0(0) 5 B0(0), and odd, A0(0)
52B0(0). At the outer edge of the cladding, we observe
that A2(W/2 1 L) 5 0 and B2(W/2 1 L) should be mini-
mized. Solving Eq. (3) in the cladding when x . 0 yields
a solution7 of the form

AS x 2
W

2 D 5 F2
~g 2 iDk !

S
AS W

2 D 1
k

S
BS W

2 D Gsinh~Sx !

1 BS W

2 D cosh~Sx !, (9)
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1 AS W
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where S 5 (uku2 1 @g 2 iDk)2#1/2. Applying the bound-
ary conditions at the center of the core @A0(0), B0(0)#
and the outer edge of the cladding @A2(W/2
1 L), B2(W/2 1 L)# and requiring continuity at the
core–cladding interface, Eq. (8), we solve numerically for
the modal solutions. For the greatest confinement, and
consequently the least loss, the transverse wave vector k
should be near the center of the Bragg resonance, so kW
; kb or Dk ; 0. Also, as L increases, the leakage field
B2(L 1 W/2) becomes smaller, thus reducing the loss. A
recent coupled-mode analysis of TBR waveguides7 pre-
dicts that for minimum propagation loss the width of the

Fig. 1. TBR waveguide geometry consisting of a GaAs substrate
and air holes. x and z are the transverse and the longitudinal
dimensions, respectively, the core width is W, and the hole radius
is r 5 0.15a. A0 and A1 represent the inward propagating
plane-wave components in the core and cladding, respectively.
A2 represents the incoming field outside the cladding; B0 , B1 ,
and B2 represent similar quantities for the outward-propagating
components.
guiding channel (the defect) must be quantized in frac-
tions of the transverse period. Here we examine, using
an exact FDTD method, the consequences of deviating
from the optimal quantized values of the width and quan-
tify the cost in terms of increased loss resulting from such
deviation. This dependence of loss on the defect width
has also been observed experimentally in photonic band-
gap structures. Although there are significant differ-
ences between the photonic band-gap waveguide and the
TBR waveguide guided modes, these results indicate that
simply removing one or more integer multiples of the pe-
riodic index variation is not optimal for low-loss
waveguides.

3. SIMULATION RESULTS
Since a single transverse even mode is desirable for tele-
com applications, we study a case with a core width of
W 5 b/4. For our 2D FDTD simulations, the domain is
composed of an even mirror boundary condition at x
5 0, Bloch boundary conditions at z 5 0 and z 5 a, i.e.,
E(z 5 a) 5 E(z 5 0)exp(iba), and an absorbing per-
fectly matched layer11 at the outer edge of the simulation
domain as shown in Fig. 2. The cladding structure simu-
lated was composed of approximately ten unit-cell layers.
The hole radius was r 5 0.15a, which is smaller than
photonic band-gap crystals (r ' 0.3a 2 0.4a).12 When
the core width W is b/4, the field envelope decays as
E(x) ; exp(2ukux)E0 . Figure 3 shows the transverse
field profile decay calculated by using the 2D FDTD simu-
lation along with the exponentially decaying envelope

Fig. 2. 2D FDTD simulation domain showing a sample field cal-
culation. By taking advantage of the symmetries, we reduced
the domain to the slice shown in the figure. The boundary con-
ditions were even parity at x 5 0, Bloch periodic at z 5 0 and
z 5 a, and perfectly matched layers at the outermost boundary.
The cladding is composed of approximately ten layers.
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predicted by coupled-mode theory with k calculated from
Eq. (5). Also shown is the theoretical curve with a k cho-
sen to fit the FDTD results. The theoretical k calculated
from Eq. (5) is k 5 2i0.1475/a, and the emprical k found
from the fit shown in Fig. 3 is k 5 2i0.1100/a. As we
shall see, this single empirical constant, and no other free
parameters, will allow us to obtain nearly perfect quanti-
tative agreement between the theory and simulations.
Figure 4 shows the dispersion calculated by the coupled-
mode theory with use of the empirical k and the FDTD
simulations for varying widths. Although there is very
good agreement, we note that the dispersion calculated by
the coupled-mode theory is not very sensitive to small
changes in k. However, the propagation loss is exponen-
tially dependent on k and is a good measure of how well
the coupled-mode theory agrees with the FDTD simula-
tions.

To compare the propagation loss, we start with a Q cal-
culated by the FDTD simulation defined as

Q [ v
E0

2DP
, (11)

where E0 represents the stored energy and DP 5 DE/Dt is
the power dissipation. If we assume low loss and inten-
sity decay of the form uE(z)u2 ; exp(2az)uE(0)u2,

a 5 22bI 5
2 DE
E0

1

L
5

v

Q

Dt

L
5

v

Qvg
, (12)

where we choose L/Dt [ vg 5 (db/dv)21. From Fig. 4
we see that the dispersion curves are qualitatively the
same, meaning that the slope of the curve does not change
appreciably as the width of the core varies. Thus we es-
timate the group velocity for all waveguides by using an
analytic expression for the dispersion when the core
width is b/4,7

vg ' S d

dv
An̄2
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v2 2 kb

2D 21

5
c2b

ēv
5 b

c

n̄
~b2 1 kb

2!21/2,

(13)

where n̄2 5 ē in Eq. (5). In Fig. 5 we plot the normalized

Fig. 3. Normalized transverse field decay calculated by the 2D
FDTD simulation for a structure with approximately ten layers
of Bragg periods. The core width W 5 b/4. Also shown are the
exponential decays predicted by the coupled-mode theory,
E(x)/E(0) ; exp(2ukux); we used the theoretical value calculated
from Eq. (5), k 5 2i0.1475/a, and an empirical fit, k
52i0.1100/a.
loss constant aa from the 2D FDTD simulations by using
Eq. (12) for varying core widths with the normalized
propagation constant bRa as a parameter. As predicted,7

the case W 5 b/4 has the least propagation loss for the
lowest-order even guided mode studied, and we see that
the reduction in loss compared with that from a larger
width can be more than an order of magnitude. In Fig. 6
the comparison of the FDTD simulations with the
coupled-mode theory shows that the single empirical con-
stant chosen from Fig. 3 is capable of fitting the data for
all width parameters when bRa/p , 0.6. The large de-
viation from the theory near the points when 5/8
< bRa/p < 6/8 is a result of the one-dimensional nature
of the coupled-mode analysis. By constructing the recip-
rocal lattice13 for the 2D triangular lattice used for the
cladding, as shown in Fig. 7, we see that there is a point
when the forward-propagating mode k1 can be coupled to
the backward-propagating mode k3 by the lattice vector
a2 in addition to the transverse reflection k2 , via a1 .
This point results when bRa/p 5 2/3, which corresponds
to the points that show deviation from the loss expected.

Fig. 4. Dispersion curves for varying widths of the core. Sym-
bols, normalized frequencies from the 2D FDTD simulations; and
solid curves, the corresponding dispersion curves from the
coupled-mode (CM) theory in ascending order of width, W
5 0.18b to 0.45b, from top to bottom.

Fig. 5. Plot of normalized loss constant, aa, from 2D FDTD
simulations for varying core widths with the propagation con-
stant bR as a parameter. For each bR , a minimum in the loss is
apparent when W 5 b/4. Owing to the limits of the coupled-
mode theory (see Fig. 7), only the first four values of bR are
shown.
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Since the coupled-mode treatment was one dimensional
in nature and we consider only the lowest-order Bragg re-
flection, it is not surprising that a k-vector smaller than
k1 shown in Fig. 7 is required in order for us to neglect
the 2D periodicity of the triangular lattice cladding and
obtain agreement between the analytical coupled-mode
theory and the numerical FDTD simulations.

4. CONCLUSION
In conclusion, we have shown that it is possible to use a
modified coupled-mode approach to analyze the optimal
design for a low-loss transverse Bragg resonance wave-

Fig. 6. Plot of the normalized loss constant from 2D FDTD
simulations as well as coupled-mode (CM) theory for selected
core width values. The deviation seen when bRa/p ; 2/3 is ex-
pected, as shown in Fig. 7. The solid curves corresponding to
the CM theory are labeled from 1 to 4 in ascending order of
width, W 5 0.18b to 0.45b.

Fig. 7. Reciprocal lattice vectors for the triangular lattice, a1
5 24p/bx̂ and a2 5 22p/bx̂ 2 2p/aẑ. Owing to the symme-
try of the triangular lattice, the coupling of k1 to k3 by a2 when
bRa/p ; 2/3 causes the deviation from theory seen in Fig. 6.
guide even for large index variations. By using an em-
pirical coupling constant obtained through a single 2D
FDTD simulation, we can characterize the periodic Bragg
cladding and predict discrete core widths for minimum
propagation loss that are corroborated by 2D FDTD simu-
lations. From these simulations, we see that the
coupled-mode analysis can provide quantitative predic-
tions of the transverse field profile, the dispersion, and
the propagation loss.
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