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Loss Probability Calculations and Asymptotic
Analysis for Finite Buffer Multiplexers

Han S. Kim and Ness B. Shrof6enior Member, IEEE

Abstract—in this paper, we propose an approximation for the ~started atv = —oo, and that they are ergodic and statiorary.
loss probability, Pr (), in a finite buffer system with buffer size  The time index: is often omitted to represent the stationary dis-
x. Our study is motivated by the case of a high-speed network tribution, i.e.,P{Q > z} = P{Q,, > z} andE{\} = E{\,}

y ey - n - nj-

where a large number of sources are expected to be multiplexed. . . . .
Hence, by appealing toCentral Limit Theoremtype of arguments, The loss probabilityP. (), for a buffer sizer is defined as

we model the input process as a general Gaussian process. Our re-the long-term ratio of the amount of fluid lost to the amount of
sult is obtained by making a simple mapping from the tail proba- fluid fed. It is expressed as

bility in an infinite buffer system to the loss probability in a finite

buffer system. We also provide a strong asymptotic relationship be- N

R +
tween our approximation and the actual loss probability for a fairly Z (Qk_l 4+ A —c— x)
large class of Gaussian input processes. We derive some interesting . —
asymptotic properties of our approximation and illustrate its effec- Pr(z) = A}gn N
tiveness via a detailed numerical investigation. =
>
Index Terms—Asymptotic relationship, loss probability, queue k=1
length distribution, maximum variance asymptotic. +
E{(in +)\n —C—.’L’) }
= l
. INTRODUCTION Ew 1)

OSS PROBABILITY is an important quality of service )

(Q0S) measure in communication networks. While th¥here(z)™ denotesnax{z, 0}, and where the second equality
overflow probability, or the tail of the queue length distribution!S due to the ergodicity assumption. The tail probability (or tail
in an infinite buffer system has been extensively studied [1]-[4f the queue length distribution, also sometimes callediee-
there have been relatively few studies on the loss probabilityfi§W Probability) P{Q > =} is defined as the amount of time
finite buffer systems [8]-[11]. the fluid in the |nf|r_1|te buf_fer system spends above leveli-

In this paper, we propose a simple method to estimate tHged by the total time. Itis expressed as

loss probabilityPy,(x) in a finite buffer system from the tail of N
the queue length distribution (dail probablhty) P{Q > x} P{Q >z} = lim 1 ZI(Qk > ) )
of an infinite buffer system. We estimat&, () by making a N—oo N -
simple mapping fronP{( > z}. Hence, we consider both a
finite buffer queueing system and an infinite buffer queueingherel(A) = 1if Aistrue;I(A) = 0 otherwise. From now on,
system. We model both systems by a discrete-time fluid quewden we write “loss probability” it will only be in the context
consisting of a server with constant ratand a fluid inputh,,. of a finite buffer system, and when we write “tail probability” it
Both queues are fed with the same input. Qgtand@,, denote will only be in the context of an infinite buffer system. Note that
the queue length in the finite queue and in the infinite queuesinceP{Q > =} is averaged by time, ank; () is averaged by
time n, respectively. We assume tha} is stationary and er- the input, in general there is no relationship between these two
godic and that the system is stable, i&{)\,} < c. Under this quantities. Howevet’;(z) is often approximated as
assumption, it has been shown thiat converges to a stationary
and ergodic process [12]. It has also been showndhaton- Pr(z) = P{Q > z}. 3)
verges to a stationary process when the system is a GI/Gl/m/x o ]
type of queue [13], [14], and when the system is a G/M/m/x typkiS approximation usually provides an upper bound (some-
of queue [15]. Since proving the convergencelof is not the times a very poor bound) to the Io§s probability, although in
focus of this paper, and moreover, practical measurementsd§neral this cannot be proven, and in fact counterexamples can
Pp(z) andP{Q > z} are based on “time averaging” assumin@as”y be constructed. What we have learned from simulation

ergodicity [see (1) and (2)], we assume that b&th and Q,, studie_s_is thgt '_che curvdy, (x) versusr andP{Q >z} versus
x exhibit a similar shape (e.g., see Fig. 1), which motivates this
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applicability of our approximation for on-line traffic measure-
ments. We finally state the conclusions in Section VI.

10 . . . - , . , This paper is organized as follows. In Section Il, we review

-+-  video (tail) the maximum variance asymptotic (MVA) results for the infi-
-o-  video (loss) nite buffer queue, and then demonstrate how to obtain similar
D ‘\;g:gg S‘ggé | 1 results for the loss probability. Then, we compare our approach

% to an approach based on thrany-sources asymptotida Sec-

g _ tion 111, we validate our result with several numerical examples,

2 e T ~___| including those for self-similar/long-range dependent traffic. In

@ Section IV, we find the asymptotic relationship between the loss

2 o, | probability and our approximation. In Section V, we describe the

5

Al

[I. MAXIMUM VARIANCE ASYMPTOTIC (MVA)
APPROXIMATION FORLOSS

!

0 5 10 15 20 25 30 35 Remember that the first component in our development of an
Queue Length (msec) approximation forPz(z) is to find a good estimate ¢#{Q >

. . . . . a:e} Fortunately, this part of the problem has already been solved
Fig. 1. Comparison of loss and tail curves in a 45-Mb/s link where 2900 voic

sources or 69 MPEG video sources are multiplexed: Loss and tail curves séQn’[ZOL [21]’ [27]- By developing results based on Extreme

to have the same shape. Value Theory, it has been found that the MVA approach (first
named in [20]) provides an accurate estimate of the tail proba-
work. Further, it has been shown in [16] that for M/Subexpoq'my' We briefly review it here. As mentioned before, we focus

nential/l and GIl/Regularly-varying/1 with independent ident2" the case when the aggregate traffic can be characterized by

cally distributed (i.i.d.) interarrival times and i.i.d. service timesgaeue;isi;anl_gio.cfsgi:emég m_pt{;g;r{o}\ce}ss to the queue is

P{Q > a}/Py(x) converges to a constant, as- oo . The queue lengt®,, (or workload) at time» in the infinite
Hence, it seems reasonable that if we have a good estlr'nkf);lttf?rer system is expressed by Lindley's equation:

of the tail probabilityP{@ > x} and a way to calculat® (), '

the loss probability for some buffer sizethen we can calculate Qn = (Qu_1 + A — o)t (5)

the loss probabilityP;,(x) as

We define a stochastic process, as

Pu(z) = HZL—%P{Q > z). 4)

In particular, we will choose = 0 because this allows us to
compute the loss probability ], (0)] quite easily.This is the

X, = Z A — cn. (6)
k=1

We assume that,, is stationary and ergodic and that the system

basic idea that drives this papeln addition to developing a IS stgblg, .e.E{A.} < c. Then, it has been shoyvn.tha.t the
methodology to calculate the loss probability, we will also shof/Stribution of@, converges to the steady state distribution as
that asymptotically the loss probability and the tail probabilit} — and th_at t_he supremum distribution &t, is the steady
curves are quite similar, and if they diverge, they do so slowiytate queue distribution [12]:
which is an interesting result by itself.

For our study in this paper, we focus on the case when the P{Q@ >z} =P {Sgp Xn > 37} : )
aggregate traffic can be characterized by a stationary Gaussian n=t
process. Recently, Gaussian processes have received significanC, (/) be the autocovariance function ®f. Then, the vari-
attention as good models for the arrival process to a high-spegtte ofX,, can be expressed in terms@f(!). For eachr > 0,
multiplexer [3], [18]-[23]. There are many reasons for this. Dugefine the normalized varian@%n of X,, as
to the huge link capacity of high-speed networks, hundreds or

even thousands of network applications are likely to be served nt
by a network multiplexer. Also, when a large number of sources Var{X,} nCx(0) +2 Z(” = DG
are multiplexed, characterizing the input process with tradi- o2 .= AMdn = =1

Fn (x —E{X,})? (z + kn)?

tional Markovian models results in computational infeasibility ®)
problems [24] that are not gncountered for Gaussian Processtitearer .= ¢ — . Let m, be the reciprocal of the maximum of
Finally, recent network traffic studies suggest that certain types . -

) g . g> , for givenz, i.e.,
of network traffic may exhibit self-similar or more generally” *
asymptotic self-similar type of long-range dependence [25], 1 (24 rn)?
[2_6], and various _Gaussian processes can be used to model My 2= m = glzullm 9)
this type of behavior. Hence, our motivation to study the case - v
when the input process, can be characterized by a Gaussiaand we define:, to be the time: at which the normalized vari-

process. ance(Var{ X, }/(z + xn)?) is maximized. Although the esti-
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matee~("=/2) called the MVA approximation has been theoretwhere
ically shown to be only aasymptotiaupper bound, simulation . .
studies in different papers have shown that it is an accurate ap- 1 (c=X) > (r—2X) 0
proximation even for small values of[27], [18], [20], [28].  “ = N/2r T\~ 202 /c (r—cexp| =3 "

Now, for somez, we need to evaluate the rafiy (a)/P{Q >
a} givenin (4). As mentioned earlier, itis easy to fiffd (a) for  We call this above approximation thdVA approximation for
a = 0, hence what we need to do is to first estimB{g? > 0}  |oss The MVA approach is based on tlaege buffer asymptotics
from the MVA result. For a givem bothn, andm, inthe MVA  and it also applies in the context of theany-sources asymp-
approximation cannot generally be obtained in a simple closgflics [20], [28]. We next compare this approach with an ap-
form, hence, search algorithfrare likely to be used to eva|Uateproximation based on the many-sources asymptotics.
them, butr,, may not be unique especially for a small value of The many-sources asymptotics have been widely studied
z. However, whenr = 0, we can obtain them right away, asand can be found in many papers on queueing analysis using

demonstrated in the following proposition. large-deviation technique [5], [30]-[32]. Most of the papers
Proposition 1. Letn,, be the value of at whicho? , attains deal with the tail distribution rather than the loss probability. In
its maximum(o?). Then,no = 1 and [9], the authors developed the first result on the loss probability

based on the many-sources asymptotics. We call this the
0= ——. (10) Likhanov—Mazumdar (L-M) approximation for loss. Since the

Cx(0) L—M result was obtained for a fairly general class of arrival
processes and is much stronger than typical large-deviation
types of results, we feel that it is important to compare our
result with the L—M result.

w2

Proof of Proposition 1: To prove the proposition, it suf-
fices to show that

S . Cx(0) (11) Consider N i.i.d. sources, each with input rata’”,
n>rf Omn 701 2 ne{0,1,2, ...},ie{1,2 ..., N} Itis assumed that the
) moment generating function of) exists, and that the input
SinceCx(0) = Ci(n), foralln > 1 rate ! is bounded. The L-M approximation has the following
. form:
o n = (an)? nCx(0) + 2 Z n— (m) o—NI;(C,B)
m=1 P (NB)n ——————— 15
L(VB) 02X/ 2m0i N3 (15)
1
< (kn)2 nCA(0) +2 221 n- and is theoretically justified by
n?C,(0) o—NI;(C,B)
=— P(NB)y= ———(1+0O(1/N 16
= CA(;)). (12) wherel is the number of sourced/C' is the link capacit;(/j\;B
K _ 7 1
is the buffer sized; = E{\"}, ¢n(6) = E {CHZmAk }
Sinceog ; = (Cx(0)/r?), we have (11). B 4, is avalue off such that
Now, we show how to calculat®,(0). Since),, is assumed
Gaussian, the mean and the variance provide sufficient informa- () —Cn+B
tion to calculateP; (0), i.e. ba(0) T
E{(\ — o) 2 _Oulbn) (4 py2
_ —((7 N)?/207)
)\\/27r / e dr (13) and# is a value ofr that maximized,,(C, B), for a givenC

and B. This approximation (15) becomes exactés— oc.
whereX := E{\,}. As long as the number of input sources is Consider the numerical complexity of (16) Suppose that we
large enough for the aggregate traffic to be characterized aggcylate (16) for givenv, C, B, and A\ In general, since
Gaussian process, (13) gives an accurate estimate (exact f@iede are no closed-form solutions fé; and 7, we have to
Gaussian input) and is often called the Gaussian approximatif{tj them numerically. Two iteration loops are nested. The inner
[29]. Note thatC)(0) = o andx = ¢ — X in (10). From (4), |oop iterates ove# to find 6, for givenx, and the outer loop

(10), and (13), we have iterates over to find 7. Hence, it can take a long time to find
P(0) a solution of (16) by numerical iteration. However, the MVA
Pr(z) ~ ﬁ e M/ = e (ma/2) (14) approximation requires only a one-dimensional iteration aver

to find n,, at whichm,, is minimized.
2Simple local search algorithms starting 8tr/(2 — 3)x) are good enough
to find n,, within a small number of iterations. SThis expression is just a rewriting of equation (2.6) in [9].
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There is another problem in applying the L—M approximatior 10° — ,
for control based on on-line measurements. When the distrib T Smdlation
tion of a source is not known beforehand, in the L—-M approac
the moment generating function of a source should be evaluat
for the two-dimensional arguments (), whereas only the first
two moments are evaluated for the one argumerih the MVA
approach (see Section V).

Note that one could avoid the above problems by making
a Gaussian approximation on the aggregate source first, ag
then using the L—M approximation given by (16). Specifically— 107'°
if we assume that the input process is Gaussian, we have
closed-form solution fof,,, i.e., asp,, () = fm(W+1/28v(n)
with m(n) = E{3"r_, A"} andu(n) = Var{3"r_, AV}, we
have

=
o
®
2
e]

0 500 1000 1500 2000

_ Cn+ B —m(n) (17) Buffer Size
Fig. 2. Loss probability for a Gaussian input process with autocovariance

v(n)
. function C (1) = 258 x 0.9/l (mean rateA = 1000; service rate—mean
Hence, for giverC' and B, bothI,,(C, B) ando?,; ,, (the nor- i) — fé ‘)20). ’ (

malized variance ak,,) are expressed in termswof m(n), and
v(n), we can avoid the two-dimensional evaluation of the mo-
ment generating function. 10 ' " srmaation
The only problem is that the theoretical result that says tha —% MVA-Loss
the L—M approximation in (16) becomes exact as the numbe
of sourcesVbecomes large is not proven for unbounded (e.g.,
Gaussian) inputs. Still, since making this approximation reduce:, _s !
the complexity of the search space, it would be instructive to
also investigate the performance of such an approximation. I
Section IlI, we will numerically investigate our MVA approx-
imation for loss, the L—M approximation, and some other ap-
proximations developed in the literature. 107}

On

I1l. NUMERICAL VALIDATION OF THE MVA A PPROXIMATION
FOR LOSS

In this section, we investigate the accuracy of the propose - ,
method by comparing our technique with simulation results. In~ © 0.5 1 1.5 2
. . . . . Buffer Size 4

all our simulations, we have obtained 95% confidence intervals.

However, to not clutter the figures, the error bars are only shov's_m . o . .

. . % of th timated 9. 3 Loss probability for a Gaussian input process_wnh autocovariance

in the figures when they are larger th&20% of the es function C (1) = 49.80 x 0.9/ + 16.18 x 0.991 + 57.96 x 0.999!*

probability. To improve the reliability of the simulation, we usémean rateA = 3000; service rate—mean rate:= 10, 20, 30).

importance-sampling33] whenever applicable.We have at-

tempted to systemgtlcally stqdy the MVA apprOX|mat!on foA_ Gaussian Processes

various representative scenarios. For example, we begin our in- _ S _ _ _

vestigation with Gaussian input processes. Here, we only checkVe begin by considering the simple case when the input is

the performance of our approximation (we do not compare wigh Gaussian autorlegresswe (AR) process with autocovariance

other approximations in the literature), since other approxim@a(l) = 258 x 0-9' | (note that AR processes have been used to

tions are not developed for Gaussian inputs. We then consifpdel variable bit-rate (VBR) video [22]). In Fig. 2, one can see

non-Gaussian input sources and compare our MVA approxin‘taat the simulation and MVA loss result in a close match over

tion for loss with other approximations in the literature. Specithe entire range of buffers tested. _ _

ically, we consider Markoff Modulated Fluid (MMF) sources The next example, in Fig. 3, covers a scenario of multiple-

which have been used as representative of voice traffic in maifjescale correlated traffic. Note that multiple-timescale cor-

different papers (e.g., [34], [35]) and also consider JPEG afglated traffic is expected to be generated in high-speed net-

MPEG video sources that have been used in other papers inWsks because of the superposition of different types of sources

literature (e.g., [20], [36]). [37]. In this case, the autocovariance function of the Gaussian
input process is the weighted sum of three different powers, i.e.,
C\(1) = 49.80 x 0.9 +16.18 x 0.991 - 57.96 x 0.9991/. One

4For interested readers, the software used for the analysis and simulation (fn see from Fig. 3 that because of the mL{IFiple'timescale CPF'
be available upon request. related nature of the input, the loss probability converges to its
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—=— Simulation —=— Simulation
-+ - MVA-Loss -+ - MVA-Loss

Loss Probability
Loss Probability

250

0 100 200 300 400 500 100 150 2(50
Buffer Size Buffer Size

300

Fig. 4. Loss probability for a fractional Brownian motion process (Hurstig. 5. Loss probability for the superpostition of two fractional Brownian

parameterH = 0.7, ,0.8; mean rateA = 300; variances? = 100; service motion processes. (Hurst parametefs; = 0.6, H> = 0.8; mean rates:

rate—mean rate: = 10). A1 = 150, A\ = 150, varianceso? = 50, o2 = 50, service rate—mean rate:
K = 5,10, 15).

asymptotic decay rate only at large buffer sizes. This observa-

tion is consistent with observations made on the tail probabilifiminated eigenvalue technique in [38] “Chernoff-DE,” the
when fed with multiple-timescale correlated traffic [20]. Again2verage/peak rate method in [39] “Ave/Peak,” the analytical
it can be seen that the analytical result tracks the simulation fgchnique developed in [24] “Hybrid,” and the famous effective
sults quite closely. bandwidth scheme “Effective BW [4Q].

The next example deals with a well-known input process, the'We now consider the practically important case of mul-
fractional Brownian motion process, which is the classical efPlexed voice sources. The input MMF process, which has
ample of a self-similar process [28]The results are shown in Widely been used to model voice traffic source [34], [35], has
Figs. 4 and 5, demonstrating the accuracy of MVA loss, evdhe following state transition matrix and rate vector:
for self-similar sources. Due to the difficulty in applying im- - C10.9833 0.0167
portance-sampling technigues to obtain loss probabilities for State transition matnx:[ 0'_025 ()"975 }
self-similar traffic, in Figs. 4 and 5, we show probabilities only
as low as10~C. In Fig. 4, the input traffic is characterized by
a single Hurst parameter. However, even if the traffic itself is
long-range dependent, due to the heterogeneity of sources tﬂz]:lt

high-speed networks will carry, we expect that it will be difficul%@ese values are chosen for a 45-Mb/s ATM link with 10-ms

Input rate vector: 0 cells/slot
P '10.85 cells/slot| *

to characterize the traffic by simply one parameter. such as HRE slot and 53-byte ATM cell. In this example, we assume that
y Py P ' 00 voice sources are multiplexed on a 45-Mb/s ATM link with

H . H I i fi . o
urst parameter. Hence, we also run an experiment for a m (%:ms time slot and 53-byte ATM cell. As shown in Fig. 6, the

realistic scenario, i.e., the input process being the superposit . - .
P putp 9 perp K/W/A loss obtains the loss probability calculations accurately

of fractional Brownian motion processes with different Hursand better than the other technigues.

arameters. The numerical result is shown in Fig. 5. One ca . . L
P g r\/Ve next investigate the accuracy of our approximation when

ﬁgfsf(r)?]rpcgslgs. 4 and 5 that MVA loss works well for S'e”_SImEhe sources to the queue are generated from actual MPEG video

traces. The trace used to generate this simulation result comes
from an MPEG-encoded action movie (007 series) which has
. i . been found to exhibit long-range dependence [36]. In Fig. 7,
In this section, we will compare the performance ou4qMPEG sources are multiplexed and served at 3667 cells/slot
MVA-loss approximation with simulations and also with othe(oc_3 line), where we assume 25 frames/s and a 10-ms slot
schemes in the literature. We call the Likhanov-Mazumdg[,e The loss probability versus buffer size result in this case
technique described earlier “L-M,” or “L-M:Gaussian” wheng shown in Fig. 7. Again, it can be seen that the MVA-loss
further approximated by a Gaussian process, the Chermngff, oximation tracks the simulation results quite closely.

B. Non-Gaussian Processes

5For computer simulations, since continuous-time Gaussian processes cannot L L.
be simulated, one typically uses a discrete-time version. In the case of fractickal Application to Admission Control

Brownian motion, the discrete-time version is called fractional Gaussian noise . . . e
and has autocovariance function given by The final numerical result. is to demonstrate the utility of
MVA loss as a tool for admission control. We assume that a
Ca(l) = %2(“ CAPT L 1P 2T new flow is _a_dm_itted to a multiplexe_r with buffer sizeif the
“ loss probability is less than the maximum tolerable loss proba-
whereH € [0.5, 1) is the Hurst parameter. bility e.



760

Loss Probability

- - - Effective BW
T=~.| % Ave/Peak

-& - Cheroff DE

- L-M:Gaussian
- = - Hybrid
* x L-M
—e— Simulation
R -8 - MVA-Loss

0 200

Fig. 6. Loss probability for 2900 voice sources. (Transition matri0.9833,
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Fig. 8. Admissible region for a 45-Mb/s link where voice/video sources are
multiplexed. (Link capacity: = 45 Mb/s = 1046.7 cells/slot; QoS parameter:
e =1075)

Fig. 7. Loss probability for 240 real MPEG traces from a 007 movie. [Mean

rate (total):X = 3469.45 cells/slot; service rate—mean rate: = 197.55

cells/slot.]

can be seen that MVA-loss curve most closely approximates the

In this example, we consider multiplexed voice sources onggy iation curve in both figures. In Fig. 8(a), the L-M approx-
45-MbJs link [Fig. 8(a)] or multiplexed video sources [Fig. 8(b)lmation performs as well, and the Chernoff DE approximation
for an adm|SS|on-6controI type of application. The QoS parargyes only slightly worse. In Fig. 8(b), however, the Chernoff DE
etere is set tol0°. For each voice source in Fig. 8(a), we usgyyyimation in this case is found to be quite conservative. This
the same MMFON-OFF process that was used for Fig. 6. FO[g hecause for sources that are correlated at multiple timescales
each video source, we use the same MPEG trace that was _L{gggh as the MPEG video sources in Fig. 8(b) shown here],

in Fig. 7 (with start times randomly shifted). Then, the admi
sion policy using MVA loss is the following. Let andv(n) be

the mean and the variance function of a single source, i.e., |gf,
X = EQAY Y andu(n) = Var{327_, AV}, When(N — 1)
sources are currently serviced, a new source is admitted if

2log o — sup

n

Nu(n)
((c — NX) n +a:)

5 < 2loge

(18)

$he loss probability does not converge to its asymptotic decay

rate quickly (even if there exists an asymptotic decay rate), and
ce approximations such as the Chernoff DE scheme (or the
hybrid scheme shown earlier) perform quite poorly.

Admission control by MVA loss can be extended to a case
where heterogeneous flows are multiplexed. The link capacity
is 622.02 Mb/s (OC-12 line), the buffer size is fixed to
20000 cells, and the QoS parametas 10~°. In this system,
the input sources are of two types, JPEG video and voice.

wherec is defined as in (14). In Fig. 8(a) and (b), we providés a video source, we use a generic model that captures the
a comparison of admissible regions using different methodsniultiple-timescale correlation observed in JPEG video traces.
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45%10 . . . . K where f = O(g) means thatimsup |f/g| < ~o. Equation
— Simulati (20) tells us that the divergence between the approximation
ar o |V|IVX—aLIOOSnS ] ae~™=/2 given in (14), and the loss probability is slow if at
a5k | all [this may be easier to see if we rewrite (20) in the form
8 ’ log Pr(z) — logae=™=/? = O(log z)].
3 3 . In [27] and [28], under a set of general conditions it has been
ﬁz 5 shown for the continuous-time case that
S ‘ ms
% o logP{Q >z} + - = O(log z). (21)
o}
£ L o . |
NS Admissible Region We will obtain (20) by finding a relationship betwed? (x)
Z ] andP{@Q > =z}, i.e.
05¢ T logP{Q > x} — log Pr(x) = O(log ) (22)
0 . . ' .
0 20 40 60 80 100 120 iti i i i
Number of JPES Video Sources under the set of conditions given in Theorem/,{z) will be

bounded from above and below by some expressions in terms of
Fig. 9. Admissible region for an OC-12 line where voice and JPEG vidd3{® > =}], and then by applying (21) and some properties of
sources are multiplexed. (Link capacity: = 622.02 Mb/s = 14467.7 . Note, that finding the asymptotic relationship (22) between
cells/slot; buffer sizeB = 2000 cells; QoS parametes:= 10-°.) [F"{Q > a:} andPL(a:) is by itself a valuable and new contribu-

. . . . tion.
It is a superposition of an i.i.d. Gaussian process and threqu first

list a set of conditions for which (21)
two-state MMF processes:

holds in the discrete-time case that are equivalent to
the set of conditions in [27] defined for the contin-
uous-time case. Let,, := Var{X,}, ¥(n) := logwv,, and
B:=lim,, o ¥(n)/logn (assuming that the limit exists).

State transition matrices:
[0.99 0.01} [0.999 0.001} {0.9999 0.0001}

0.01 0.99 0.001 0.999 | | 0.0001 0.9999
Input rate vectors [cells/slot]: (H1)  lm nfyp(n+1)—¢(n)] = 3.
0 0 0 (H2) w,"~7Sn” for someS > 0.
45.516 | | 31.86 18.204
Mean of i.i.d. Gaussiarg2.42 The notationf (n)" '~ g(n) means thalim,, ... (f(n)/g(n))=
Variance of i.i.d. Gaussia:6336. 1. The parametefi cannot be larger than 2 due to the station-

arity of A,,, ands € (0, 2) covers the majority of nontrivial sta-
Then, the admission policy is the following. L&t andv, (n) tionary Gaussian processes. The Hurst p_aram’étér related
be the mean and the variance function of a single voice sourt® by # = 2H. We now state the following results that are
Let \» andv(n) be the mean and the variance function of the discrete-time versions of the results in [27], [28], [41]. The
single video source. WhefiV, — 1) voice andN- video flows proofs for these results are identical to those given in [27], [28],

are currently serviced, a new voice flow is admitted if [41],.with trivial modification§ accounting for the discrete-time
version, and, hence, we omit them here. These results are stated
N N. as Lemmas here, since we will be using them to prove our main
2log o — sup 101(n) +Nava(n) 5 <2loge. (19) theorem.

m ((e=MiA=Nodo) nta) Lemma 2: Under hypotheses (H1) and (H2)
The boundary of the admissible region is obtained by finding 418
maximal N, satisfying (19) for eactVs,. me" NMWﬁ*"’
As one can see in Fig. 9, the admissible region estimated by
simulations and via MVA loss is virtually indistinguishable. In | ayma 3: Under hypotheses (H1) and (H2)
fact, the difference between the two curves is less than 1% in
terms of utilization. logP{Q > ) + % — Olog ).
IV. ASYMPTOTIC PROPERTIES OF THEMVA A PPROXIMATION

FOR LOSS It is easier for us to work with conditions on the autocovariance

_ . _ _ function of the input process rather than conditions (H1) and
We now find a strong asymptotic relationship between th@12). Hence, we first define a condition on the autocovariance
loss probability and the tail probability. More specifically, undefunction Cx (1) which guarantees (H1) and (H2):

some conditions (to be defined later in Theorem 5), we find that
CL > O ~7spn L

I=—n

log Pp(x) + % = O(log z) (20)
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Note that condition (C1) is quite general and is satisfied n N }l}finite queue
only by short-range dependent processes butalso by alargec Q. g N oA
of long-range dependent processes including second-orders x foss
similar and asymptotic self-similar processes [42].

Lemma 4: If the autocovariance functiofiy (I) of A,, satis- 0 = -
fies (C1), then (H1) and (H2) hold. 0 SR w

Proof of Lemma 4:Let h(n) := >~ Cx(l). Note that ! T s Jose?
X ~
Un = Var{X,} = Ox(l -k 0 2
{ } ; ; )\( ) S @2 g WO = 2w0

=nCx(0)+2> (n - DCA()

= Fig. 10. Illustration of “sam&{Q > =} but differentPy (2).”

and thatv, 41 — v, = h(n). First, we show condition (H2). for which Q,, stays above thresholdin a cycle to which» be-

Since bothw,, andn? approachse, lim, ... (v,,/n”) should longs. Formally, let:

be equal to e U, :==sup{k <n:Qr_1 >0, Q = 0}. (Start time of
the current cycle to which belongs.)

o V, = inf{k > n: Qr_1 > 0, @ = 0}. (Start time of
the next cycle.)

. Un+1 — VU
lim %
n—oo (n —|— 1)r — n

if it exists (this is the discrete version afHospital’s rule). e W, :=V,,—U,. (Duration of a cycle to which belongs.)
Hence ¢ Zp:i=Vp—n. (Residual time to reach the end of cycle.)
| S oot — v it . 57 = kzbl 1{Q. >}~ (Duration for whichQ; > = in
lim = a cycle containing.)
n=eo (n+1)7 —nf pnf=t (n+1)7 —n? Note that ifQ,, > 0, Z, is equal to the elapsed time to return
h(n) Bnf1 to the empty-buffer (or zero) state. Sin@k, is stationary and
T APl (n+1)% — P grgodic, so are the above. Hence, their expectations are equal to
time averages.
RS | (23) Consider two systems whose sample paths look like those

in Fig. 10. The sample paths are obtained when the input is
wherelim,, o (v,/n”) = S. Now, we show that (H1) also a deterministic three-state source which generates fluid at rate
follows from (C1). Sincéi(n) /v, ~ B/n, f(z) = o(h(n)/vn) c+4a,c—a,and0, at state 1, 2, and 3, respectively. The duration
implies thatf(x) = o(n™"). Note that a functio(x) is o(z)  of each state is the same, saylJse the superscrigt ) and(2)

if lim, ... g(x)/z — 0. Now to represent values for the upper and the lower sample path. Set
a® = 242 andv® = 26V, Then, both cases have the same
f(n + 1) —(n)] = nlog <Un+1> ove2rflow probability. Noyv, consider a time iqterval fr.om 0 to
n 36(2). The amount of fluid generated for that interval is clearly
U + h(n) the same for both cases. But, the amount of loss in the upper case
= nl < - o ) is exactly the twice of that in the lower case, hence, the upper

case has the larger loss probability. We can infer from this that
h(ﬂ)) the loss probability is closely related to the lengthSf and

the slope of the sample path. Since loss happens only when
h(n) 1 is greater than the buffer size we consider the condition that
=n [— +0 <—>} Q. > x. Since it is difficult to know the distribution o, and

Un n/sl sinceS? is determined by the sample path, we use a stochastic
(by Taylor Expansion) process defined as
h(n) n® 4 <1>
= — +no| — "
n?=t vy, n Yo=Y M+ Qo—en. (25)
n—oo 1 k=
SRES o H0=p (24) '

Here, we have chosen 0 as the origin, but, because of station-
m arity, the distribution ofv;,, does not depend on the origin. Note
The loss probability is closely related to the shape of thhatif Qg > 0, Y,, will be identical to(},, until the end of cycle.
sample path, or how lon@,, stays in the overflow state. Be-We want to know the distribution df,, given o > z. Since
fore we give an illustrative example, we provide some notatiolr,, is Gaussian, the distribution af, can be characterized by
We define acycleas this period, i.e., an interval between timéhe mean and the variance Bf. However, sinc&), is the re-
instants wher),, becomes zero. We I&{7 denote the duration sult of the entire history up to time 0 and the future is corre-
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lated with the past, it is difficult to find an explicit expressiorimit is that we will find the similarity relation (29) in Lemma 6,
of the mean and the variance Bf given(, > x. Hence, we which is useful in proving Theorem 5. In fact, we may take
introduce upper-bound types of conditions on the mean and the left limit to have the same asymptotic behavior. By building
variance ofY;, as (26) and (27). For notational simplicity, let!, andm. in this way, it directly follows from Lemma 2 that
P.{-} = P{-|Qo > =}, and letE,.{ -} andVar,{ -} be the m/ ~ ax'~" andm! ~ bz~" for some constants > 0 andb.
expectation and the variance undigyr, respectively. We now state three lemmas which are useful in proving the

We now state our main theorem. theorem. (Their proofs are in the Appendix.)

Theorem 5: Assume condition (C1). Further assume that for Lemma 6: Under hypotheses (H1) and (H2)

anye > 0, there existeg, K, M, anda such that 0o 9y K
/ yls e—(rny/Q) dy“c::oo W 6_("%:/2) (29)

Z

E,{Y,} <(—k+en (26)

Var, {Y,,} < Kn” (27) whereK is a constant.

Lemma7:If P{Q >z} >0andE{Z|Q > =} <oc forall z
forall x > xo andn > Mz®. Then @ ¥ {zlQ }

oo 1 _
(log P () + =) /az EZ0S ) F Q> uhdy <AP). (30)

—oo < liminf
r—oo logz

1 m Lemma 8: Under conditions (26) and M {Z|Q > =} =
< limsup e (log Pr(z)+ ;) < oo, (28) O(z*) for somea > 1.
z—oo 0BT Now, we are ready to prove Theorem 5.
Though the conditions of Theorem 5 look somewhat Proof of Theorem 5:First of all, we find expressions in
complex, they are expected to be satisfied by a large classi@®ims ofP{@ > =} which are greater than or less thaf («).
Gaussian processes. If the input process is i.i.d. @jtf0) = 5§ If P{@ > x} = 0 for somex, it would contradict the asymp-

andCy (1) = 0 for I # 0, it can be easily checked that totic relation in Lemma 3. Henc®{¢} > =} > 0 for all z. If
E{Z|Q > =} = o for somez, it would contradict the asymp-
EA{Y,} <—rn+z totic relation in Lemma 8. Henc&{Z|Q > z} < oo for all
Var,{Y,} = Sn x. Thus, by Lemma 7 we have (30). Now, sinegg, — =)™ =
(Qu_1 + Ap — ¢ — )T from (5)
and (C1), (26), and (27) are satisfied with=1, K = S, M = _ . 4
1/e, andr = 1. It has been shown that Gaussian processes APp(z) =E { (Qn—l +XA, —c— a:) }
represented by the form of finite-ordered autoregressive moving
average (ARMA) satisfy (26) and (27) [17]. Since the autoco- <E{(Qn 1+ M\ —c—2)T}
variance fupction of a stable ARMA process is in the form of CE{(Qn — )"
eNUEDINN a,pZ | with |p;| < 1, it satisfies (C1) with3 = 1. - "
So Theorem 5 is applicable to Gaussian ARMA processes. i
More generally, E{>";_, A} — ecn = —rn, and o /T PAQ > yhdy. (31)

Var{> r_, M} ~7"Sn® under (Cl). Thus, for each
x, EL{Y, V"~ — kn and Var,{Y,} ' =7Sn? and we
can find K = K¢, 2), M = M(e, 2), anda = ale, z)
as small as possible. up, K(e, z), sup, M(e, ), and
sup, a(e, x) are finite, then (26) and (27) hold. We conjecture —(ms/2+Kilegy < pr > 41
that they are all finite for a Iarge class of s'tatlonary Gaussian <emy/DHIE sy s a0 (32)
processes, and we are attempting to show it.

Note that the rightmost inequalitlifn sup part) in (28) holds Note that sincdE{Z|Q > z} = O(z®) from Lemma 8, we
without conditions (26) and (27), and it agrees with empiricalan choosdss > 0 such thatf{Z|Q > x} < Kzx* for all
observations that the tail probability curve provides an uppgr> z,. Combining with (30) and (31), integrate all sides of

By Lemma 4, (C1) implies (H1) and (H2). Hence, by
Lemma 3, we have (21). Equation (21) means that thereare
K, and K> such that

bound to the loss probability curve. (32) to get
Before we prove the theorem, we first define the derivative of 1
m,, With respect tac, m/,. Recall (9), or / — e m/2) gy
Ky~
_ (@t rng)? B s
M= SAPL) S [ ey, Vo za. @9)

Sincen, is an integer valuem, is differentiable except for Sincent,
countably many: at whichn, has a jump. LeD := {z : m,

is not differentiablé. Note thatD has measure zero, and that
the left and right limits ofm’, andm// exist for allz € D. Kpfimamithe—0ma/2)

For simplicity, abuse notations by settingc = lim. |, m/, and Tl K —(my/2) J
m! = lim, |, m” for x € D. The reason we set the (right) / Kqrl ¢ W

~ az*~? with the constant > 0, by Lemma 6, there
existz, > xo, K4 > 0and K5 > 0 such that

Ve>z1 (34)
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and found through on-line measurements (see Theorem 1 and the
/°° 2 =Ml gy algorithm in [44]). Thus, since our approximation is dependent
N on the DTS, we only need to estimate: ), for values of» up to
< Kyple—148,—(ma/2) Vo> .. (35) aboundonthe DTS (given in [44]), thereby making it amenable

for on-line measurements.
From (33)—(35)

o _ ~ o _ VI. CONCLUDING REMARKS
K4.’L’Bl el 1+’86 (my /2) S)\PL(-/E) SK{).’ERZ 1+’86 (rnI/Q)’

Vo > . We have proposed an approximation for the loss probability
- in a finite queue by making a simple mapping from the MVA es-
Take logs and rearrange to get timate of the tail probability in the corresponding infinite queue.
K We show first via simulation results that our approximation is
log <T4> + (K1 —a—-14+3)]ogx accurate for different input processes and a variety of buffer
A sizes and utilization. Since the loss probability is an impor-
< log Pr(z) + My tant QoS measure of network traffic, this approximation will be
2 useful in admission control and network design. Another feature

K of the approximation is that it is given in a single equation format
< log <T) + (K2 — 1+ B)loge, Vazuw. and hence can easily be implemented in real-time. We have com-

o pared our approximation to existing methods including the ef-
Divide bylog z and taker — co. Then, the theorem follow®.  fective bandwidth approximation, the Chernoff dominant eigen-

value approximation, and the many-sources asymptotic approx-
V. APPLICATIONS TOON-LINE MEASUREMENTS imation of Likhanov and Mazumdar.

In this section, we describe how to apply the MVA approach In this paper we also study the theoretical aspects of our ap-
for the estimation of the loss probability, based on on-line meBroximation. In particular, we provide a strong asymptotic result
surements. In many practical situations, the characteristics dhat relates our approximation to the actual loss probability. We
flow may not be known beforehand or represented by a sim§igow that if our approximation were to diverge (with increasing
set of parameters. Hence, when we use a tool for the estimatififer size) from the loss probability, it would do so slowly. For
of the loss probability, parameter values such as the moméstire work we plan on simplifying the conditions given in The-
generating function and the variance function should be evarem 5 and to extend the approximation result to a network of
uated from on-line measurements. Then, the question is wRSEUES.
range of those parameters should be evaluated. If an estimation

tool needs, for example, the evaluation of the moment gener- APPENDIX
ating function for the entire range ¢, »), the tool may not be Proof of Lemma 6:Let f(x) = (m./2) — K log z. Since
useful. This is fortunately not the case for the MVA approxim%;wzooa$1—,a andg < 2, f'(z)"<°m’, /2. Hence, to prove
tion for loss. the lemma, it suffices to show that

Note that the MVA result has the forez=™</2, The param- oo
eterm, is a function ofe, A, z, andv(n), whereX andv(n) / i) dy“/‘?j’o# o f@) (36)
are the mean and the variance of the input, Aes E{\,.} and @ f'(@)

v(n) = Var{3 i, Ax}. Hence, by measuring only the firSttwoy et D = {4 : m,, is not differentiablé. Forz ¢ D,
moments of the input we can estimate the loss probability. Re—d

call that a4 < 1 C—f(y)) N G B
() dy \ f'(y) ym f(z)?
@ =SUp ——————5 _
e TP (c—X+2)° Since D has measure zerq,, ., ,(-)dy = [, _(-)dy

) and we may assign any valuesftdz) andf” () forallz € D.
and thatv(n)/(c -+ a:) is maximized at. = n,. This Recallm}, = lim.|, m, andm/ = lim.|, m! forz € D. Set
means that the result only depends on the valugof atn =  f'(z) = lim, |, f'(z) andf”(z) =lim,, f"’(z)forz € D.
nz. This value ofn, corresponds to the most likely timescale Now, letz be any value. Integrating both sides of (37) from
over which loss occurs. This is called tHeminant time scale z to oo, we have
(DTS) in the literature [43], [20]. Thus, the DTS provides us

with a window over which to measure the variance function. It  — f’gx) e/ mlggo f(x) eI

appears at first, however, that this approach may not work, be-

cause the DTS requires taking the maximum of the normalized — _ 1 e @)

variance over alh, which means that we would need to know f(x)

v(n) for all n beforehand. Thus, we are faced witlckicken * w W) s

and eggtype of problem, i.e., which should we do first: mea- = —A e W dy —L W e Wdy.  (38)

suring the variance functios(n) of the input, or estimating the
measurement window,.. Fortunately, this type of cycle hasNote thatm/, ~ az*~? andm! ~ bx—# with constants: > 0
recently been broken and a bound on the DTS can in fact #edb. Sincef’(x) = (m/,/2) — Kz~ ! ~ ax' =% and f(z) =
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(m7/2) + Ka=?

all z > zg. Then

1 . o
ok f<>_€/x W) gy

< /Oo W dy

= 7 - / f’

1
< = o f@® Wy Va>
Spime e O oz

e dy

which means that

IR
L+e f'(z)

S /Oo C_f(y) dy

BRI
T 1l-e f'a)

and the result follows.
Proof of Lemma 7:Recall the notations:

@)

e_f(“”), V> xg

~ br™P lim, o (f"(x)/f'(2)?) = 0. Let
€ (0, 1). We can findzo such that(f”(z)/f'(x)?)| < e for

the inequality is due to thatis discretes. SinceE{ A} < ¢, there
are infinitely many cycles for a sample path. Index cycles in the
following manner:
VD = vV, UD = U, VO = Vi, UD =
V-1 fori > 1,
« AD = {0 UD < p < VO,
Define:
. S(Z

= wean I(@Qr>x),1=1,2,3,...,

5% = = lim sup m—
e ZI (5“ >0)

Now, we prove the lemma in two steps:
¢ 1) Derive

(39)

OO

(40)
+ 2) Show2E{Z,|Q, > =} > §°.
[ | Step 1): The amount of loss in cyclgs greater than or equal
to the difference between the maximum value of the queue level

e U, :=sup{k < n: Q1 >0, Q = 0} (start time of @~ In cycle: and the buffer size of the finite buffer queue, i.e.

the current cycle to which belongs).

eV, :=inf{k > n:Qu_1 > 0, Qr = 0} (start time of the LY > max (Q) — )"

next cycle).

W, :=V, — U, (duration of a cycle to which belongs).
* Z, :=V, —n (residual time to reach the end of cycle).

Vi—1

© Sy =300 1{gu>ay (duration for whichQy, > zina

cycle contammgz)
Define one more

s RF =
Qr > xina cycle containing).

' Lig,>r} (residual duration for which Taye summation overand divide by the total im&,;~

ke AW

:/ I<max Qk>u> dy
> kAU

:/ (89> 0) dy.

L 1A@),
where|A®| denotes the number of elementsAif). Then

Since@,, is stationary and ergodic, so are the above. Hence,

their expectations are equal to time averages. Since we are inx
terested in the behavior @}, after loss happens, we consider » _ L

the conditional expectations:

E{Z.|Q, >z} = kh_l)r;Q
=1

LQi>a)
7=1

E{S51Qu > o} = lim

S lgisa T
=1

1
E{RIIQ. > o} = lim

S lgisa T
=1

k
ZZil{Q7'>m} (41) i=1

k
1 X
T 2 STlesn 42

Em: L® Z Z Me

i=1 — i=1 =1 kecA®
Suol (3% )| S
=1 kc A =1

_ zm:I (Sé” > 0)

=1
> / —dy
x .

3149
=1
_ zn: I (Sé” > 0) zn: S

E
> Rl (43) _ / = =,

SosP YA
=1 i=1

6Sincen is discrete, for givem such that),, > =, R® andS? take (pos-

Clearly, E{R]|Qn > z} <E{Z,|Qn > x}. Anditcan also be jje) integer values. I, is, for example 2R., can be either 1 or 2, and its
easily checked th&E{R:|Q,, > =} > E{S7|Q,, > x}, where expectation is 1.5 which is greater than 2/2.
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l ] om For anye > 0, we can choosé/ such thatzy; — ¢* < ¢ and
y > s > s 6" — by < e. Then,
> / sup —— =+ =l dy. V' —a® =by + (b* = by) —ay — (a” — an)
z >m i ;

ZI(S§)>O> Z|A()| Z(b]\4—a]\4)—262—26

i=1 i=1 since
44 A\ 2 )
(44) 3 (53(;)) 350

by — = -
Recalling (1) and (2) M aM S 50 M

zm:L(i) Z (SQ(CZ) _ Séj))Q
= — Pu() == MYy S =0

Ak
; kezA:m » Sincee is arbitrary, we havé* > a*.
Now, we will verify that

m

Z Z Ak 5% < lim ml Z(SS))Q. (46)

i=1 keAl) m/ee qu(‘i) i=1
i=1

|A®] ;
; Construct a new sequenq‘,@%ﬂz)} by removing zero-valued ele-
ments of{S(Z)} Then, as in (45)

(@ m
;Sy limsup — ZT(Z) < lim — ! Z (Tq(,z))2 (47)

>|

= — P{Q >z} m—eo M 7 e Zngi) i=1
Z |A@)|
i=1 Note that
1 m ) 1 m )
zl:s(i) lim sup - ZTS’) = limsup N ZSQ(;’)
‘ Y . m—oo im1 m—o0 ZI (SS,Z) > 0) im1
sup IL — 5Y =
>m .
TS a(s > 0) =5 (48)
i=1

LetBY) := {n: UD <n < V®, Q, > z}. Sinces? = 55"
i)

asm — oo. Since all components are nonnegative, by Fatoufsr all j ¢ B and|B§f)| = s

Lemma, (44) becomes 1 k
P> [ Lp d EiSn@n > o} = lim ;Sfl{@”}
LRz [P > ubdy Zl{Qm}
Step 2): For better understanding, we first show k
m N2 - klggo k Z f
limsup — Z S(Z) < lim Z (SS)) . (45) Z =1 jenl?
m—oo Z Sa(;) =1 im1 Ba(_
=1 k
Note that all components are nonnegative. Let - ,}H{}o Z Z s{
(@) =1 ;cBY
Lo Z 1B
m o= T 5(7)
= 3081 k
- ' s0)’
L& =i 3o (8
by = m Z (Sx ) Z Sg) =
ZSS) i=1 °
i=1 1 k 2
a* = limsup an, = klil)r;o - Z (ngz)) . (49)
2) =1
and Zng )

=1
0" = limb,,. Combining (47)—(49), we have (46).
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At last, we have Obviously,P,{Y, > 0} = ®(x, n) < 1. Letx > z;. Then, as
X shown in Step 3)p(x, n) < n~2 foralln > M. Applying
5% <E{SZ|Qn > z} < 2E{R}|Q, > z} this and (55)
<2B{Z,|Q., > z} (50)

E.{Z} = Y P.{Z>n}
from which (30) follows. [ | n=0
Proof of Lemma 8:Define: oo

> P {Y, >0}

* &(z, n) := P, {Y, > 0}; <
* Vizo, o, M) :={(x, n) : x > xg, n > Mz}. n=0
The proof will be done in two steps: nd
. —2 = Z (I)(xv 71)
* 1)Findz; > zo suchtha®(z, n) < n~ =forall (z, n) € —
V(z1, o, M). "
* 2) Using 1), show thaE{Z|Qo > z} is O(z®). [AMa"] oo
Step 1): Lete be so small that-x 4 ¢ < 0. Then, we choose = Z Oz, n) + Z ®(z, n)
xo, M, and« satisfying (26) and (27). Letu(n) := E.{Y;} n=0 n=[Ma2]+1
andwv(n) := Var,{Y, }. Then, the moment generating function [Ma™] oo
of Gaussiart,, is given byefm(m+1/26°v(n) From (26) and < D1+ > w7
(27),m(n) < (—k + e)n andv(n) < Kn* for all (z, n) € n=0 n=[Mzo]+1
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