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Abstract—In this paper, we propose an approximation for the
loss probability, ( ), in a finite buffer system with buffer size

. Our study is motivated by the case of a high-speed network
where a large number of sources are expected to be multiplexed.
Hence, by appealing toCentral Limit Theoremtype of arguments,
we model the input process as a general Gaussian process. Our re-
sult is obtained by making a simple mapping from the tail proba-
bility in an infinite buffer system to the loss probability in a finite
buffer system. We also provide a strong asymptotic relationship be-
tween our approximation and the actual loss probability for a fairly
large class of Gaussian input processes. We derive some interesting
asymptotic properties of our approximation and illustrate its effec-
tiveness via a detailed numerical investigation.

Index Terms—Asymptotic relationship, loss probability, queue
length distribution, maximum variance asymptotic.

I. INTRODUCTION

L OSS PROBABILITY is an important quality of service
(QoS) measure in communication networks. While the

overflow probability, or the tail of the queue length distribution,
in an infinite buffer system has been extensively studied [1]–[7],
there have been relatively few studies on the loss probability in
finite buffer systems [8]–[11].

In this paper, we propose a simple method to estimate the
loss probability in a finite buffer system from the tail of
the queue length distribution (ortail probability)
of an infinite buffer system. We estimate by making a
simple mapping from . Hence, we consider both a
finite buffer queueing system and an infinite buffer queueing
system. We model both systems by a discrete-time fluid queue
consisting of a server with constant rateand a fluid input .
Both queues are fed with the same input. Letand denote
the queue length in the finite queue and in the infinite queue at
time , respectively. We assume that is stationary and er-
godic and that the system is stable, i.e., . Under this
assumption, it has been shown that converges to a stationary
and ergodic process [12]. It has also been shown thatcon-
verges to a stationary process when the system is a GI/GI/m/x
type of queue [13], [14], and when the system is a G/M/m/x type
of queue [15]. Since proving the convergence of is not the
focus of this paper, and moreover, practical measurements of

and are based on “time averaging” assuming
ergodicity [see (1) and (2)], we assume that both and
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started at , and that they are ergodic and stationary.1

The time index is often omitted to represent the stationary dis-
tribution, i.e., and .

The loss probability, , for a buffer size is defined as
the long-term ratio of the amount of fluid lost to the amount of
fluid fed. It is expressed as

(1)

where denotes , and where the second equality
is due to the ergodicity assumption. The tail probability (or tail
of the queue length distribution, also sometimes called theover-
flow probability) is defined as the amount of time
the fluid in the infinite buffer system spends above leveldi-
vided by the total time. It is expressed as

(2)

where if is true; otherwise. From now on,
when we write “loss probability” it will only be in the context
of a finite buffer system, and when we write “tail probability” it
will only be in the context of an infinite buffer system. Note that
since is averaged by time, and is averaged by
the input, in general there is no relationship between these two
quantities. However, is often approximated as

(3)

This approximation usually provides an upper bound (some-
times a very poor bound) to the loss probability, although in
general this cannot be proven, and in fact counterexamples can
easily be constructed. What we have learned from simulation
studies is that the curves versus and versus

exhibit a similar shape (e.g., see Fig. 1), which motivates this

1We refer the interested reader to our technical report [17], where we have
studied the relationship between finite and infinite buffer queues without as-
suming ergodicity of^Q and derived similar asymptotic results to (22) in this
paper. However, this involves mathematical technicalities that take away from
the main message in this paper, i.e., developing a simple approximation for the
loss probability.

1063–6692/01$10.00 © 2001 IEEE
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Fig. 1. Comparison of loss and tail curves in a 45-Mb/s link where 2900 voice
sources or 69 MPEG video sources are multiplexed: Loss and tail curves seem
to have the same shape.

work. Further, it has been shown in [16] that for M/Subexpo-
nential/1 and GI/Regularly-varying/1 with independent identi-
cally distributed (i.i.d.) interarrival times and i.i.d. service times,

converges to a constant, as .
Hence, it seems reasonable that if we have a good estimate

of the tail probability and a way to calculate ,
the loss probability for some buffer size, then we can calculate
the loss probability as

(4)

In particular, we will choose because this allows us to
compute the loss probability [ ] quite easily.This is the
basic idea that drives this paper. In addition to developing a
methodology to calculate the loss probability, we will also show
that asymptotically the loss probability and the tail probability
curves are quite similar, and if they diverge, they do so slowly,
which is an interesting result by itself.

For our study in this paper, we focus on the case when the
aggregate traffic can be characterized by a stationary Gaussian
process. Recently, Gaussian processes have received significant
attention as good models for the arrival process to a high-speed
multiplexer [3], [18]–[23]. There are many reasons for this. Due
to the huge link capacity of high-speed networks, hundreds or
even thousands of network applications are likely to be served
by a network multiplexer. Also, when a large number of sources
are multiplexed, characterizing the input process with tradi-
tional Markovian models results in computational infeasibility
problems [24] that are not encountered for Gaussian processes.
Finally, recent network traffic studies suggest that certain types
of network traffic may exhibit self-similar or more generally
asymptotic self-similar type of long-range dependence [25],
[26], and various Gaussian processes can be used to model
this type of behavior. Hence, our motivation to study the case
when the input process can be characterized by a Gaussian
process.

This paper is organized as follows. In Section II, we review
the maximum variance asymptotic (MVA) results for the infi-
nite buffer queue, and then demonstrate how to obtain similar
results for the loss probability. Then, we compare our approach
to an approach based on themany-sources asymptotics. In Sec-
tion III, we validate our result with several numerical examples,
including those for self-similar/long-range dependent traffic. In
Section IV, we find the asymptotic relationship between the loss
probability and our approximation. In Section V, we describe the
applicability of our approximation for on-line traffic measure-
ments. We finally state the conclusions in Section VI.

II. M AXIMUM VARIANCE ASYMPTOTIC (MVA)
APPROXIMATION FORLOSS

Remember that the first component in our development of an
approximation for is to find a good estimate of

. Fortunately, this part of the problem has already been solved
in [20], [21], [27]. By developing results based on Extreme
Value Theory, it has been found that the MVA approach (first
named in [20]) provides an accurate estimate of the tail proba-
bility. We briefly review it here. As mentioned before, we focus
on the case when the aggregate traffic can be characterized by
a Gaussian process, hence, the input process to the queue is
Gaussian. Let and .

The queue length (or workload) at time in the infinite
buffer system is expressed by Lindley’s equation:

(5)

We define a stochastic process as

(6)

We assume that is stationary and ergodic and that the system
is stable, i.e., . Then, it has been shown that the
distribution of converges to the steady state distribution as

and that the supremum distribution of is the steady
state queue distribution [12]:

(7)

Let be the autocovariance function of . Then, the vari-
ance of can be expressed in terms of . For each ,
define the normalized variance of as

(8)
where . Let be the reciprocal of the maximum of

for given , i.e.,

(9)

and we define to be the time at which the normalized vari-
ance is maximized. Although the esti-
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mate called the MVA approximation has been theoret-
ically shown to be only anasymptoticupper bound, simulation
studies in different papers have shown that it is an accurate ap-
proximation even for small values of[27], [18], [20], [28].

Now, for some , we need to evaluate the ratio
given in (4). As mentioned earlier, it is easy to find for

, hence what we need to do is to first estimate
from the MVA result. For a given both and in the MVA
approximation cannot generally be obtained in a simple closed
form, hence, search algorithms2 are likely to be used to evaluate
them, but may not be unique especially for a small value of

. However, when , we can obtain them right away, as
demonstrated in the following proposition.

Proposition 1: Let be the value of at which attains
its maximum . Then, and

(10)

Proof of Proposition 1: To prove the proposition, it suf-
fices to show that

(11)

Since , for all

(12)

Since , we have (11).
Now, we show how to calculate . Since is assumed

Gaussian, the mean and the variance provide sufficient informa-
tion to calculate , i.e.

(13)

where . As long as the number of input sources is
large enough for the aggregate traffic to be characterized as a
Gaussian process, (13) gives an accurate estimate (exact for a
Gaussian input) and is often called the Gaussian approximation
[29]. Note that and in (10). From (4),
(10), and (13), we have

(14)

2Simple local search algorithms starting at(�x=(2� �)�) are good enough
to find n within a small number of iterations.

where

We call this above approximation theMVA approximation for
loss. The MVA approach is based on thelarge buffer asymptotics
and it also applies in the context of themany-sources asymp-
totics [20], [28]. We next compare this approach with an ap-
proximation based on the many-sources asymptotics.

The many-sources asymptotics have been widely studied
and can be found in many papers on queueing analysis using
large-deviation technique [5], [30]–[32]. Most of the papers
deal with the tail distribution rather than the loss probability. In
[9], the authors developed the first result on the loss probability
based on the many-sources asymptotics. We call this the
Likhanov–Mazumdar (L–M) approximation for loss. Since the
L–M result was obtained for a fairly general class of arrival
processes and is much stronger than typical large-deviation
types of results, we feel that it is important to compare our
result with the L–M result.

Consider i.i.d. sources, each with input rate
. It is assumed that the

moment generating function of exists, and that the input
rate is bounded. The L–M approximation has the following
form:3

(15)

and is theoretically justified by

(16)

where is the number of sources, is the link capacity,

is the buffer size, , ,
is a value of such that

and is a value of that maximizes , for a given
and . This approximation (15) becomes exact as .

Consider the numerical complexity of (16). Suppose that we
calculate (16) for given , and . In general, since
there are no closed-form solutions for and , we have to
find them numerically. Two iteration loops are nested. The inner
loop iterates over to find for given , and the outer loop
iterates over to find . Hence, it can take a long time to find
a solution of (16) by numerical iteration. However, the MVA
approximation requires only a one-dimensional iteration over
to find at which is minimized.

3This expression is just a rewriting of equation (2.6) in [9].
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There is another problem in applying the L–M approximation
for control based on on-line measurements. When the distribu-
tion of a source is not known beforehand, in the L–M approach
the moment generating function of a source should be evaluated
for the two-dimensional arguments ( ), whereas only the first
two moments are evaluated for the one argument,, in the MVA
approach (see Section V).

Note that one could avoid the above problems by making
a Gaussian approximation on the aggregate source first, and
then using the L–M approximation given by (16). Specifically,
if we assume that the input process is Gaussian, we have a
closed-form solution for , i.e., as
with and , we
have

(17)

Hence, for given and , both and (the nor-
malized variance of ) are expressed in terms of , and

, we can avoid the two-dimensional evaluation of the mo-
ment generating function.

The only problem is that the theoretical result that says that
the L–M approximation in (16) becomes exact as the number
of sources becomes large is not proven for unbounded (e.g.,
Gaussian) inputs. Still, since making this approximation reduces
the complexity of the search space, it would be instructive to
also investigate the performance of such an approximation. In
Section III, we will numerically investigate our MVA approx-
imation for loss, the L–M approximation, and some other ap-
proximations developed in the literature.

III. N UMERICAL VALIDATION OF THE MVA A PPROXIMATION

FOR LOSS

In this section, we investigate the accuracy of the proposed
method by comparing our technique with simulation results. In
all our simulations, we have obtained 95% confidence intervals.
However, to not clutter the figures, the error bars are only shown
in the figures when they are larger than20% of the estimated
probability. To improve the reliability of the simulation, we use
importance-sampling[33] whenever applicable.4 We have at-
tempted to systematically study the MVA approximation for
various representative scenarios. For example, we begin our in-
vestigation with Gaussian input processes. Here, we only check
the performance of our approximation (we do not compare with
other approximations in the literature), since other approxima-
tions are not developed for Gaussian inputs. We then consider
non-Gaussian input sources and compare our MVA approxima-
tion for loss with other approximations in the literature. Specif-
ically, we consider Markoff Modulated Fluid (MMF) sources
which have been used as representative of voice traffic in many
different papers (e.g., [34], [35]) and also consider JPEG and
MPEG video sources that have been used in other papers in the
literature (e.g., [20], [36]).

4For interested readers, the software used for the analysis and simulation will
be available upon request.

Fig. 2. Loss probability for a Gaussian input process with autocovariance
functionC (l) = 258 � 0:9 (mean rate:� = 1000; service rate–mean
rate:� = 10; 20).

Fig. 3. Loss probability for a Gaussian input process with autocovariance
function C (l) = 49:80 � 0:9 + 16:18 � 0:99 + 57:96 � 0:999
(mean rate:� = 3000; service rate–mean rate:� = 10; 20; 30).

A. Gaussian Processes

We begin by considering the simple case when the input is
a Gaussian autoregressive (AR) process with autocovariance

(note that AR processes have been used to
model variable bit-rate (VBR) video [22]). In Fig. 2, one can see
that the simulation and MVA loss result in a close match over
the entire range of buffers tested.

The next example, in Fig. 3, covers a scenario of multiple-
timescale correlated traffic. Note that multiple-timescale cor-
related traffic is expected to be generated in high-speed net-
works because of the superposition of different types of sources
[37]. In this case, the autocovariance function of the Gaussian
input process is the weighted sum of three different powers, i.e.,

. One
can see from Fig. 3 that because of the multiple-timescale cor-
related nature of the input, the loss probability converges to its



KIM AND SHROFF: LOSS PROBABILITY CALCULATIONS AND ASYMPTOTIC ANALYSIS FOR FINITE BUFFER MULTIPLEXERS 759

Fig. 4. Loss probability for a fractional Brownian motion process (Hurst
parameter:H = 0:7; ; 0:8; mean rate:� = 300; variance:� = 100; service
rate–mean rate:� = 10).

asymptotic decay rate only at large buffer sizes. This observa-
tion is consistent with observations made on the tail probability
when fed with multiple-timescale correlated traffic [20]. Again,
it can be seen that the analytical result tracks the simulation re-
sults quite closely.

The next example deals with a well-known input process, the
fractional Brownian motion process, which is the classical ex-
ample of a self-similar process [23].5 The results are shown in
Figs. 4 and 5, demonstrating the accuracy of MVA loss, even
for self-similar sources. Due to the difficulty in applying im-
portance-sampling techniques to obtain loss probabilities for
self-similar traffic, in Figs. 4 and 5, we show probabilities only
as low as . In Fig. 4, the input traffic is characterized by
a single Hurst parameter. However, even if the traffic itself is
long-range dependent, due to the heterogeneity of sources that
high-speed networks will carry, we expect that it will be difficult
to characterize the traffic by simply one parameter, such as the
Hurst parameter. Hence, we also run an experiment for a more
realistic scenario, i.e., the input process being the superposition
of fractional Brownian motion processes with different Hurst
parameters. The numerical result is shown in Fig. 5. One can
see from Figs. 4 and 5 that MVA loss works well for self-sim-
ilar sources.

B. Non-Gaussian Processes

In this section, we will compare the performance our
MVA-loss approximation with simulations and also with other
schemes in the literature. We call the Likhanov–Mazumdar
technique described earlier “L–M,” or “L–M:Gaussian” when
further approximated by a Gaussian process, the Chernoff

5For computer simulations, since continuous-time Gaussian processes cannot
be simulated, one typically uses a discrete-time version. In the case of fractional
Brownian motion, the discrete-time version is called fractional Gaussian noise
and has autocovariance function given by

C (l) =
�

2
(jl � 1j + jl + 1j � 2jlj )

whereH 2 [0:5; 1) is the Hurst parameter.

Fig. 5. Loss probability for the superpostition of two fractional Brownian
motion processes. (Hurst parameters:H = 0:6; H = 0:8; mean rates:
� = 150; � = 150, variances:� = 50; � = 50, service rate–mean rate:
� = 5; 10; 15).

dominated eigenvalue technique in [38] “Chernoff-DE,” the
average/peak rate method in [39] “Ave/Peak,” the analytical
technique developed in [24] “Hybrid,” and the famous effective
bandwidth scheme “Effective BW” [40].

We now consider the practically important case of mul-
tiplexed voice sources. The input MMF process, which has
widely been used to model voice traffic source [34], [35], has
the following state transition matrix and rate vector:

State transition matrix:

Input rate vector:
cells/slot

cells/slot

These values are chosen for a 45-Mb/s ATM link with 10-ms
time slot and 53-byte ATM cell. In this example, we assume that
2900 voice sources are multiplexed on a 45-Mb/s ATM link with
10-ms time slot and 53-byte ATM cell. As shown in Fig. 6, the
MVA loss obtains the loss probability calculations accurately
and better than the other techniques.

We next investigate the accuracy of our approximation when
the sources to the queue are generated from actual MPEG video
traces. The trace used to generate this simulation result comes
from an MPEG-encoded action movie (007 series) which has
been found to exhibit long-range dependence [36]. In Fig. 7,
240 MPEG sources are multiplexed and served at 3667 cells/slot
(OC-3 line), where we assume 25 frames/s and a 10-ms slot
size. The loss probability versus buffer size result in this case
is shown in Fig. 7. Again, it can be seen that the MVA-loss
approximation tracks the simulation results quite closely.

C. Application to Admission Control

The final numerical result is to demonstrate the utility of
MVA loss as a tool for admission control. We assume that a
new flow is admitted to a multiplexer with buffer sizeif the
loss probability is less than the maximum tolerable loss proba-
bility .
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Fig. 6. Loss probability for 2900 voice sources. (Transition matrix= [0.9833,
0.0167; 0.025, 0.975]; rate vector= [0 cells/slot, 0.85 cells/slot]; mean rate
(total):� = 987:18 cells/slot; service rate–mean rate:� = 73:82 cell/slot.)

Fig. 7. Loss probability for 240 real MPEG traces from a 007 movie. [Mean
rate (total):� = 3469:45 cells/slot; service rate–mean rate:� = 197:55

cells/slot.]

In this example, we consider multiplexed voice sources on a
45-Mb/s link [Fig. 8(a)] or multiplexed video sources [Fig. 8(b)]
for an admission-control type of application. The QoS param-
eter is set to . For each voice source in Fig. 8(a), we use
the same MMFON–OFF process that was used for Fig. 6. For
each video source, we use the same MPEG trace that was used
in Fig. 7 (with start times randomly shifted). Then, the admis-
sion policy using MVA loss is the following. Let and be
the mean and the variance function of a single source, i.e., let

and . When
sources are currently serviced, a new source is admitted if

(18)

where is defined as in (14). In Fig. 8(a) and (b), we provide
a comparison of admissible regions using different methods. It

(a)

(b)

Fig. 8. Admissible region for a 45-Mb/s link where voice/video sources are
multiplexed. (Link capacity:c = 45 Mb/s= 1046.7 cells/slot; QoS parameter:
� = 10 .)

can be seen that MVA-loss curve most closely approximates the
simulation curve in both figures. In Fig. 8(a), the L–M approx-
imation performs as well, and the Chernoff DE approximation
does only slightly worse. In Fig. 8(b), however, the Chernoff DE
approximation in this case is found to be quite conservative. This
is because for sources that are correlated at multiple timescales
[such as the MPEG video sources in Fig. 8(b) shown here],
the loss probability does not converge to its asymptotic decay
rate quickly (even if there exists an asymptotic decay rate), and
hence approximations such as the Chernoff DE scheme (or the
hybrid scheme shown earlier) perform quite poorly.

Admission control by MVA loss can be extended to a case
where heterogeneous flows are multiplexed. The link capacity
is 622.02 Mb/s (OC-12 line), the buffer size is fixed to
20 000 cells, and the QoS parameteris . In this system,
the input sources are of two types, JPEG video and voice.
As a video source, we use a generic model that captures the
multiple-timescale correlation observed in JPEG video traces.
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Fig. 9. Admissible region for an OC-12 line where voice and JPEG video
sources are multiplexed. (Link capacity:c = 622:02 Mb/s = 14 467.7
cells/slot; buffer size:B = 2000 cells; QoS parameter:� = 10 .)

It is a superposition of an i.i.d. Gaussian process and three
two-state MMF processes:

State transition matrices:

Input rate vectors [cells/slot]:

Mean of i.i.d. Gaussian:

Variance of i.i.d. Gaussian:

Then, the admission policy is the following. Let and
be the mean and the variance function of a single voice source.
Let and be the mean and the variance function of a
single video source. When voice and video flows
are currently serviced, a new voice flow is admitted if

(19)

The boundary of the admissible region is obtained by finding
maximal satisfying (19) for each .

As one can see in Fig. 9, the admissible region estimated by
simulations and via MVA loss is virtually indistinguishable. In
fact, the difference between the two curves is less than 1% in
terms of utilization.

IV. A SYMPTOTIC PROPERTIES OF THEMVA A PPROXIMATION

FOR LOSS

We now find a strong asymptotic relationship between the
loss probability and the tail probability. More specifically, under
some conditions (to be defined later in Theorem 5), we find that

(20)

where means that . Equation
(20) tells us that the divergence between the approximation

, given in (14), and the loss probability is slow if at
all [this may be easier to see if we rewrite (20) in the form

].
In [27] and [28], under a set of general conditions it has been

shown for the continuous-time case that

(21)

We will obtain (20) by finding a relationship between
and , i.e.

(22)

under the set of conditions given in Theorem 5 [ will be
bounded from above and below by some expressions in terms of

], and then by applying (21) and some properties of
. Note, that finding the asymptotic relationship (22) between

and is by itself a valuable and new contribu-
tion.

We first list a set of conditions for which (21)
holds in the discrete-time case that are equivalent to
the set of conditions in [27] defined for the contin-
uous-time case. Let , and

(assuming that the limit exists).

(H1)

(H2) for some

The notation means that
. The parameter cannot be larger than 2 due to the station-

arity of , and covers the majority of nontrivial sta-
tionary Gaussian processes. The Hurst parameteris related
to by . We now state the following results that are
the discrete-time versions of the results in [27], [28], [41]. The
proofs for these results are identical to those given in [27], [28],
[41], with trivial modifications accounting for the discrete-time
version, and, hence, we omit them here. These results are stated
as Lemmas here, since we will be using them to prove our main
theorem.

Lemma 2: Under hypotheses (H1) and (H2)

Lemma 3: Under hypotheses (H1) and (H2)

It is easier for us to work with conditions on the autocovariance
function of the input process rather than conditions (H1) and
(H2). Hence, we first define a condition on the autocovariance
function which guarantees (H1) and (H2):

(C1)
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Note that condition (C1) is quite general and is satisfied not
only by short-range dependent processes but also by a large class
of long-range dependent processes including second-order self-
similar and asymptotic self-similar processes [42].

Lemma 4: If the autocovariance function of satis-
fies (C1), then (H1) and (H2) hold.

Proof of Lemma 4:Let . Note that

and that . First, we show condition (H2).
Since both and approach should
be equal to

if it exists (this is the discrete version ofL’Hospital’s rule).
Hence

(23)

where . Now, we show that (H1) also
follows from (C1). Since ,
implies that . Note that a function is
if . Now

(by Taylor Expansion)

(24)

The loss probability is closely related to the shape of the
sample path, or how long stays in the overflow state. Be-
fore we give an illustrative example, we provide some notation.
We define acycleas this period, i.e., an interval between time
instants when becomes zero. We let denote the duration

Fig. 10. Illustration of “same fQ > xg but differentP (x).”

for which stays above thresholdin a cycle to which be-
longs. Formally, let:

• . (Start time of
the current cycle to which belongs.)

• . (Start time of
the next cycle.)

• . (Duration of a cycle to which belongs.)
• . (Residual time to reach the end of cycle.)
• . (Duration for which in

a cycle containing .)
Note that if , is equal to the elapsed time to return
to the empty-buffer (or zero) state. Since is stationary and
ergodic, so are the above. Hence, their expectations are equal to
time averages.

Consider two systems whose sample paths look like those
in Fig. 10. The sample paths are obtained when the input is
a deterministic three-state source which generates fluid at rate

, , and 0, at state 1, 2, and 3, respectively. The duration
of each state is the same, say,. Use the superscript and
to represent values for the upper and the lower sample path. Set

and . Then, both cases have the same
overflow probability. Now, consider a time interval from 0 to

. The amount of fluid generated for that interval is clearly
the same for both cases. But, the amount of loss in the upper case
is exactly the twice of that in the lower case, hence, the upper
case has the larger loss probability. We can infer from this that
the loss probability is closely related to the length of and
the slope of the sample path. Since loss happens only when
is greater than the buffer size, we consider the condition that

. Since it is difficult to know the distribution of , and
since is determined by the sample path, we use a stochastic
process defined as

(25)

Here, we have chosen 0 as the origin, but, because of station-
arity, the distribution of does not depend on the origin. Note
that if , will be identical to until the end of cycle.
We want to know the distribution of given . Since

is Gaussian, the distribution of can be characterized by
the mean and the variance of . However, since is the re-
sult of the entire history up to time 0 and the future is corre-
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lated with the past, it is difficult to find an explicit expression
of the mean and the variance of given . Hence, we
introduce upper-bound types of conditions on the mean and the
variance of as (26) and (27). For notational simplicity, let

, and let and be the
expectation and the variance under, respectively.

We now state our main theorem.
Theorem 5: Assume condition (C1). Further assume that for

any , there exist , and such that

(26)

(27)

for all and . Then

(28)

Though the conditions of Theorem 5 look somewhat
complex, they are expected to be satisfied by a large class of
Gaussian processes. If the input process is i.i.d. with
and for , it can be easily checked that

and (C1), (26), and (27) are satisfied with
, and . It has been shown that Gaussian processes

represented by the form of finite-ordered autoregressive moving
average (ARMA) satisfy (26) and (27) [17]. Since the autoco-
variance function of a stable ARMA process is in the form of

with , it satisfies (C1) with .
So Theorem 5 is applicable to Gaussian ARMA processes.

More generally, , and
under (C1). Thus, for each

and , and we
can find , and
as small as possible. If , and

are finite, then (26) and (27) hold. We conjecture
that they are all finite for a large class of stationary Gaussian
processes, and we are attempting to show it.

Note that the rightmost inequality ( part) in (28) holds
without conditions (26) and (27), and it agrees with empirical
observations that the tail probability curve provides an upper
bound to the loss probability curve.

Before we prove the theorem, we first define the derivative of
with respect to . Recall (9), or

Since is an integer value, is differentiable except for
countably many at which has a jump. Let
is not differentiable. Note that has measure zero, and that
the left and right limits of and exist for all .
For simplicity, abuse notations by setting and

for . The reason we set the (right)

limit is that we will find the similarity relation (29) in Lemma 6,
which is useful in proving Theorem 5. In fact, we may take
the left limit to have the same asymptotic behavior. By building

and in this way, it directly follows from Lemma 2 that
and for some constants and .

We now state three lemmas which are useful in proving the
theorem. (Their proofs are in the Appendix.)

Lemma 6: Under hypotheses (H1) and (H2)

(29)

where is a constant.
Lemma 7: If and for all

(30)

Lemma 8: Under conditions (26) and (27),
for some .

Now, we are ready to prove Theorem 5.
Proof of Theorem 5:First of all, we find expressions in

terms of which are greater than or less than .
If for some , it would contradict the asymp-
totic relation in Lemma 3. Hence, for all . If

for some , it would contradict the asymp-
totic relation in Lemma 8. Hence, for all

. Thus, by Lemma 7 we have (30). Now, since
from (5)

(31)

By Lemma 4, (C1) implies (H1) and (H2). Hence, by
Lemma 3, we have (21). Equation (21) means that there are,

, and such that

(32)

Note that since from Lemma 8, we
can choose such that for all

. Combining with (30) and (31), integrate all sides of
(32) to get

(33)

Since with the constant , by Lemma 6, there
exist , and such that

(34)
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and

(35)

From (33)–(35)

Take logs and rearrange to get

Divide by and take . Then, the theorem follows.

V. APPLICATIONS TOON-LINE MEASUREMENTS

In this section, we describe how to apply the MVA approach
for the estimation of the loss probability, based on on-line mea-
surements. In many practical situations, the characteristics of a
flow may not be known beforehand or represented by a simple
set of parameters. Hence, when we use a tool for the estimation
of the loss probability, parameter values such as the moment
generating function and the variance function should be eval-
uated from on-line measurements. Then, the question is what
range of those parameters should be evaluated. If an estimation
tool needs, for example, the evaluation of the moment gener-
ating function for the entire range of , the tool may not be
useful. This is fortunately not the case for the MVA approxima-
tion for loss.

Note that the MVA result has the form . The param-
eter is a function of , , , and , where and
are the mean and the variance of the input, i.e., and

. Hence, by measuring only the first two
moments of the input we can estimate the loss probability. Re-
call that

and that is maximized at . This
means that the result only depends on the value of at

. This value of corresponds to the most likely timescale
over which loss occurs. This is called thedominant time scale
(DTS) in the literature [43], [20]. Thus, the DTS provides us
with a window over which to measure the variance function. It
appears at first, however, that this approach may not work, be-
cause the DTS requires taking the maximum of the normalized
variance over all , which means that we would need to know

for all beforehand. Thus, we are faced with achicken
and eggtype of problem, i.e., which should we do first: mea-
suring the variance function of the input, or estimating the
measurement window . Fortunately, this type of cycle has
recently been broken and a bound on the DTS can in fact be

found through on-line measurements (see Theorem 1 and the
algorithm in [44]). Thus, since our approximation is dependent
on the DTS, we only need to estimate , for values of up to
a bound on the DTS (given in [44]), thereby making it amenable
for on-line measurements.

VI. CONCLUDING REMARKS

We have proposed an approximation for the loss probability
in a finite queue by making a simple mapping from the MVA es-
timate of the tail probability in the corresponding infinite queue.
We show first via simulation results that our approximation is
accurate for different input processes and a variety of buffer
sizes and utilization. Since the loss probability is an impor-
tant QoS measure of network traffic, this approximation will be
useful in admission control and network design. Another feature
of the approximation is that it is given in a single equation format
and hence can easily be implemented in real-time. We have com-
pared our approximation to existing methods including the ef-
fective bandwidth approximation, the Chernoff dominant eigen-
value approximation, and the many-sources asymptotic approx-
imation of Likhanov and Mazumdar.

In this paper we also study the theoretical aspects of our ap-
proximation. In particular, we provide a strong asymptotic result
that relates our approximation to the actual loss probability. We
show that if our approximation were to diverge (with increasing
buffer size) from the loss probability, it would do so slowly. For
future work we plan on simplifying the conditions given in The-
orem 5 and to extend the approximation result to a network of
queues.

APPENDIX

Proof of Lemma 6:Let . Since
and . Hence, to prove

the lemma, it suffices to show that

(36)

Let is not differentiable. For ,

(37)

Since has measure zero,
and we may assign any values to and for all .
Recall and for . Set

and for .
Now, let be any value. Integrating both sides of (37) from
to , we have

(38)

Note that and with constants
and . Since and
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. Let
. We can find such that for

all . Then

(39)

which means that

(40)

and the result follows.
Proof of Lemma 7:Recall the notations:

• (start time of
the current cycle to which belongs).

• (start time of the
next cycle).

• (duration of a cycle to which belongs).
• (residual time to reach the end of cycle).
• (duration for which in a

cycle containing ).
Define one more:

• (residual duration for which
in a cycle containing ).

Since is stationary and ergodic, so are the above. Hence,
their expectations are equal to time averages. Since we are in-
terested in the behavior of after loss happens, we consider
the conditional expectations:

(41)

(42)

(43)

Clearly, . And it can also be
easily checked that , where

the inequality is due to thatis discrete.6 Since , there
are infinitely many cycles for a sample path. Index cycles in the
following manner:

•
, for ,

• .

Define:

• ,
•

Now, we prove the lemma in two steps:
• 1) Derive

• 2) Show .

Step 1): The amount of loss in cycleis greater than or equal
to the difference between the maximum value of the queue level

in cycle and the buffer size of the finite buffer queue, i.e.

Take summation overand divide by the total time, ,
where denotes the number of elements of . Then

6Sincen is discrete, for givenn such thatQ > x; R andS take (pos-
itive) integer values. IfS is, for example 2,R can be either 1 or 2, and its
expectation is 1.5 which is greater than 2/2.
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(44)

Recalling (1) and (2)

as . Since all components are nonnegative, by Fatou’s
Lemma, (44) becomes

Step 2): For better understanding, we first show

(45)

Note that all components are nonnegative. Let

and

For any , we can choose such that and
. Then,

since

Since is arbitrary, we have .
Now, we will verify that

(46)

Construct a new sequence by removing zero-valued ele-
ments of . Then, as in (45)

(47)

Note that

(48)
Let . Since

for all and

(49)

Combining (47)–(49), we have (46).
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At last, we have

(50)

from which (30) follows.
Proof of Lemma 8:Define:

• ;
• .

The proof will be done in two steps:

• 1) Find such that for all
.

• 2) Using 1), show that is .
Step 1): Let be so small that . Then, we choose

, and satisfying (26) and (27). Let
and . Then, the moment generating function
of Gaussian is given by . From (26) and
(27), and for all

. Thus

(Chernoff bound)

(51)

where . Let with . Then,
for all

(52)

Note that . Since the coefficient of the leading
term, , is negative and its order,, is positive, we have for
all as

(53)

Note that in (53) , and are fixed constants for all
. Thus, there exists such that

for all with . Now, we choose
such that . Then, for all

.
Step 2): Consider

(54)

From the definition of implies . Thus,
. Therefore, we have

or

(55)

Obviously, . Let . Then, as
shown in Step 3), for all . Applying
this and (55)

(56)

where denotes the smallest integer which is greater than or
equal to . Since is nonnegative, .
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