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Abstract

In fractal image compression the encoding step is computationally expensive. We
present a new technique for reducing the encoding complexity. It is lossless, i.e.,
it does not sacrifice any image reconstruction quality for the sake of speedup. It
is based on a codebook coherence characteristic of fractal image compression and
leads to a novel application of the Fast Fourier Transform based cross-correlation.
The proposed method is particularly well suited for use with highly irregular image
partitions for which most traditional (lossy) acceleration schemes lose a large part
of their efficiency. For large ranges our approach outperforms other currently known
lossless acceleration methods.

1 Introduction

Fractal image compression [1,8,11] exploits redundancy given by self-similarities
within an image. The image to be coded is partitioned into a set of image
blocks (called ranges in fractal coding parlance). For each range one searches
for another part of the image called a domain that gives a good approximation
to the range when appropriately scaled in order to match the size of the range
and transformed by a luminance transformation that provides for contrast
and brightness adjustment (cf. Figure 1). The list of parameters specifying for
each range the corresponding domain and the affine luminance transformation
together with the partition information is called a fractal code. Such a fractal
code defines an operator working on the space of images. When this operator is
applied to an arbitrary image, it partitions the image and replaces each range
by the (transformed) domain. When determining a fractal code one also has
to ensure that the corresponding operator represents a contraction mapping.
Thus, when the decoder iteratively applies the operator to an arbitrary image,
the resulting sequence of images converges to the operator’s unique fixed point
which represents an approximation to the original image as decoder output.
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Fig. 1. Two parts of an image that are similar: block (a) can be described using
block (b). Basically, the whole block (b) has to be shrunk to match the size of (a),
and the luminance values have to be inverted.

For details of fractal modeling of images as well as decoding issues we refer
the reader to [8]; in this paper we will focus on the encoding step in fractal
coding schemes.

The fractal encoding step, i.e., the task to determine for each range a good
fitting domain, is similar to the codebook search in vector quantization. How-
ever, in contrast to vector quantization the codebooks are not designed using
a training sequence but are directly derived from the image to be coded. Typ-
ically, the codebook for a range is constructed using the image downscaled to
half its original resolution. Each block in the downscaled image of the same
size and shape as the range is considered a codebook block. Note that the
codebook blocks are overlapping and correspond to image parts of twice the
linear size of the range. We refer to codebooks constructed in the above man-
ner as canonical codebooks. Also note that different codebooks are applicable
for ranges of different size or shape.

The goal in the encoding step is to find for each range a codebook block
that gives the least Lo-error when adjusted by an affine luminance trans-
formation.! Thus, a computationally expensive least-squares optimization is
required for each pair of range and codebook block in order to determine
the optimal luminance transformation and the resulting approximation error.
Since codebooks consist of many thousands of blocks, the straightforward im-
plementation of fractal image compression by “brute force” [1] suffers from
long encoding times. Therefore, much effort has been undertaken to find a va-
riety of ways to speed up the process; for a survey see [22]. Most techniques are
lossy acceleration schemes in the sense that they sacrifice image reconstruction
quality for the sake of speedup. For example, an acceleration method that only

1 We restrict ourselves to conventional fractal coding based on the collage theorem
[1,8]; we do not consider direct attractor optimization here.



considers a subset of the canonical codebooks results in a speedup by choosing
an acceptable but suboptimal codebook block and, therefore, loses some of the
possible coding quality since the canonical codebooks are superior to smaller
codebooks with respect to rate vs. distortion performance. The majority of
acceleration methods reported to date, such as classification [9], clustering
[10], or tree-structured search [4,20], follows this principle of considering only
a small subset of the canonical codebook for a given range. In contrast, using
lossless acceleration methods one does not trade coding quality for speedup.
With lossless acceleration techniques one is guaranteed that for each range the
entire corresponding canonical codebook is considered and the optimal code-
book block is determined giving the least approximation error using quantized
luminance parameters. Thus, efficient lossless acceleration methods allow to
explore the rate vs. distortion performance limits of fractal coding schemes;
in addition they allow an efficient assessment of the loss in rate vs. distortion
performance for the case when lossy acceleration schemes are used. In general,
lossless acceleration techniques provide a means to speed up the production of
good fractal codes and, in addition, are useful in fractal coding research when
one compares design choices such as partitioning schemes, quantization, and
rate vs. distortion optimization.

In this paper we put forward a lossless acceleration method that is based on the
codebook coherence of canonical codebooks and leads to a novel application
of the Fast Fourier Transform (FFT) based cross correlation. The FFT is
used to speed up certain calculations. Nevertheless, the proposed encoding
method still represents a spatial domain approach; we do not transfer the least
squares optimizations to the frequency or wavelet domain, as it has been done
before, for instance, in [2,6,12]. For large ranges our approach outperforms
other lossless acceleration methods currently known. Our lossless acceleration
method has the additional advantage that it can easily be used with highly
image-adaptive and irregular partitions which have been shown to lead to
excellent fractal coding results [18]. In the presence of irregular partitions,
traditional (lossy) acceleration techniques typically suffer from a performance
drop since most of them are based on the assumption that ranges have only
a few sizes and shapes, e.g., square blocks of size 4 x 4, 8 x 8, and 16 X
16 pixels. In such a case certain quantities can be computed and stored in
a preprocessing step for later use in the block matching operations. With an
irregular partitioning this procedure loses a large part of the efficiency of the
acceleration method.

This paper is organized as follows. The notation is introduced below. In Section
3 we discuss methods previously published for lossless acceleration of fractal
encoding. In Section 4 we will first analyze the computational costs of the
standard fractal encoding approach in order to determine the bottlenecks of
the encoding process and then put forward our FFT-based acceleration tech-
nique. Implementation details and experimental results are given. Features



and extensions, e.g., the application of our method to highly irregular image
partitions, are discussed in Section 5.

2 Basics & Notation

There are numerous variants and extensions of fractal image compression, and
many of them may take advantage of the acceleration technique presented in
this paper. For simplicity and clarity of our exposition we consider a generic
type of fractal coding for grey scale images. Let the image to be coded be de-
noted by I € RV*N where N is a power of 2, and a partitioning of the image
I into a set of ranges is considered as already given. Let h € RY/2*N/2 denote
the downscaled version of the image I, i.e., h(i,j) = izigﬁ 259;; I(x,y),
0 <1i,j < N/2. For a given range the corresponding canonical codebook con-
sists of all image blocks in the downscaled version h that have the same size
and shape as the range. Note that the range can be of arbitrary shape, e.g.,
ranges can be polygons. Using an arbitrary but fixed scanning procedure the
range and the codebook blocks are converted into vectors which we denote by
R, D¢y, s Dot nja-1, and call blocks again, for convenience. The number
of codebook blocks in the canonical codebook for a given range is equal to
N?/4 since we allow codebook blocks to wrap around image borders. For bet-
ter readability we will simply write D or D,, ,, instead of Dflm when the
relationship to a range is evident.

A range has to be compared to all codebook blocks in the corresponding
canonical codebook in order to determine the best codebook block giving
the least approximation error under an affine luminance transformation. The
distortion function for a fixed range R and codebook block D is a quadratic
function of the parameters s, 0 € R of the affine luminance transformation:

dp r(s,0)=||R — (sD + o1)|2 (1)
= (D, D)s* +2(D,1)s0 + no* — 2(R, D)s — 2(R,1)o + (R, R).

Here, 1 denotes the constant block with unit intensity at every pixel, and (-, -)
denotes the inner product in a Euclidean space of dimension n (n = number
of pixels in the range block). The parameters s, o are called scaling factor and
offset, respectively.

A least squares optimization gives the optimal luminance parameters s,0 € R.
Since quantizing the optimal luminance parameters will increase the approxi-
mation error, one has to choose the codebook block that minimizes the approx-
imation error using quantized luminance parameters 5, o4, i.e., the codebook



block that minimizes the collage error

E(D,R) = [[R = (3,D + 6,1)]5. (2)

The quantizer for the scaling factor has to clamp the value § to [—Saz, +Smaz),
0 < Smaz < 1, in order to ensure convergence in the iterative decoding; s,,q.
is a fixed parameter of the fractal coding scheme. The fractal code for range
R then consists of the index of the best codebook block with respect to the
collage error together with the corresponding quantized luminance parameters.

In most fractal image coders isometric transformations of the downscaled im-
age (rotations by multiple of 7/2 and reflections) are considered which en-
large the pool by a factor of 8. However, this option is not an intrinsic part of
fractal coding and does not necessarily lead to improved performance in the
rate-distortion sense [23]. Thus, for simplicity, we do not consider isometries
here and comment later on the increase of costs that the option of isometries
introduces in connection with our FFT-based method.

3 Previous work

A lossless acceleration method based on image pyramids is presented in [7]. It
can be described as follows. Here, let R denote an image block of size 2™ x 2™
pixels. Define R™ := R and

2141 25+1
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with k=0,...,m—1,and i,j =0,...,2¥ —1. The pyramid D* based on the
codebook block D is defined in the same fashion. Now the following inequality
holds:

1
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1

< W (é(kJrl)’ 6(k+1)),
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where (5% 6(®)) = arg min, yeg | R*) — (sD® 4 01)||2. For the computation of
E(D® R®) fewer floating point operations are required than for the compu-
tation of E(D® 1) R*+1) since the number of pixels in the blocks D*), R(*)
is four times less than in D*+D R*+D Therefore, one can first compute the
collage error of downfiltered versions of the corresponding codebook block D
and range R, and when the resulting error is already larger than the mini-
mal collage error encountered for range R so far, the codebook block can be
excluded from further consideration since the actual collage error at full reso-
lution can only be larger than the low resolution estimate. Thus, the number



of floating point operations required to detect a codebook block as a subopti-
mal choice is reduced. The speedup factor compared to the standard scheme
is reported to be about 4.

In [3] a criterion is presented that also provides a method for excluding code-
book blocks from the search by performing a few comparisons. The range is not
directly compared against the codebook blocks, but the range and the code-
book blocks are compared against a unit vector, i.e., one compares [(R,U)|
with |(D, U)|, where U is a unit vector. Only when those two values are close
to each other, the codebook block is considered for the range. Formally, the
criterion can be stated as follows [22]. By R, D we denote the range, resp.
codebook block, normalized to zero mean and unit variance. Let § > 0 and
U € R" with |[U|| = 1. Let R and D be elements of R" with (R, R) > §. If
ming er |[R — (sD + 01)]|? < § then

HRU) = KDU)| < 2= 2,1 = 2 )

Unfortunately, the speedup factor obtained with this method is rather small
(in our tests [22] the speedup factor has been 1.5 over direct computation),
and it requires that only a small number of different range sizes are present
in the image partition.

With the notation as defined above the distortion for a range R and a codebook
block D using unquantized luminance parameters can be written as

dpn(s.0) = ((R.B) = (R 1)) - (1= (D, B)?) @)

For a given range R this expression is minimal when |({D, R)| is maximal. In
[4] a fast technique for maximizing |(D, R)| is presented which uses partial
distortion elimination. However, equation (4) can only be used for the evalua-
tion of the error using the unquantized optimal scaling parameter § and offset
6. Therefore, the codebook block D that maximizes |(D, R)| is not optimal
when quantized luminance parameters are used. We, therefore, do not consider
techniques that only maximize |(D, R)| as lossless acceleration schemes.

The lossless acceleration technique based on the Fast Fourier Transform has
been put forward by the authors in [19,21]. In this paper we will extend and
complete the discussion. More recently, a closely related lossless method was
proposed in this journal [17] for which large acceleration factors were reported.
According to this method the codebook is first reduced in size and then ex-
panded again by considering all circular shifts of the codebook vectors. How-
ever, this non-standard codebook design with circularly shifted vectors leads



to a significant drop in the quality of the encodings. Thus, the technique in
[17] provides a fast method to search a poor codebook. Our method presented
here does not suffer from such a drawback. It provides speedup of the generic
fractal coding procedure without sacrificing any losses in quality. The resulting
encodings are identical to those obtained by the full search of the canonical
codebooks.

4 Fractal encoding via fast cross correlation

As a starting point, we will first present an analysis of the computational costs
of conventional encoding. Then we put forward our Fast Fourier Transform-
based lossless acceleration method. Finally, we present implementation details
that are of crucial importance for the success of our method.

4.1  Motivation

Almost all the work of a fractal image coder goes into the calculation of
the many collage error terms. Let us examine the number of floating point
operations involved in the calculation of the collage error E (D, R) for a fixed
codebook block D and a fixed range R. The optimal luminance parameters §
and o0 can be obtained via

n(D,R) — (D,1) (R, 1)

if n(D, D) — (D, 1)2 # 0

5= n<D7D>_<D71>2 (5>
0 otherwise
o= ({R.1)~4(D,1)). (6)

As above, n denotes the number of pixels in range R.

Let us assume for now that the inner products (D, R), (D, D), (D, 1), (R, R),
and (R, 1) have already been calculated. Then, the computation of (3, 6) using
(5), (6) requires 10 floating point operations (flops).

The quantization of the luminance parameters is performed as in the quadtree-
based fractal coder of [8]. First, § is quantized using a uniform quantizer with
2¢%vits levels for [—Smax, Smaz|, 1-€-,

5= (54 Smaz) - ¢+ 0.5] - d — Spaa,



with ¢ = 2%its=1 /s and d = 1/c. Thus, the quantization of $ requires 5 flops.
Then the optimal offset for this quantized scaling coefficient is computed. This
offset is quantized using a uniform quantizer for the interval [0,in(34); Omaz (54)]
with 2%its levels, where

[0min(8), Omaz(8)] = [—255s,255] for s > 0,
[0min(S), Omaz(8)] =10,255(1 — s)] for s < 0.

The quantization of 0 proceeds similar to the quantization of § with the only
difference that the possible range of 6 is variable (it depends on §). The offset
value quantization costs another 8 flops leading to 13 flops for the whole
quantization process.

In the final computation the collage error is evaluated. Since E(D,R) =
dp r(S4,04), the collage error E(D, R) can be computed via

dD,R(éq’ 5q) = §q<§q<Da D> + 2(5Q<Da 1> - <Ra D))) +
o4(6,n — 2(R, 1)) + (R, R). (7)

which requires another 12 flops. In summary, the computation of the quantized
luminance parameters (3,,0,) and the collage error E(D, R) necessitates 35
flops, provided that the inner products are already available. 2

We now look at how the calculation of the inner products (D, R), (D, D),
(D,1), (R, R), and (R, 1) is carried out in the encoder. When all range blocks
are of the same shape and, thus, the canonical codebooks are identical for all
ranges, the computations are organized in two nested loops:

Algorithm 1 (Standard computation)

e Global preprocessing: compute (D, D), (D, 1) for all codebook blocks D.
e For each range R do:
e Local preprocessing: compute (R, R), (R, 1).
e For all codebook blocks D do:
e Compute (D, R) and E(D, R).

When ranges have differing shapes, the computations of inner products of the
types (D, D) and (D, 1) have to be moved to the local preprocessing since
for each range the corresponding canonical codebook has to be employed.

2 We note that a few of these flops can be saved, e.g., by assuming that a =
({D, D) — (D,1)?/n)~! is stored in place of (D, D), and (D, 1) is replaced by b =
(D,1)/n. Then § = a - ((D,R) —b- (R, 1)), requiring only 3 flops instead of 7 as
in (5). Also the last term (R, R) in (7) may safely be ignored since it is only an
additive constant not depending on the codebook block D.



Since the calculation of (D, R) is in the innermost loop, it dominates the
computational costs in the encoding. For large ranges this computation also
contributes the major portion of the floating point operations required to
calculate the collage error: the direct computation of (D, R) with R containing
16 x 16 = 256 pixels requires 511 floating point operations which is more than
twelve times the cost of computing the error F(D, R) when the inner products
are known.

4.2 The proposed algorithm

Our lossless acceleration method takes advantage of the fact that the codebook
blocks, taken from the downscaled image, are overlapping. The fast cross cor-
relation —based on the cross correlation property of the Fourier Transform—
is ideally suited to exploit this sort of codebook coherence.

The above analysis has indicated that the calculation of the inner products
(D, R) between a codebook block D and a range R dominates the computa-
tional cost in the encoding. In order to determine for range R the optimal
codebook block in the corresponding canonical codebook, one has to compute
all the inner products (D, n,, R), 0 < ny,ny < N/2. These inner products
(Dyy nys R) are nothing else but the cross correlation of the range R with the
downscaled image. To make things explicit, we give formal definitions.

Definition 1 (Cross correlation) The cross correlation f o fo of images
f1, fo e REXE K €N, is defined by

K-1K-1

(fl @) fg)(nl, TLQ) = Z Z fl(kla ]{?2) . fg((kl + nl) mod K, (]{72 + TLQ) mod K),
k1=0 k2=0

with 0 < nq,ny < K.

Now let h denote the downscaled image of size N/2 x N/2 pixels as defined
in Section 2. Let the image g € RY/2XN/2 be constructed by putting a range
in the upper left corner and setting all other coefficients to zero; ¢ is called a
zero-padded range. For simplicity, we assume for the following formal definition
that ranges do not wrap-around image borders; otherwise slight modifications
in the definitions would be necessary. Assume that the pixels in the range
have coordinates in the set B C {itop, - - -, tottom } X {Jieft, - - - Jrignt}, and the
bounding box given by itop, thottoms Jiefts Jright 1S of minimal size. When the size
of the range is smaller or equal to N/2 in each dimension, i.e., when

ibottom - itop < N/2 and jright - jleft < N/Qa (8)



the zero-padded range g € RY/2XN/2 ig given by
g(Z - itop;j _jleft) == I(Z,j), lf (Zvj) € B>

and ¢(7, ) = 0, otherwise. If equation (8) is not satisfied, one needs an appro-
priate folding of the range.

With the above definitions the cross correlation (g o h) gives the inner prod-
ucts between a range and the codebook blocks of the corresponding canonical
codebook via

(goh)(ni,ng) = (Dnymy, R), 0<mny,ne < N/2.

The cross correlation can be carried out efficiently in the frequency domain.

Definition 2 (Discrete Fourier Transform, DFT) Let f € R¥*K e an
image. The Fourier Transform F of f is given by

K—1K-1
Fny,na) = > Y flky, ko)W mkamnzhe,
k1=0 ko=0
where W = exp(2mi/K), 0 < ny,ny < K.

We build on the following well-known property of the Fourier Transform (cf.
[15, p. 82]):

Theorem 3 The Fourier Transform of the cross correlation fi o fo is given
by Fy * F,, where Fy denotes the complex conjugate of Fy and x stands for the
Hadamard product.

Since the Fourier Transform allows a very efficient implementation via the
Fast Fourier Transform (FFT), the calculation of the cross calculation should
be done in the frequency domain when the involved blocks are not too small.

The computation of the cross correlation between an image block R and the
downscaled image of size N/2 x N/2 is now organized as follows:

1. Compute the 2D-FFT of the downscaled image.

2. Enlarge image block R by zero padding to size N/2 x N/2.
3. Compute the 2D-FFT of the enlarged image block.

4. Perform the complex conjugate of the previous transform.

5. Do the complex multiplication of both transforms.

10



6. Do the inverse FFT of the result.

Since one obtains the whole set (D, ,,, R),0 < ny,ny < N/2, at one batch,
the outlined procedure takes the calculation of the inner products out of the
inner loop in Algorithm 1 and places it into the local preprocessing. More-
over, the calculation of (D, D), (D, 1) for all codebook blocks of a canonical
codebook requires a substantial amount of time but can be accelerated by
the same cross correlation technique. The products (D, 1) are obtained by
the cross correlation of the downscaled image with a ‘range’ where all inten-
sities are set to unity (called the range shape matriz). The sum of the squares
(D, D) is computed in the same way where all intensities in the downscaled
image are squared before cross correlation. When all ranges are of the same
shape, the algorithm for fractal encoding based on fast cross correlation can
be summarized as follows:

Algorithm 2 (Fast cross correlation based fractal encoding)

A. Input: Image of size N x N.

B. Global preprocessing.
1. Compute the downscaled image by pizel averaging.
2. 2D-FFT of the downscaled image.

3. Fast cross correlation with the range shape matriz yielding (D, 1) for all

codebook blocks D.
4. Fast cross correlation of the squared downscaled image and the range
shape matriz yielding the summed squares (D, D) for all codebook blocks
D.
C. For each range R do steps C1 to C4.

1. Local preprocessing: Compute (R, 1) and (R, R).

2. Local preprocessing: Fast cross correlation of the range block using the
result of step B2 obtaining all products (D, R).

3. For each codebook block D compute the (quantized) coefficients §,,0,, and
the collage error E(D, R) using the results of steps B3, B4, C1, and C2.

4. Extract the minimal collage error and output the fractal code for the
range.

11
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Fig. 2. Flow chart of the FFT-based technique for the computation of the arrays
of the inner products (D, D), (D, 1), (D, R). The symbol * denotes the Hadamard
product of two complex Fourier coefficient matrices. Here the range block does not
need to be of square shape.

In the case where many different range shapes are present in the image parti-
tion, the steps B3, B4 have to be moved to the local preprocessing. Figure 2
illustrates the part of the algorithm that computes the arrays of (D, 1), (D, D),
and (D, R) with the FFT-based approach. Since we have only changed the way
of how the inner products (D, 1), (D, D) and (D, R) are computed, we obtain
the same results as for the case of direct computation, and, therefore, the
acceleration method is lossless.

4.8  Implementation and results

To compare our proposed approach to the standard “brute force” method, we
check the number of floating point operations that are required to compute
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the inner products (D, R) between a fixed range block R and all codebook
blocks D. By doing this, one obtains speedup factors that are independent
of a specific input. In the “brute force” case, an n-dimensional inner product
takes 2n floating point operations (or 2n — 1 when the summation does not
start with zero). For an image of size N x N, there are N/2 x N/2 codebook
blocks (we include blocks that wrap around image borders); thus, our total is

2n - N/2 - N/2 flops. 9)

In the implementation of our new method we have built on the FFT code from
[16]. It is a radix-2 decimation-in-time Fourier Transform. To handle the real
input data, the data is assumed to be complex and after the forward complex
transform the coefficients of the real transform are computed in the standard
fashion (see [16]). With our FFT-based algorithm, we must take into account
the costs for transforming the zero-padded range g, the multiplication between
this transform and the Fourier Transform H of the downscaled image h, and
the inverse transformation. Then the total number of flops to calculate the
entire set of products ((Dn, ny, R))o<n, na<ny2 for a given range R is given by

5N?
—5 loga N + 3N (10)

This number has to be compared with n/2- N? flops required by the standard
computation for the same task, where n is the number of pixels in the range
block R. This comparison indicates that the FFT-based technique is more
efficient for range blocks with n > 46 pixels when the image size is N = 256,
and for range blocks with n > 51 pixels when N = 512.

Furthermore, for the forward transform, performance can be enhanced even
more because most entries in the zero padded range image are zero. As an
example, the computation of an 8-point FFT on input data that has only two
non-zero coefficients, namely f(0) and f(1), is shown in Figure 3. One can
skip the computation of the first two stages and can directly compute the last
stage. In general, when only the first k& coefficients of a one-dimensional signal
are non-zero, only [log,(k)] stages have to be computed. Similar techniques
have been used, e.g., to speed up the decoding procedure in DCT-based image
coding schemes. Here, a large number of high frequency coefficients are zero,
a fact that can be exploited by the decoder. For a discussion of this topic see,
e.g., [13].

Table 1 presents the number of floating point operations required for com-
puting the correlation between a single range block and all possible codebook
blocks using i) the standard “brute force” method (cf. expression (9)), i) the
FFT-based approach (cf. expression (10)), and 4ii) the FFT-based approach
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0 0 f(1) F(7
(b)

Fig. 3. (a) gives an 8-point radix-2 FFT, (b) shows the corresponding truncated FFT
structure when most of the input values are 0 which is the case for our zero-padded
range blocks.

with enhanced forward transform (floating point operations counted at run-
time). The results show no speedup for small ranges of size 4 x 4. However,
the speedup grows linearly with the number of pixels in the range. For the
large 32 x 32 range size we get a speedup of about 30.

The actual timing results (CPU times) for the complete fractal coder show
speedup factors that are only slightly smaller than the ones presented in Table
1 due to small overheads such as preprocessing. For example, in our imple-
mentation an acceleration factor of 7.67 was observed for total CPU time for
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Table 1

Number of floating point operations (in thousands) to compute the correlations
between a single range block and all possible codebook blocks using the standard
“brute force” scheme, the fast FT, see expression (10), and the enhanced FFT
exploiting zero padding (flops counted at run time); (a) for images of size 256 x 256,
(b) for images of size 512 x 512.

Floating Point Operations per Range Block (in 1000)
Image Size 256 x 256

Range Standard Standard Enhanced Speedup

Size Brute Force FFT FFT
4 x4 524 1507 929 0.56
8 x 8 2097 1507 976 2.15
16 x 16 8388 1507 1036 8.10
32 x 32 33554 1507 1139 29.46

(a)

Floating Point Operations per Range Block (in 1000)
Image Size 512 x 512

Range Standard Standard Enhanced Speedup

Size Brute Force FFT FFT
4 x4 2097 6684 3837 0.55
8 x 8 8388 6684 4009 2.10
16 x 16 33554 6684 4193 8.00
32 x 32 134217 6684 4408 30.45

(b)

the case of encoding a 256 x 256 with a range partitioning of 16 x 16 blocks.
The table shows a speedup of 8.10 for the dominating cross-correlation.
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5 Features and extensions of FFT-based fractal image encoding

In this section we will consider further optimizations for our method and the
use of isometries as well as the application of our method to highly irregular
image partitions.

The radix-2 scheme we have employed for computing the FFT is subopti-
mal with respect to the number of arithmetic operations. The Fourier Trans-
form for real-valued sequences with minimal number of arithmetic opera-
tions has been given in [24]. Since run-time optimization is highly machine-
dependent we have instead chosen SGI's Complib library functions [5] that
provide hardware-optimized FFT routines. Additional encoding time reduc-
tions of 30-50% have been observed. We have also considered Number The-
oretic Transforms (NTT)[15]. The NTTs have a similar structure as a DFT
but with the complex roots of unity replaced by integer roots of unity over a
finite field. Those NT'Ts need only integer additions and shift operations, and,
therefore, are less complex than a DFT. However, the restrictions imposed
on image size and maximal intensity value appear to be too severe for our
application.

It is easy to incorporate isometries of codebook blocks to enrich the codebook.
In our approach we can take advantage of direct methods to obtain the Fourier
Transforms for rotated and reflected images. Therefore, there is no need to
compute 8 forward transforms for the 8 isometric versions of the downscaled
image. Instead, one forward transform is computed and the Fourier Transform
of the downscaled image is rotated and reflected directly in the Fourier domain.
Experimental results show that the use of the eight isometric versions leads
to an increase of encoding time by only a factor of five.

Our method has a strong potential in applications where an adaptive image
partition provides for large irregularly shaped ranges and a fractal code is
sought (see Figure 4 for an adaptive partition of the 512 x 512 image Lenna).
Those partitions have been shown to lead to coding results that are among
the best reported for fractal coders that are pure in the sense that they do not
realize a hybrid approach by employing an image transformation before fractal
coding [18]. Here, the direct computation of the inner products is consider-
ably aggravated because of the irregular block shapes. Those irregular block
shapes lead to additional costs since it is harder to decide whether or not a
given pixel contributes to the inner product to be calculated. Also most other
(lossy) acceleration techniques such as nearest-neighbor-search in a space of
feature vectors [20], or classification [8] are not well suited because the heavy
preprocessing costs must be paid for each range shape that occurs in the par-
tition. A notable exception is the (lossy) multi-resolution technique in [14]
which can be applied to irregular partitions without such a penalty.
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Fig. 4. Partition of the standard 512 x 512 Lenna image with 800 ranges.

Fig. 5. Decoded image pertaining to the above partition, compression ratio 68:1,
29.73 dB PSNR.
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The FFT-based approach handles the case of an irregular range shape with
ease by zero-padding the pixels that are not in the range. When ranges have
different shapes, the computation of (D, 1), (D, D) cannot be done as a pre-
processing step anymore as it is the case for uniform partitions. Therefore, we
obtain an additional gain with our method. Figure 4 shows an irregular adap-
tive partition which we obtained using the methods described in [18]. For this
partition the speedup obtained with the FFT-based technique as compared to
a fully optimized direct approach is about 18 for the radix-2-based version and
35 for the Complib version. Figure 5 shows the decoded image pertaining to
the partition of Figure 4 and the fractal code determined using our approach.

6 Conclusions

In this paper we have shown how the FFT-based cross correlation provides
a new approach to reducing the time complexity of fractal image encoding.
The time reduction is achieved in a lossless fashion, i.e., one does not sacri-
fice coding quality for the sake of speedup. We have presented experimental
results for various image sizes, range sizes, and optimization levels showing
the benefits of the new approach as compared to the direct method. The com-
puting time per range depends linearly on the number of pixels in the range.
Speedup factors of about 8 for ranges with 256 pixels and factors of 30 for
ranges with 1024 pixels were observed. The proposed approach is particularly
well suited for applications where an adaptive image partition provides for
large irregularly shaped ranges and where a fractal code is sought.
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