
S~dhan& Vol. 21, Part 1, February 1996, pp. 55-434. © Printed in India.

Lossless and lossy image compression using Boolean
function minimization

R P DAMODARE, J AUGUSTINE and J JACOB

Department of Electrical Communication Engineering,
Indian Institute of Science, Bangalore 560 012, India

Abstract. A novel approach for lossless as well as lossy compression of
monochrome images using Boolean minimization is proposed. The image is
split into bit planes. Each bit plane is divided into windows or blocks of variable
size. Each block is transformed into a Boolean switching function in cubical
form, treating the pixel values as output of the function. Compression is per-
formed by minimizing these switching functions using ESPRESSO, a cube
based two level function minimizer. The minimized cubes are encoded using a
code set which satisfies the prefix property. Our technique of lossless compres-
sion involves linear prediction as a preprocessing step and has compression
ratio comparable to that of /PEG lossless compression technique. Our lossy
compression technique involves reducing the number of bit planes as a prepro-
cessing step which incurs minimal loss in the information of the image. The bit
planes that remain after preprocessing are compressed using our lossless com-
pression technique based on Boolean. minimization. Qualitatively one cannot
visually distinguish between the original image and the lossy image and the
value of mean square error is kept low. For mean square error value close to that
of/PEG lossy compression technique, our method gives better compression ra-
tio. The compression scheme is relatively slower while the decompression time
is comparable to that of/PEG.

Keywords. Switching theory; Boolean minimization; image compression.

1. Introduction

Conventional lossless image compression techniques employ a decorrelation technique
such as DPCM or Hierarchical Interpolation followed by a coding scheme such as Huffman
or arithmetic coding (Roos et al 1988). In this paper we propose a radically different
approach to coding based on finding the minimal Boolean function representation for sub-
blocks of an image bit plane. The emphasis in this paper is on the coding scheme and
further investigation is needed to determine the decorrelation method that best suits our
coding scheme.

In lossless as well as lossy image compression, the state of the art is the JPEG standard
(Pennebaker & Mitchell 1993). For lossless compression,/PEG employs a decorrelation

55

56 Damodare et al

scheme based on DPCM (several predictors are provided to the user) followed by adaptive
lkuffman or arithmetic coding. The lossy JPEG processes are based on the Discrete Cosine
"l-~ansform (DCT) and entropy coding of the quantized DCT coefficients based on adaptive
Huffman or arithmetic coding. Our techniques for lossless and lossy compression are based
on the minimization of Boolean switching functions.

In lossless compression an error file is obtained by applying a simple linear prediction
on the original image file. The error file is now split into bit planes. Each bit plane is a
binary image which is divided into variable sized blocks using the quad tree approach
and each block is converted into a Boolean switching function in cubical form. The func-
tions are then minimized using the well known cube-based two-level logic minimizer
ESPRESSO (Brayton et al 1984). The minimized cubes which represent the implicants
(product terms) of the function are then coded with a code set which satisfies the prefix
property, to obtain the compressed data. The results are compared with JPEG lossless mode
of compression.

In lossy compression we reduce the number of gray levels in the original image to less
than or equal to 32 by applying the Centre of Mass technique. The image containing at
most 32 gray levels will be recoded by mapping the gray values to a 5 bit gray code, thus
reducing the number of bit planes from 8 to 5. The mapping function leads to a fixed
overhead of only 96 bits. These 5 bit planes will be processed in the same manner as
we do for the lossless compression scheme. The results are compared with JPEG lossy
compression technique.

2. Background

The basic idea of employing Boolean minimization for image compression has been re-
ported in an earlier work (Augustine et al 1995). However, in that paper, only lossless
compression of bi-level (black and white) images was considered. In the.present work,
we have extended the approach to both lossless as well as lossy compression of gray level
images and our technique can be easily applied to full colour images as well. We also
consider the division of each bit plane into variable sized windows or blocks using a quad
tree structure, leading to higher compression efficiency, as opposed to uniform division
into fixed sized blocks (Augustine et al 1995). For the sake of clarity of presentation, some
basic definitions are reproduced below from Augustine et al (1995).

DEFINITION 1
A Boolean switching function F is a mapping F : B N --+ B , where B = {0, 1 }.

DEFINITION 2
In the truth table of a switching function of N variables, there are 2 N rows. Each of these
rows which represents an input state vector is called a minterm.

DEFINITION 3
In a switching function, the ON-set is the set of minterms whose outputs are mapped to 1
and the OFF-set is the set of minterms whose outputs are mapped to O.

DEFINITION 4
A cube is an N-tuple A = {al, a 2 aN}, where ai ~ {0, 1, X}. The dimension of the
cube is the number of Xs in it. An ~ cube has 2 '~ minterms (zero cubes) within it (Biswas
1993; Breuer 1972).

Lossless and lossy image compression 57

DEFINITION 5
The performance of a lossless data compression algorithm is assessed by the parameters,
compression ratio and run time. We define compression ratio as,

(no. of input bytes - no. of output bytes)_ × 100%.
no. of input bytes

3. The Lossless compression scheme

Block diagram of our lossless data compression scheme is given in figure 1. The com-
pression scheme consists of the steps of linear prediction, function generation, function
minimization and cube encoding.

3.1 Linear prediction

First we apply linear prediction on the original image file. A simple predictor of averaging
two adjacent pixel values A and B as shown in figure 2 is used. The error values obtained
are recoded by adding the magnitude of the maximum negative error value to each error
to obtain only positive values in the error file.

3.2 Function generation

The values in the error file are replaced by their equivalent gray code, so that adjacent
error values are advantageously mapped onto logically adjacent codes leading to fewer
transitions between 0s and ls on the bit planes. The error file is now split into bit planes.
The number of bit planes can be 8 or 9 depending on the number of error values obtained.
If the number of error values are more than 256, then there will be 9 bit planes. The
bit planes will be divided into variable window sizes using the Quad tree approach. A
switching function in cubical form for each window is generated by assigning the pixels
to minterms according to Gray code. Gray code is chosen because of its unit distance
property, to capture the correlation likely to be present among adjacent pixels, by assigning
geometrically adjacent pixels of a window to logically adjacent minterms. This assignment
helps in minimization since any 2 '~ logically adjacent minterms combine to form a single
or-cube. Pixels are scanned row wise with a reversal of the direction for adjacent rows, to

~" original image

finear prediction

-'~ e r r o r file

[function generalion I Boolean

"-~ -~ functions in
function minimization I cubical form

~ minimized

I cube encoding i cubes

-~ compressed
image

Figure 1. Lossless image
compression scheme.

58 Damodare et al

C B
Predictor employed

A x
X=(A+B)/2

Figure 2. Sample predictor pixels.

ensure that pixels at the ends of consecutive lines are mapped to logically adjacent codes. A
more detailed explanation on function generation can be found in Augustine et al (1995).

3.3 Quad tree approach to bit plane segmentation

Each bit plane is divided into sub-planes (windows or blocks) of variable sizes using the
quad tree approach. This is done because of the fact that the region of correlation on the
bit planes can be large or small. Capturing such variable size regions of high correlation
on the bit planes results in better compression.

In the quad tree approach of dividing the bit plane into variable sized windows, a bit
plane is treated as a collection of leaf nodes. Given a 2 n × 2 n array of pixels, a quad
tree is constructed by repeatedly subdividing the array into quadrants, subquadrants etc.,
until we reach the smallest window size that we have decided on. We have employed a
maximum window size of 32 x 32 pixels and a minimum of 4 x 4. To decide whether a
given block has to be further subdivided or not, we have used a simple heuristic criterion.
Ifa given block consists of 98% or more black or white pixels, we retain this block without
further division; otherwise it is divided into four equal sub-blocks and the same criterion
is applied to each sub-block to decide whether to divide them further. Once the sub-block
size reaches 4 x 4 pixels, we retain it without further division, even when our criterion is
not satisfied.

214 6
9

5 7

I0 12
8

II 13

(a)

A

6 7 10 11 12 13

1 2 3 4

(b)

Figure 3. A bit plane and its Quad tree
representation. (a) A bit plane of size
32 x 32, (b) Quad tree representation
of the above bit map.

Lossless and Iossy image compression 59

The process of subdividing the bit plane into quadrants, subquadrants etc., can be rep-
resented by a tree of out degree 4 in which the root node corresponds to the entire bit
plane, the four sons of the root node correspond to the quadrants, and the terminal or leaf
nodes correspond to those windows of the bit plane for which no further subdivision is
necessary (Samet 1985). The nodes at level k (if any) represent blocks of size 2 k × 2 k and
are referred to as nodes of size 2 k. The tree is created in a depth first manner and hence is
coded in preorder form in the compressed file.

An example of a bit plane being divided using quad tree approach is shown in figure 3.
The bit plane is of size 32 x 32. The quad tree representation of the bit plane has been
shown in figure 3b, where a small box indicates a terminal or a leaf node. The preorder
listing of the quad tree is

A B D 1 2 3 4 5 6 7 8 9 C 1 0 1 1 12 13.

The preorder listing of the quad tree indicates the manner in which the bit plane was
divided. The alphabets A, B, C etc., indicate the nodes which are not terminal nodes. The
terminal nodes 8 and 9 are of size 16 x 16, nodes 5, 6, 7, 10, 11, 12 and-13 are of size 8 x 8
and the nodes 1,2, 3 and 4 are of size 4 x 4. The quad tree structure can be effectively
represented using only 1 bit for each node (Samet 1985).

3.4 Function minimization

Boolean function minimization is performed on the function generated for each block
using the two-level cube-based logic minimizer ESPRESSO (Brayton et a11984) to find
the equivalent minimized cubical representation. For a particular function, in general, the
number of cubes in its minimized ON-set and OFF-set are different. Better compression
can be achieved by choosing the set with lesser number of cubes, since both represent the
same function. The information regarding the choice of the ON/OFF set is passed on to
the decoder via the header for each block, and is discussed in § 4.

3.5 Cube encoding

In cube encoding the set of minimized cubes of the function corresponding to each window
is coded separately. A code set 0, 10, I 1 which satisfies the prefix property is used for the
cube symbols 0, 1 and X by allotting the one bit code to the symbol with maximum
frequency of occurrence. One or two bits are needed to encode the information about the
allotment of prefix code to the cube symbols. If minimization fails to achieve compression
for any window, we choose to represent the original window as such in the compressed
image and this is indicated in the window header.

4. Format of the compressed image

The compressed file format has a global header containing the information of the size
of the image and the information required for reverse prediction. For each bit plane the
windows or blocks will be encoded in a specific format given in figure 4. Since we have
considered only window sizes of 32 x 32, 16 x 16, 8 x 8 and 4 × 4, the quad tree bits
associated with any terminal node will have I, 2 or 3 bits depending on the level of the
node in the quad tree structure. The one bit status code for the window is interpreted as
below.

60 Damodare et al

quadtree bits

no. of cubes

allotment of prefix codes --1

encoding scheme

status code

encoded cubes Figure 4. Window format.

• 0 : Window without minimization. Minimization algorithm has failed to produce
compression for this window, and bits are stored as in the original window.

• 1 : Window is minimized and encoded as cubes.

In the latter case the next two bits are used to indicate further characteristics of the
windows. These two bits denoting the encoding scheme have the following interpretation.

• 00 : ON set is minimized and stored as cubes.

• 01 : OFF set is minimized and stored as cubes.

• 10 : window consists of all black pixels.

• 11 : window consists of all white pixels.

For the last two cases, we need no further bits to encode the window. However, in the first
two cases the next one or two bits as shown below, are used to indicate the allotment of
prefix codes for the cube alphabets.

• 0 : 0 --+ 0, 10 -+ 1, 11 ~ X.

• 1 0 : 0 ~ 1, 10 - - ~ X , 11 ~ 0 .

• 1 1 : 0 ---~ X , 10 ~ 0, 11 ~ 1.

After the prefix code allotment bits, the next m bits (m varies between 0 and 6 depending
on the window size) are used to indicate the number of cubes. Encoded cubes are placed
after this (figure 4).

It is possible that although many windows in an image bit plane can be compressed by
logic minimization or by virtue of the fact that they are all black or all white windows,
several other windows may not yield any compression, leading to a net expansion for an
entire bit plane. This usually happens for two or three least significant bit planes of most
images, which have more random characteristics compared to the higher bit planes. In
such a case, the entire bit plane is stored as it is in the compressed file. A one bit global
header is associated with each bit plane to indicate whether the entire bit plane is in the
original or compressed form.

5. Decompression scheme

Decompression procedure consists of three steps, namely,

1. Window recovery

2. Bit plane recovery

3. Image recovery

Lossless and lossy image compression 61

Table 1. Results of the lossless compression experiment.

Test Logic coding JPEG Lossless mode
Image comp. decomp, compr, comp. decomp, compr.

time* time* ratio % time* time* ratio %
baboon 195 2.8 10.7 0.4 0.3 13.7
boats 132 2.6 31.5 0.4 0.3 32.9
girl 125 2.6 37.0 0.4 0.3 38.1
average 151 2.7 26.4 0.4 0.3 28.2

* CPU s on IBM RS-6000/580

Window recovery consists of locating a block of data in the compressed file corresponding
to a bit plane window and reconstructing the original bits of this window. If the window has
not been compressed, recovery is straight forward; else the two bits for encoding scheme
will indicate whether the ON/OFF set has been minimized and stored as cubes or whether
the window is all black/white. In case of minimized ON/OFF set representation, the cubes
of the minimized function are recovered from the knowledge of the number of cubes and
the allotment of prefix code to the cube alphabets. Once the minimized ON/OFF set of
the function is obtained in the cubical form, the bits of the original window can easily be
obtained by expanding the function to its truth table form.

Bit plane recovery consists of reconstructing an entire bit plane from the recovered
windows of this bit plane, using information from the quad tree representation for the
different windows.

Image recovery consists of combining the individual bit planes of the image. Since linear
prediction was employed as a preprocessing step, image recovery first yields the error file
from which the original gray values are obtained by reverse prediction.

6. Experimental results

The proposed compression and decompression schemes, tentatively called as Logic coding,
have been implemented in C on an IBM RS-6000/580 workstation with UNIX operating
system, and tested on gray level images of size 256 × 256 pixels (64k bytes). Comparison of
the performance of our scheme with that of JPEG lossless mode is given for 3 standard gray
scale images baboon, boats and girl in table 1. We have used the PVRG-JPEG (Portable
Video Research Group) Codec 1.1 available through internet from havefun.stanford.edu,
to carry out the experiments. Our lossless compression scheme is comparable to JPEG
lossless mode in compression ratio. The predictor used by JPEG is the same as the one
used in our scheme shown in figure 2. The CPU time for encoding for JPEG is better
than that of our compression scheme, but the decompression time is comparable to that of
JPEG.

7. Lossy compression

Our lossy compression scheme consists of the following four steps.

• Reducing the number of bit planes from eight to five

• Function generation

62 Damodare et al

• Function minimization

• Cube encoding

7.1 Reducing the number of bit planes

To reduce the number of bit planes we first reduce the number of gray levels in an image.
The number of gray levels are reduced to 32 or less. To achieve this reduction, we use the
technique called Centre Of Mass technique. We use the fact that the human eye cannot
detect very small changes in gray values and have substituted a single gray value for a
group of adjacent gray level values, as explained below.

We first divide the range 0 to 255 of gray values into 32 intervals. Each interval will
consist of 8 gray values. The intervals are 0 to 7, 8 to 15, 15 to 23 248 to 255.
The frequency count of each gray value in the original image is computed. Then for each
interval k, ranging from 0 to 31, we calculate a gray value glneu, (representing the centre
of mass of that interval) using the formula

/82
glnew = i~=8k i.fri i = 8 k fri

where i corresponds to the gray level value (between 0 and 255) and f r i is the frequency
of occurrence of ith gray level in the image. Thus we get a gray value glnew for each
interval which is substituted for all the 8 gray levels falling within that interval. If the value
obtained from the above calculation is a fraction, it will be rounded off to nearest integer
value. Thus for each interval we find a gray value glnew which is biased towards those gray
levels whose frequency of occurrence is more and thus help to reduce the mean square
error value. One major advantage is that the error is bounded and is not localized but is
distributed throughout the image.

The recoded image will have at the most 32 gray values and each of these values denote
the centre of mass of the interval in which the gray value falls. The five MSBs of each
recoded gray value represent the interval while the three LSBs denote the offset from the
start of the interval to its centre of mass. We can maintain these offsets in an array of
32 x 3 bits and recode the intervals by a 5 bit gray code. Thus the entire recoded image
now consists of 5 bit planes and the 32 × 3 bit overhead for denoting the offsets is included
in the global header.

This is the only step where we incur loss in the image. Qualitatively one cannot visually
distinguish between the original image and the recoded image having only 32 or fewer
gray levels.

The five bit planes obtained from the Centre Of Mass technique will now undergo steps
of function generation, function minimization and cube encoding in the same manner as
explained in the lossless compression scheme.

7.2 Compressed file format

The compressed image format is same as that of the lossless compression scheme with
differences in the global header. There will be a header of 12 bytes containing the offset
information with respect to the centre of mass of each interval. There will be only five
encoded bit planes in the compressed file. The window format is same as shown in figure 4.

Lossless and lossy image compression 63

Table 2. Results of the lossy compression experiment.

Test Logic coding JPEG lossy mode
Image MSE comp. compr. Q-factor MSE comp. compr.

time* ratio % time * ratio %
baboon 5.45 150 47.85 95 4.16 0.5 33.37

94 5.68 0.5 38.07
boats 5.47 94 65.85 93 5.10 0.4 62.39

92 6.12 0.4 64.98
girl 5.40 85 67.87 93 5.14 0.4 66.88

92 5.94 0.4 69.60
average 5.44 110 60.52 5.36 0.43 55.88

• CPU s on IBM RS-6000/580

7.3 Experimental results

The results of our scheme and that of JPEG are given in table 2. We have kept mean
square error (MSE) as a reference to compare the compression ratios. To get MSE of
JPEG decompressed file close to that of ours we have tried different values for the quality
factor (Q-factor) which is an option available in JPEG. As the MSE of JPEG decompressed
image was not exactly identical to ours, we have given results for two Q-factors giving
results as close to our MSE as possible. From the results it is clear that for an average
MSE close to that of JPEG, our compression ratio is better by 4.64% on an average, but
JPEG has a plus point in the compression time required. The decompressed images were
visually indistinguishable from the originals both for our scheme as well as JPEG.

8. Conclusions

A novel approach for image data compression using the Boolean function minimization
technique has been presented. The images after the preprocessing step are split into bit
planes. Each bit plane is split into variable sized blocks and these blocks are converted into
a set of Boolean switching functions and minimized using ESPRESSO to get the minimal
representation in cubical form. A prefix code set is used for the encoding of cube alphabets
to achieve maximum possible compression.

In lossless compression of images our experiments show that our technique gives com-
pression ratio comparable to that of JPEG lossless mode. In lossy compression technique,
for an average mean square error close to that of JPEG, we are better in compression ratio
by 4.64%. JPEG is better in the execution time required as compared to our technique. As
ESPRESSO is used as a stand alone package, considerable time is wasted in the commu-
nication and the file manipulation overheads. Time performance is expected to improve
once ESPRESSO is integrated into the code.

Two level minimized representation of a function is not the most compact representation
for all functions. There are many functions for which the minimum two level representation
leads to an expansion, for example the parity function. For such functions, alternative
representation such as Binary Decision Diagrams (BDDs) may be employed (Akers 1978).
Further work is also required to study the performance of our lossy compression approach
at higher MSE levels and compare it with JPEGs performance.

64 Damodare et al

References

Akers S B 1978 Binary Decision Diagrams. IEEE Trans. Comput. C-27:509-516
Augustine J, Feng W, Jacob J 1995 Logic Minimization Based Approach for Compressing Image

Data. Proc. of the 8 th Intl. Conf. VLSI Design. 225-228 (New Delhi: IEEE Press)
Biswas N N 1993 Logic design theory (Prentice Hall Inc., N J)
Brayton R K, Hachtel G D, McMullen C T, Sangiovanni-Vincentelli A L 1984 Logic minimization

algorithms for VLSI synthesis (Boston: Kluwer)
Breuer M A 1972 Design automation of digital systems Vol- I: Theol. and techniques (Englewood

Cliffs, N J: Prentice Hall)
Pennebaker W B, Mitchell J L 1993 JPEG Still Image Data Compression Standard (New York:

Van Nostrand Reinhold)
Roos R Viergever M A, Van Dijke M C A, Peters J H 1988 Reversible intra frame compression

of medical images. IEEE Trans. Medical Imaging 7:328-336
Samet H 1985 Data structures for quadtree approximation and compression. Commun. ACM 28:

972-993

