
824 PAK vol. 59, nr 8/2013

Grzegorz ULACHA, Tomasz MĄKA, Piotr DZIURZAŃSKI
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE, WYDZIAŁ INFORMATYKI,
ul. Żołnierska 49, 71-210 Szczecin

Lossless audio compression with a switched prediction model

Dr inż. Grzegorz ULACHA

Grzegorz Ulacha (M'2000, PhD'2004) graduated from
the Szczecin University of Technology, where he also
defended his PhD thesis. He is working now as an
Associate Professor at the Institute of Computer
Architecture and Telecommunications of the West
Pomeranian University of Technology, Szczecin. His
scientific interests are mainly linked with lossless and
lossy image and audio coding.

e-mail: gulacha@wi.ps.pl

Dr inż. Tomasz MĄKA

He received the MSc and PhD degrees in computer
science from Szczecin University of Technology in
2000 and 2005, respectively. He is currently working
as an assistant professor in Faculty of Computer
Science & Information Technologies, West Pomeranian
University of Technology, Szczecin. His scientific
interests include hardware realization of digital signal
processing systems and acoustic signal processing
techniques.

e-mail: tmaka@wi.ps.pl

Abstract

In this paper there is described a possibility of context switching into
a lossless compression system. The context is determined based on the
features of the previous signal samples. Each context is associated with an
individual predictor. The idea of context switching allows us to choose one
of the set of a few predictor models individually for each sample instead of
each frame. Consequently, the system adjusts fast in case of rapid signal
changes. The system was implemented using the ImpulseC hardware
description language and implemented on an FPGA platform.

Keywords: lossless compression, linear prediction, contextual split,
ImpulseC.

Bezstratna kompresja audio z przełączanym
modelem predekcyjnym

Streszczenie

W nowoczesnych metodach kompresji audio wykorzystuje się zwykle dwa
etapy: dekompozycję danych, a następnie kompresję jedną z wydajnych
metod entropijnych. Najczęściej do modelowania służy typowy predyktor
liniowy rzędu r, który jest wartością przewidywaną aktualnie kodowanej
próbki na podstawie r poprzednich próbek sygnału. Kluczową rolę odgrywa
tu sposób doboru współczynników danego modelu. Mogą być one ustalone
na stałe, statyczne w obrębie jednej kodowanej ramki, jak i w pełni
adaptacyjne. Główną propozycją wzrostu efektywności kompresji
zaprezentowaną w tej pracy jest wprowadzenie przełączania kontekstów,
które wyznacza się na podstawie cech sygnału poprzednich próbek.
Każdemu kontekstowi przypisany jest indywidualny predyktor. W artykule
przedstawiono podział na 2 oraz 3 konteksty (tab. 1). Przedstawiono metodę
statyczną uwzględniającą zależności międzykanałowe, a także kodowanie
międzykanałowe z przełączaniem kontekstów. Aby sprawdzić możliwości
uogólnienia i uproszczenia pomiarów, wybrano zestaw utworów
muzycznych. Proponowana metoda w 60% przypadków skutkowała
zmniejszeniem średniej bitowej. Dysponując pełnym zestawem wyników
użycia 140 deskryptorów dla wybranych utworów, można spróbować
wybrać kilka deskryptorów dających najlepsze rezultaty, a następnie
zastosować je do innych utworów testowych. Zaproponowany algorytm
został zaimplementowany w układzie FPGA z rodziny Virtex 5
wykorzystując język opisu sprzętu ImpulseC (tab. 3).

Słowa kluczowe: bezstratna kompresja, predykcja liniowa, podział
kontekstowy, ImpulseC.

Dr inż. Piotr DZIURZAŃSKI

He received the MSc and PhD degrees in computer
science from Szczecin University of Technology in
2000 and 2003, respectively. He is currently working
as an assistant professor in Faculty of Computer
Science & Information Technologies, West Pomeranian
University of Technology, Szczecin. His scientific
interests include hardware-software co-synthesis, high
level synthesis and formal verification.

e-mail: pdziurzanski@wi.ps.pl

1. Introduction

In modern compression method techniques, two stages are
usually utilized. The first of them is data decomposition, which is
followed by one of the efficient entropy methods. Among these
methods the most effective are arithmetic encoding, Huffman
encoding and its modifications, such as Golomb and Rice codes. In
case of lossless audio encoding, the Gilbert-Moore block code,
which is a combination of arithmetic with Golomb-Rice codes, is
often used [1].

There are two basic directions in the data modelling domain. In
the first of them, linear or non-linear prediction is used. The second
type utilizes DCT (MPEG-4 SLS [2]) or wavelet transforms.

Usually, a typical linear predictor of order r is used. It is the
expected value of the sample to be encoded based on the previously
encoded r signal samples. The usage of the linear predictor allows
us to encode only the predictor errors, i.e., the differences e between
the real and expected values (rounded to an integer value), which
usually are values close to zero. In consequence, we obtain
a differential signal, whose error distribution is similar to the
Laplace distribution. Then it may be effectively encoded using one
of static or adaptive entropy methods. It is crucial to choose
favourable coefficients of the given model. They may be constants
(constant predictors), static inside a single encoded frame (changing
during transition to a consecutive frame), or fully adaptive (their
modification can take place even after each sample encoding).

In a static method, increase of the prediction order decreases the
mean-square error, but there is no guarantee of compression
effectiveness increase. This is mainly caused by the increase of the
coefficient number placed in the header. It is thus recommended to
find, e.g., one value r being a compromise for the whole file or to
measure the entropy or the encoded frame length for consecutive
prediction ranges. This solution is used in MPEG-4 ALS, where
a frame of the length equal to about 43 ms was chosen.

2. Contextual split

In this paper the main proposal of the compression effectiveness
increase consists in introduction of a context switching, which is
determined based on the features of the previous signal samples.
Each context is associated with an individual predictor. The idea
of context switching allows us to choose one of the set of h
predictor models individually for each sample instead of each
frame. As a result, we obtain a possibility of fast adaptivity for
rapid signal alterations.

The first proposed version of this technique utilizes only h = 2
contexts for long-term frames (in our experiments the frame
length was equal to the samples number in one channel in the
encoded file); the bit average can be then computed with the
following formula:

N

hrm
SHL

)(, (1)

PAK vol. 59, nr 8/2013 825

where H(S) is the zeroth-order entropy of the prediction error
signal, r is the prediction length, and m determines the number of
bits used for storing the prediction coefficient. The first stage is to
determine the average value from the absolute value of the
differences between neighbouring samples in a frame:

N

n

nxnx
N

S
2

ave)1()(
1

1
. (2)

After rounding to an integer, this value is transferred to a decoder.
This criteria for context switching is based on a level of local
changes between the closest samples. During the encoding stage,
for each sample x(n) the following q value is computed:

 })1()({max

}9,...,1{

jnxjnxq

j
, (3)

Then for each value of q a two-stages quantizer is used with the

threshold set to Save, where = 2.5 was selected in an
experimental way. In this way samples of each channel are split
into two subsets and they are used as a basis to determine
predictors different for each context using the MMSE. Despite the
fact that it requires the doubled number of coefficients per
channel, it produces better results than doubling the prediction
range using a single model. Additionally, it is possible to measure
the average eight time, choosing the best result for eight values i
= {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}. Then the average bit rate slightly
decreases. To simplify the average bit rate computation, in our
experiments the prediction coefficient is written in m = 32 bits.

Increasing the number of contexts to three, it is required to
provide two quantization thresholds, q, computed with (3), the
remaining computations are similar as in the case of two contexts,
described above. In an experimental manner, pair {1; 2} = {1.5;
4} was chosen as the best trade-of. 16 fragments of the testing
files were measured for r = 200, obtaining the bit average equal to
10.413. The further efficiency increase is possible when instead of
one measurement we perform it eight times., selecting the best
quantization pair thresholds. Based on the experimental results, we
chose 8 best pairs {1i; 2i}. Choosing the best measurement out
of 8, for tested benchmarks we managed to decrease their bit-
average (for r = 200) to 10.396.

Tab. 1. Comparison of the bit-averages for statistic methods with 600

coefficients written in the file header
Tab. 1. Porównanie średnich bitowych dla metod statycznych o 600

współczynnikach zapisywanych w nagłówku pliku

Test name
r = 600,

context-free
r = 300,

2 contexts

r = 300,
2 contexts

(8 measure-
ments)

r = 200,
3 contexts

r = 200,
3 contexts

(8 measure-
ments)

ATrain 8.47830 8.40454 8.39622 8.40549 8.39570
BeautySlept 10.04539 10.27163 10.26925 10.41231 10.40850

chanchan 10.79826 10.72185 10.70160 10.68729 10.67666
death2 10.47433 7.92506 7.69276 7.65953 7.65932

experiencia 12.26870 12.21207 12.20447 12.20256 12.19955
female_speech 9.13827 8.31041 8.29872 8.22219 8.21096
FloorEssence 11.67929 11.66518 11.65198 11.62388 11.62388

ItCouldBeSweet 11.40019 11.34135 11.33980 11.33286 11.32874
Layla 11.20194 10.83219 10.82088 10.79939 10.79495

LifeShatters 11.35826 11.35419 11.35343 11.35632 11.35483
macabre 10.06908 10.03100 9.96025 9.99353 9.99334

male_speech 8.18880 8.02271 8.01902 7.98155 7.96473
SinceAlways 12.46821 12.31252 12.30736 12.30567 12.28545

thear1 12.10544 12.11046 12.11046 12.12290 12.11858
TomsDiner 9.83010 9.74519 9.74135 9.70890 9.69194

velvet 11.57260 11.64013 11.57596 11.79359 11.63399
Average 10.69232 10.43128 10.40272 10.41300 10.39632

In the next experiment, we analysed the influence of the context

number, maintaining the constant total number of 600 prediction
coefficient per channel. The results are provided in Tab. 1. We
measured the context-free method for r = 600 (column 2), and then
the method with two-context split for r = 300 and the quantisation

threshold = 2.5 (column 3) and with the selection of the best out
of 8 quantization thresholds (column 4). The last two measurements
were made for the method with three-context split, r = 200, and
quantization thresholds{1; 2} = {1.5; 4} (column 5) and with the
best quantization threshold pair out of 8 analysed (column 6). The
higher is context number, the lower is bit-average L. The
improvement between three- and two-context versions is lower than
the one between two-context and the context-free ones.

Since the increase of the context number makes selection of the
proper thresholds more difficult, from the experimental results we
can conclude that three-context solution can be treated as a good
trade-off. The idea of the contextual split may be implemented in
the existing approaches, e.g., in the RLS block in five-stage
cascade method described in [3].

3. Inter-channel encoding with context

switching

Since some dependences can be usually observed between
channels, it is possible to benefit from this fact, using two
different models for the left (prior encoded) and the right
channels. According to the experimental results, it is beneficial to
use the proportion range rL:rR equal to 2:1, where L and R denotes
the left and the right channel, respectively. The first parameter
indicates which channel is prior encoded. At the second stage, the
quantization thresholds are selected (3-context split version as
described in section 2). The last stage consists of the selection of
prediction order in the interchannel mode: r = rL + rR = 120. As
a result, the average was decreased to 9.656 bit per sample.

4. Other context switching techniques

It is worth considering whether the feature described in Section
2 with equation (3), which computes number q, can be replaced by
other rule, which would allow us to select context based on
a simple rule using 3-state quantizer with two thresholds equal to
(1Save, 2Save}, where Save is treated as the bit-average of all
values q measured for the encoded signal.

In the following experiments, a set of 140 descriptors typical for
the sound classification domain was used. For each encoded
sample, it is necessary to determine the value of q, using the rule
of measurement the previous frame (in the experiment, frames of
the length 30ms have been used). The complexity of this process
is worth stressing: 140 various descriptors are determined, and for
each of them 32 sets of quantization thresholds is checked (it is
necessary due to various features of the normalized descriptor
values) and for each of these cases an encoding of the test is
performed. Finally, there is chosen the descriptor leading to the
shortest bit-average of the test.

To check the possibility of the measurement generalization and
simplification, 5 tests out of 16 were chosen that varied from each
other to a considerable extent (speech, classical music, rock music,
music with vocal). After the measurements, in 3 out of 5 cases the
decrease of the bit-average was observed. In the remaining 2 cases
(experiencia, male_speech), where a worse result was obtained, the
basic technique described in Section 2 was still used. As a result, for
5 tests the average result decreased from 9.416 (in basic method) to
9.389 bit per sample in method with the best descriptor selection.
Tab. 2 includes the results of these experiments.

Tab. 2. Bit-average measurements with 3 contexts and the best descriptor

(out of considered 140) selection
Tab. 2. Pomiar średniej bitowej z wykorzystaniem 3 kontekstów i doborem

najlepszego deskryptora spośród 140 badanych

Test name Bit average Method Quantization thresholds
ATrain 8.31331 s1 0.3; 1.0

experiencia 11.69804 s2 0.3; 1.0
LifeShatters 11.07703 s3 1.0; 2.5

macabre 9.96893 s8 0.8; 2.5
male_speech 5.95346 s4 0.3; 1.5

826 PAK vol. 59, nr 8/2013

Fig. 1. Process of features vector generation for context switching
Rys. 1. Proces generowania wektora cech do przełączania kontekstów

Having all the results of the 140 descriptors utilization for these

5 selected tests, it is possible to select a few descriptors leading to
the best average results, and then to apply them to the whole set of
16 tested tests. Using this technique we selected 5 descriptors: s5,
s6, s7, s8, s9. The features vector extraction process is depicted in
Fig. 1. The vector is calculated for each frame extracted from the
source signal with one sample step between consecutive frames.
After extensive experimentation we found nine features usable in
context switching. Two features were extracted in the time domain
- linear prediction coefficients and linear prediction cepstral
coefficients [4]. In our case, the 10th order filter was used, where
7th and 2nd element of the obtained vectors were exploited as s1
and s2 features, respectively. Other features were calculated in the
frequency domain, where in addition to selected statistical
properties of the power spectrum (s3, s4, s7 and s8), three features
were extracted: HFE (s5), HFC (s6) and Tonality (s9). The high-
frequency energy HFE feature is calculated as the energy of
frequency components above 4kHz [5]. Similarly, the HFC
descriptor also describes the energy of higher frequencies as it is
defined by a weighted energy function, where weights increase
with increasing frequencies of the power spectrum [6]. The last
descriptor of the feature vector, Tonality, denotes whether a signal
is tone- or noise-like and is calculated using a ratio of spectral
flatness expressed in decibels to the reference level [7]. Applying
these descriptors to the technique described in this paper, the
average bit rate decreases from 9.656 to 9.641.

5. Implementation

Since the original algorithms described in the previous section
were realized in C language, we chose one of the existing C-based
hardware description language to implement the hardware-targeted
counterpart of the source code, namely ImpulseC [8]. It is an
extension of ANSI C with new data types, aimed at hardware
synthesis, and new functions and directives for steering the
hardware implementation. The code is executed in the so-called
processes, which communicate with other processes using streams,
signals, shared memory and semaphores. As the processes are to be
realized in hardware, they may benefit from various ImpulseC
optimization techniques, such as loop unrolling or pipelining. The
first of these techniques are quite important in our system, as
numerous computations in data-dominated algorithms are
independent from each other. However, there are usually no enough
resources for generating hardware for each iteration, thus some kind
of clustering is necessary. This trade-off between the computation
time and target chip area can be established during a series of
experiments. This is also the path followed by the authors. After
some code modifications, aiming at improving its hardware
realization, we obtained our final code to be implemented in
hardware. These modifications included division of the code into
coarse-grain partitions to be implemented in parallel. The
transformation is always a trade-off between the computational time
and resource utilization, hence we analyzed the impact of each
module onto the final realization in terms of particular functional
blocks, such as adders, multipliers etc., estimated DSP blocks
(present in our target FPGA chip) and number of computational
stages. To estimate the impact of these modifications into the target

chip parameters, we used Stage Master Explorer tool from the
ImpulseC CoDeveloper package. This tool computes two
parameters, Rate and Max Unit Delay (MUD), which approximate
the performance of future hardware implementation. It is worth
stressing that these parameters are computed instantly, in contrast
with long-lasting hardware implementation.

At the last stage, we used Xilinx ISE to perform an
implementation of the core in Virtex5 FPGA device (XC5VSX50T,
Virtex 5 ML506 Evaluation Platform) and got the following device
utilization: 2804 Slice Registers, 7707 Slice LUTs, 2032 fully used
LUT-FF pairs, 64 DSP48Es.

The above assignments mean that less than 20 percent of the
device were used, leaving more than 80% for the router and the
remaining cores. The more detailed resource requirements and the
elementary operators used for the implementation of the presented
algorithms are given in Tab. 3.

Tab. 3. Number of the synthesized resource of various types
Tab. 3. Liczba zsyntetyzownych zasobów różnych typów

Resource type Number of used resource
Adder(s)/Subtractor(s) (8 bit) 32
Adder(s)/Subtractor(s) (32 bit) 114

Multiplier(s) (32 bit) 25
Multiplier(s) (64 bit) 3

Divider(s) (32 bit) 10
Comparator(s) (2 bit) 1
Comparator(s) (32 bit) 44

6. Conclusions

The idea of contextual split, presented in the paper, can be
implemented in the most effective, known from the literature,
sound compression systems, e.g. in the RLS system in five-stage
cascade method described in [5]. It allows us, together with other
solutions, to increase the compression level. The proposed
algorithm is also easily implementable in hardware, leading to
a solution requiring relatively low resources.

The research work presented in this paper was supported by Polish National
Science Centre (grant no. N N516 492240).

7. References

[1] Reznik Y.A.: Coding of prediction residual in MPEG-4 standard for

lossless audio coding (MPEG-4 ALS), Proc. of IEEE International
Conference on Acoustics, Speech, and Signal Processing
(ICASSP’04), Montreal, Quebec, Canada, 17-21 May 2004, vol. 3, pp.
III_1024-1027.

[2] Yu R., Rahardja S., Ko C. C., Huang H.: Improving coding efficiency
for MPEG-4 Audio Scalable Lossless coding, Proc. of IEEE
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP’05), Philadelphia, PA, USA, 18-23 March 2005, vol. 3, pp.
III_169-172.

[3] Huang H., Fränti P., Huang D., Rahardja S.: Cascaded RLS-LMS
prediction in MPEG-4 lossless audio coding, IEEE Trans. on Audio,
Speech and Language Processing, March 2008, vol. 16, no. 3, pp. 554-562.

[4] Huang X., Acero A., Hon H.: Spoken Language Processing - A Guide
to Theory Algorithms and System Development, Prentice Hall PTR, 2001.

[5] Monson B., Lotto A., Ternstrom S.: Detection of high-frequency
energy changes in sustained vowels produced by singers, J. Acoust.
Soc. Am. 129 (4), April, 2011.

[6] Masri P., Bateman A.: Improved modelling of attack transient in
music analysis-resynthesis. In: Proceedings of the International
Computer Music Conference, Hong-Kong, 1996.

[7] Johnston J.: Transform Coding of Audio Signals Using Perceptual
Noise Criteria, IEEE Journal On Selected Areas In Communications,
Vol. 6, No. 2, February, 1988.

[8] Impulse Accelerated Technologies, Accelerating HPC and HPEC
Applications Using Impulse C, Reconfigurable Systems Summer
Institute (RSSI), Urbana, IL, July 17-20, 2007.

otrzymano / received: 20.05.2013
przyjęto do druku / accepted: 03.07.2013 artykuł recenzowany / revised paper

