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Abstract 
 

In this paper there is described a possibility of context switching into  
a lossless compression system. The context is determined based on the 
features of the previous signal samples. Each context is associated with an 
individual predictor. The idea of context switching allows us to choose one 
of the set of a few predictor models individually for each sample instead of 
each frame. Consequently, the system adjusts fast in case of rapid signal 
changes. The system was implemented using the ImpulseC hardware 
description language and implemented on an FPGA platform. 
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Bezstratna kompresja audio z przełączanym 
modelem predekcyjnym 

 
Streszczenie 

 
W nowoczesnych metodach kompresji audio wykorzystuje się zwykle dwa 
etapy: dekompozycję danych, a następnie kompresję jedną z wydajnych 
metod entropijnych. Najczęściej do modelowania służy typowy predyktor 
liniowy rzędu r, który jest wartością przewidywaną aktualnie kodowanej 
próbki na podstawie r poprzednich próbek sygnału. Kluczową rolę odgrywa 
tu sposób doboru współczynników danego modelu. Mogą być one ustalone 
na stałe, statyczne w obrębie jednej kodowanej ramki, jak i w pełni 
adaptacyjne. Główną propozycją wzrostu efektywności kompresji 
zaprezentowaną w tej pracy jest wprowadzenie przełączania kontekstów, 
które wyznacza się na podstawie cech sygnału poprzednich próbek. 
Każdemu kontekstowi przypisany jest indywidualny predyktor. W artykule 
przedstawiono podział na 2 oraz 3 konteksty (tab. 1). Przedstawiono metodę 
statyczną uwzględniającą zależności międzykanałowe, a także kodowanie 
międzykanałowe z przełączaniem kontekstów. Aby sprawdzić możliwości 
uogólnienia i uproszczenia pomiarów, wybrano zestaw utworów 
muzycznych. Proponowana metoda w 60% przypadków skutkowała 
zmniejszeniem średniej bitowej. Dysponując pełnym zestawem wyników 
użycia 140 deskryptorów dla wybranych utworów, można spróbować 
wybrać kilka deskryptorów dających najlepsze rezultaty, a następnie 
zastosować je do innych utworów testowych. Zaproponowany algorytm 
został zaimplementowany w układzie FPGA z rodziny Virtex 5 
wykorzystując język opisu sprzętu ImpulseC (tab. 3). 
 
Słowa kluczowe: bezstratna kompresja, predykcja liniowa, podział 
kontekstowy, ImpulseC. 
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1. Introduction 
 

In modern compression method techniques, two stages are 
usually utilized. The first of them is data decomposition, which is 
followed by one of the efficient entropy methods. Among these 
methods the most effective are arithmetic encoding, Huffman 
encoding and its modifications, such as Golomb and Rice codes. In 
case of lossless audio encoding, the Gilbert-Moore block code, 
which is a combination of arithmetic with Golomb-Rice codes, is 
often used [1]. 

There are two basic directions in the data modelling domain. In 
the first of them, linear or non-linear prediction is used. The second 
type utilizes DCT (MPEG-4 SLS [2]) or wavelet transforms.  

Usually, a typical linear predictor of order r is used. It is the 
expected value of the sample to be encoded based on the previously 
encoded r signal samples. The usage of the linear predictor allows 
us to encode only the predictor errors, i.e., the differences e between 
the real and expected values (rounded to an integer value), which 
usually are values close to zero. In consequence, we obtain  
a differential signal, whose error distribution is similar to the 
Laplace distribution. Then it may be effectively encoded using one 
of static or adaptive entropy methods. It is crucial to choose 
favourable coefficients of the given model. They may be constants 
(constant predictors), static inside a single encoded frame (changing 
during transition to a consecutive frame), or fully adaptive (their 
modification can take place even after each sample encoding). 

In a static method, increase of the prediction order decreases the 
mean-square error, but there is no guarantee of compression 
effectiveness increase. This is mainly caused by the increase of the 
coefficient number placed in the header. It is thus recommended to 
find, e.g., one value r being a compromise for the whole file or to 
measure the entropy or the encoded frame length for consecutive 
prediction ranges. This solution is used in MPEG-4 ALS, where  
a frame of the length equal to about 43 ms was chosen.  

 
2. Contextual split 
 

In this paper the main proposal of the compression effectiveness 
increase consists in introduction of a context switching, which is 
determined based on the features of the previous signal samples. 
Each context is associated with an individual predictor. The idea 
of context switching allows us to choose one of the set of h 
predictor models individually for each sample instead of each 
frame. As a result, we obtain a possibility of fast adaptivity for 
rapid signal alterations. 

The first proposed version of this technique utilizes only h = 2 
contexts for long-term frames (in our experiments the frame 
length was equal to the samples number in one channel in the 
encoded file); the bit average can be then computed with the 
following formula: 
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where H(S) is the zeroth-order entropy of the prediction error 
signal, r is the prediction length, and m determines the number of 
bits used for storing the prediction coefficient. The first stage is to 
determine the average value from the absolute value of the 
differences between neighbouring samples in a frame: 
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After rounding to an integer, this value is transferred to a decoder. 
This criteria for context switching is based on a level of local 
changes between the closest samples. During the encoding stage, 
for each sample x(n) the following q value is computed: 
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Then for each value of q a two-stages quantizer is used with the 

threshold set to Save, where  = 2.5 was selected in an 
experimental way. In this way samples of each channel are split 
into two subsets and they are used as a basis to determine 
predictors different for each context using the MMSE. Despite the 
fact that it requires the doubled number of coefficients per 
channel, it produces better results than doubling the prediction 
range using a single model. Additionally, it is possible to measure 
the average eight time, choosing the best result for eight values i 
= {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}. Then the average bit rate slightly 
decreases. To simplify the average bit rate computation, in our 
experiments the prediction coefficient is written in m = 32 bits.  

Increasing the number of contexts to three, it is required to 
provide two quantization thresholds, q, computed with (3), the 
remaining computations are similar as in the case of two contexts, 
described above. In an experimental manner, pair {1; 2} = {1.5; 
4} was chosen as the best trade-of. 16 fragments of the testing 
files were measured for r = 200, obtaining the bit average equal to 
10.413. The further efficiency increase is possible when instead of 
one measurement we perform it eight times., selecting the best 
quantization pair thresholds. Based on the experimental results, we  
chose 8 best pairs {1i; 2i}. Choosing the best measurement out 
of 8, for tested benchmarks we managed to decrease their bit-
average (for r = 200) to 10.396. 

 
Tab. 1.  Comparison of the bit-averages for statistic methods with 600  

coefficients written in the file header 
Tab. 1.  Porównanie średnich bitowych dla metod statycznych o 600 

współczynnikach zapisywanych w nagłówku pliku  
 

Test name 
r = 600,  

context-free 
r = 300,  

2 contexts 

r = 300,  
2 contexts 

(8 measure-
ments) 

r = 200,  
3 contexts 

r = 200,  
3 contexts 

(8 measure-
ments) 

ATrain 8.47830 8.40454 8.39622 8.40549 8.39570 
BeautySlept 10.04539 10.27163 10.26925 10.41231 10.40850 

chanchan 10.79826 10.72185 10.70160 10.68729 10.67666 
death2 10.47433 7.92506 7.69276 7.65953 7.65932 

experiencia 12.26870 12.21207 12.20447 12.20256 12.19955 
female_speech 9.13827 8.31041 8.29872 8.22219 8.21096 
FloorEssence 11.67929 11.66518 11.65198 11.62388 11.62388 

ItCouldBeSweet 11.40019 11.34135 11.33980 11.33286 11.32874 
Layla 11.20194 10.83219 10.82088 10.79939 10.79495 

LifeShatters 11.35826 11.35419 11.35343 11.35632 11.35483 
macabre 10.06908 10.03100 9.96025 9.99353 9.99334 

male_speech 8.18880 8.02271 8.01902 7.98155 7.96473 
SinceAlways 12.46821 12.31252 12.30736 12.30567 12.28545 

thear1 12.10544 12.11046 12.11046 12.12290 12.11858 
TomsDiner 9.83010 9.74519 9.74135 9.70890 9.69194 

velvet 11.57260 11.64013 11.57596 11.79359 11.63399 
Average 10.69232 10.43128 10.40272 10.41300 10.39632 

 
In the next experiment, we analysed the influence of the context 

number, maintaining the constant total number of 600 prediction 
coefficient per channel. The results are provided in Tab. 1. We 
measured the context-free method for r = 600 (column 2), and then 
the method with two-context split for r = 300 and the quantisation 

threshold  = 2.5 (column 3) and with the selection of the best out 
of 8 quantization thresholds (column 4). The last two measurements 
were made for the method with three-context split, r = 200, and 
quantization thresholds{1; 2} = {1.5; 4} (column 5) and with the 
best quantization threshold pair out of 8 analysed (column 6). The 
higher is context number, the lower is bit-average L. The 
improvement between three- and two-context versions is lower than 
the one between two-context and the context-free ones. 

Since the increase of the context number makes selection of the 
proper thresholds more difficult, from the experimental results we 
can conclude that three-context solution can be treated as a good 
trade-off. The idea of the contextual split may be implemented in 
the existing approaches, e.g., in the RLS block in five-stage 
cascade method described in [3]. 
 
3. Inter-channel encoding with context 

switching 
 

Since some dependences can be usually observed between 
channels, it is possible to benefit from this fact, using two 
different models for the left (prior encoded) and the right 
channels. According to the experimental results, it is beneficial to 
use the proportion range rL:rR equal to 2:1, where L and R denotes 
the left and the right channel, respectively. The first parameter 
indicates which channel is prior encoded. At the second stage, the 
quantization thresholds are selected (3-context split version as 
described in section 2). The last stage consists of the selection of 
prediction order in the interchannel mode: r = rL + rR = 120. As  
a result, the average was decreased to 9.656 bit per sample. 
 
4. Other context switching techniques 
 

It is worth considering whether the feature described in Section 
2 with equation (3), which computes number q, can be replaced by 
other rule, which would allow us to select context based on  
a simple rule using 3-state quantizer with two thresholds equal to 
(1Save, 2Save}, where Save is treated as the bit-average of all 
values q measured for the encoded signal. 

In the following experiments, a set of 140 descriptors typical for 
the sound classification domain was used. For each encoded 
sample, it is necessary to determine the value of q, using the rule 
of measurement the previous frame (in the experiment, frames of 
the length 30ms have been used). The complexity of this process 
is worth stressing: 140 various descriptors are determined, and for 
each of them 32 sets of quantization thresholds is checked (it is 
necessary due to various features of the normalized descriptor 
values) and for each of these cases an encoding of the test is 
performed. Finally, there is chosen the descriptor leading to the 
shortest bit-average of the test.  

To check the possibility of the measurement generalization and 
simplification, 5 tests out of 16 were chosen that varied from each 
other to a considerable extent (speech, classical music, rock music, 
music with vocal). After the measurements, in 3 out of 5 cases the 
decrease of the bit-average was observed. In the remaining 2 cases 
(experiencia, male_speech), where a worse result was obtained, the 
basic technique described in Section 2 was still used. As a result, for 
5 tests the average result decreased from 9.416 (in basic method) to 
9.389 bit per sample in method with the best descriptor selection. 
Tab. 2 includes the results of these experiments. 

 
Tab. 2.  Bit-average measurements with 3 contexts and the best descriptor  

(out of considered 140) selection 
Tab. 2.  Pomiar średniej bitowej z wykorzystaniem 3 kontekstów i doborem 

najlepszego deskryptora spośród 140 badanych  
 

Test name Bit average Method Quantization thresholds 
ATrain 8.31331 s1 0.3; 1.0 

experiencia 11.69804 s2 0.3; 1.0 
LifeShatters 11.07703 s3 1.0; 2.5 

macabre 9.96893 s8 0.8; 2.5 
male_speech 5.95346 s4 0.3; 1.5 
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Fig. 1.  Process of features vector generation for context switching 
Rys. 1.  Proces generowania wektora cech do przełączania kontekstów 

 
Having all the results of the 140 descriptors utilization for these 

5 selected tests, it is possible to select a few descriptors leading to 
the best average results, and then to apply them to the whole set of 
16 tested tests. Using this technique we selected 5 descriptors: s5, 
s6, s7, s8, s9. The features vector extraction process is depicted in 
Fig. 1. The vector is calculated for each frame extracted from the 
source signal with one sample step between consecutive frames. 
After extensive experimentation we found nine features usable in 
context switching. Two features were extracted in the time domain 
- linear prediction coefficients and linear prediction cepstral 
coefficients [4]. In our case, the 10th order filter was used, where 
7th and 2nd element of the obtained vectors were exploited as s1 
and s2 features, respectively. Other features were calculated in the 
frequency domain, where in addition to selected statistical 
properties of the power spectrum (s3, s4, s7 and s8), three features 
were extracted: HFE (s5), HFC (s6) and Tonality (s9). The high-
frequency energy HFE feature is calculated as the energy of 
frequency components above 4kHz [5]. Similarly, the HFC 
descriptor also describes the energy of higher frequencies as it is 
defined by a weighted energy function, where weights increase 
with increasing frequencies of the power spectrum [6]. The last 
descriptor of the feature vector, Tonality, denotes whether a signal 
is tone- or noise-like and is calculated using a ratio of spectral 
flatness expressed in decibels to the reference level [7]. Applying 
these descriptors to the technique described in this paper, the 
average bit rate decreases from 9.656 to 9.641. 
 
5. Implementation 
 

Since the original algorithms described in the previous section 
were realized in C language, we chose one of the existing C-based 
hardware description language to implement the hardware-targeted 
counterpart of the source code, namely ImpulseC [8]. It is an 
extension of ANSI C with new data types, aimed at hardware 
synthesis, and new functions and directives for steering the 
hardware implementation. The code is executed in the so-called 
processes, which communicate with other processes using streams, 
signals, shared memory and semaphores. As the processes are to be 
realized in hardware, they may benefit from various ImpulseC 
optimization techniques, such as loop unrolling or pipelining. The 
first of these techniques are quite important in our system, as 
numerous computations in data-dominated algorithms are 
independent from each other. However, there are usually no enough 
resources for generating hardware for each iteration, thus some kind 
of clustering is necessary. This trade-off between the computation 
time and target chip area can be established during a series of 
experiments. This is also the path followed by the authors. After 
some code modifications, aiming at improving its hardware 
realization, we obtained our final code to be implemented in 
hardware. These modifications included division of the code into 
coarse-grain partitions to be implemented in parallel. The 
transformation is always a trade-off between the computational time 
and resource utilization, hence we analyzed the impact of each 
module onto the final realization in terms of particular functional 
blocks, such as adders, multipliers etc., estimated DSP blocks 
(present in our target FPGA chip) and number of computational 
stages. To estimate the impact of these modifications into the target 

chip parameters, we used Stage Master Explorer tool from the 
ImpulseC CoDeveloper package. This tool computes two 
parameters, Rate and Max Unit Delay (MUD), which approximate 
the performance of future hardware implementation. It is worth 
stressing that these parameters are computed instantly, in contrast 
with long-lasting hardware implementation. 

At the last stage, we used Xilinx ISE to perform an 
implementation of the core in Virtex5 FPGA device (XC5VSX50T, 
Virtex 5 ML506 Evaluation Platform) and got the following device 
utilization: 2804 Slice Registers, 7707 Slice LUTs, 2032 fully used 
LUT-FF pairs, 64 DSP48Es. 

The above assignments mean that less than 20 percent of the 
device were used, leaving more than 80% for the router and the 
remaining cores. The more detailed resource requirements and the 
elementary operators used for the implementation of the presented 
algorithms are given in Tab. 3. 

 
Tab. 3.  Number of the synthesized resource of various types 
Tab. 3.  Liczba zsyntetyzownych zasobów różnych typów 
 

Resource type Number of used resource 
Adder(s)/Subtractor(s) (8 bit) 32 
Adder(s)/Subtractor(s) (32 bit) 114 

Multiplier(s) (32 bit) 25 
Multiplier(s) (64 bit) 3 

Divider(s) (32 bit) 10 
Comparator(s) (2 bit) 1 
Comparator(s) (32 bit) 44 

 
6. Conclusions 
 

The idea of contextual split, presented in the paper, can be 
implemented in the most effective, known from the literature, 
sound compression systems, e.g. in the RLS system in five-stage 
cascade method described in [5]. It allows us, together with other 
solutions, to increase the compression level. The proposed 
algorithm is also easily implementable in hardware, leading to  
a solution requiring relatively low resources. 
 

The research work presented in this paper was supported by Polish National 
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