
Lossless Compression of Color Filter Array
Mosaic Images With Visualization via JPEG 2000

Item Type Article

Authors Hernandez-Cabronero, Miguel; Marcellin, Michael W.; Blanes,
Ian; Serra-Sagrista, Joan

Citation Hernandez-Cabronero, M., Marcellin, M. W., Blanes, I., &
Serra-Sagrista, J. (2018). Lossless Compression of Color Filter
Array Mosaic Images With Visualization via JPEG 2000. IEEE
Transactions on Multimedia, 20(2), 257-270.

DOI 10.1109/TMM.2017.2741426

Publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC

Journal IEEE TRANSACTIONS ON MULTIMEDIA

Rights © 2017 IEEE.

Download date 26/08/2022 15:33:58

Item License http://rightsstatements.org/vocab/InC/1.0/

Version Final accepted manuscript

Link to Item http://hdl.handle.net/10150/627872

http://dx.doi.org/10.1109/TMM.2017.2741426
http://rightsstatements.org/vocab/InC/1.0/
http://hdl.handle.net/10150/627872

1

Lossless Compression of

Color Filter Array Mosaic Images with

Visualization via JPEG 2000
Miguel Hernández-Cabronero∗, Member, IEEE, Michael W. Marcellin, Fellow, IEEE,

Ian Blanes, Member, IEEE, and Joan Serra-Sagristà, Senior Member, IEEE

Abstract—Digital cameras have become ubiquitous for amateur
and professional applications. The raw images captured by digital
sensors typically take the form of color filter array (CFA) mosaic
images, which must be “developed” (via digital signal processing)
before they can be viewed. Photographers and scientists often
repeat the “development process” using different parameters to
obtain images suitable for different purposes. Since the develop-
ment process is generally not invertible, it is commonly desirable
to store the raw (or undeveloped) mosaic images indefinitely.
Uncompressed mosaic image file sizes can be more than 30
times larger than those of developed images stored in JPEG
format. Data compression is thus of interest. Several compression
methods for mosaic images have been proposed in the literature.
However, they all require a custom decompressor followed by
development-specific software to generate a displayable image.
In this paper, a novel compression pipeline is proposed that
removes these requirements. Specifically, mosaic images can be
losslessly recovered from the resulting compressed files, and, more
significantly, images can be directly viewed (decompressed and

developed) using only a JPEG 2000 compliant image viewer.
Experiments reveal that the proposed pipeline attains excellent
visual quality, while providing compression performance compet-
itive to that of state-of-the-art compression algorithms for mosaic
images.

Index Terms—Image Compression, Color Filter Arrays, Bayer
CFA, JPEG 2000

I. INTRODUCTION

Digital cameras typically employ monochromatic light sen-

sors laid out in a 2D array. A color filter array (CFA), most

commonly the Bayer CFA [1], is situated between the lens and

the array of sensors, as depicted in Fig. 1. The CFA filters the

incident light so that each sensor element is excited only by

photons of one primary color (normally red, green or blue).

The resulting single component image can be thought of as a

2D mosaic of red, green and blue pixels, and is thus referred

to as a mosaic image. Note that in Fig. 1, the green pixels are

divided into two subsets labeled G and g. This is done solely

for the convenience of discussions in subsequent sections.

Like traditional film negatives, mosaic images must undergo

several transformations before they can be viewed. By analogy,

This work has been partially funded by FEDER, the Spanish Government
(MINECO) and the Catalan Government under projects TIN2015-71126-R,
TIN2012-38102-C03-03, FPU AP2010-0172 and 2014SGR-691.

∗M. Hernández-Cabronero, I. Blanes and J. Serra-Sagristà are with the
Universitat Autònoma de Barcelona, Bellaterra 08193, Spain (e-mail: mher-
nandez@deic.uab.cat).

M. W. Marcellin is with the University of Arizona, Tucson, AZ 85721-0104,
USA.

Fig. 1: Diagram of a Bayer CFA over an array of sensors.

these transformations are hereinafter referred to as the digital

development process. Several considerations crucial to the

aspect of the final image are made during digital development.

These include color, brightness and sharpness adjustments.

Photographers often test different configurations as a part of

their creative process. Similarly, scientists working with digital

cameras attached to microscopes sometimes need to modify

the development parameters to adequately display objects of

interest. Additionally, the algorithms on which the develop-

ment process is based are being actively researched [2]–[14],

so that future development processes may yield developed

images with higher visual quality, sharper edges and less

noticeable chromatic artifacts. For these and other reasons, it is

desirable to have the ability to perform future redevelopment.

Unfortunately, the development process is not generally invert-

ible. Hence, in many scenarios, it is of paramount importance

to store the original mosaic images without loss.

Virtually all modern mid-range and high-end digital cam-

eras, including a growing number of mobile phone cameras,

allow the user to store the mosaic images in a RAW for-

mat for subsequent off-camera storage and processing. One

main drawback of all existing RAW formats is the need for

development-specific software to display the captured images.

This precludes RAW (mosaic) images from being easily shared

by e-mail or posted on web pages such as on-line photo albums

and social networks.

Compression of mosaic images is desirable because it

allows more images to occupy a given amount of storage

and enables faster transmission, especially over slow channels

such as many mobile networks. Most RAW formats feature

some type of lossless compression for the mosaic images.

2

For instance, the Canon, Kodak, Nikon and Adobe digital

negative (DNG [15]) formats1 employ non-adaptive Huffman-

based compression or directly apply the lossless mode of the

JPEG [17] standard (not to be confused with the JPEG-LS [18]

or JPEG 2000 [19] standards). These approaches offer fast

implementations, but at the cost of reduced compression ratios

compared to state-of-the-art algorithms for mosaic images

from the literature. Such algorithms include those based on

subband coding [20], [21], JPEG [22]–[25], JPEG-LS [26],

[27], JPEG-XT [28], JPEG 2000 [26], [29]–[32], vector quan-

tization [33], [34] or Golomb-Rice codes [35], [36].

The best results in the literature are reported by Zhang et

al. [21], Bazhyna et al. [27], Chung et al. [36] and Kim et

al. [28]. Zhang’s method is based on the observation that one

level of discrete wavelet transform (DWT) applied to the Bayer

CFA mosaic image yields HL1, LH1 and HH1 subbands with

approximately the same average energy as the original image.

Therefore, additional DWT decomposition levels are applied

to all subbands, instead of only to LL1, as done in a typical

dyadic decomposition. Golomb-Rice coding is applied to the

resulting wavelet coefficients. On the other hand, [27], [36] and

[28] employ approaches based on pixel prediction. In [27], a

mean filter is used to interpolate green samples at all non-green

positions of the mosaic. The red channel is then predicted

using the interpolated green pixels at positions denoted by

r in Fig. 1. Similarly, the blue channel is predicted using

interpolated green pixels at positions denoted by b in Fig. 1.

A Rice code is used for the original green samples (without

interpolation) and the prediction errors of the r and b samples.

Chung’s method is based on the same scheme, but a more

sophisticated prediction algorithm is employed. Specifically,

neighbors are weighted based on their rank. In turn, the rank of

each neighbor is calculated based on how similar that neighbor

is to its closest known neighbors. Adaptive Rice codes are

then employed for the green samples and the prediction errors.

Kim’s method relies on the same idea, but employs adaptive

arithmetic coding, with 30 context models. These context

models are based on edge directionality and the first and

second moments of the previous prediction errors.

Although these methods generally yield good compression

results, none of them obviate the need for development-

specific software for displaying the images, and thus do

not enable easy sharing of mosaic images. In this work, a

novel lossless compression approach is proposed to address

the two main drawbacks of existing RAW formats. Firstly,

it allows the display of images directly from compressed

files using only a standard JPEG 2000 viewer, without the

need for any development-specific software. That is, while

specialized techniques are proposed herein for the encoding of

mosaic images, no such specialized techniques are required for

decoding/viewing the resulting compressed files. Specifically,

standard compliant JPEG 2000 viewers will automatically

decompress and carry out an appropriate development process

and display a high quality image, directly from the compressed

mosaic data. The JPEG 2000 viewer does not require any

1A working decoder for each of these formats can be found in the
DCRAW [16] software.

Fig. 2: The digital development process.

modification of any kind. Secondly, the original mosaic images

can be losslessly recovered from the compressed files, thus

preserving the ability to perform full-quality re-development

of the original mosaic images. These two goals are achieved

from a single compressed file per image, while achieving

compression ratios competitive with those of state-of-the-art

mosaic-specific image compression algorithms.

Since most modern cameras employ the Bayer CFA [37],

this work focuses on only this type of array. Nevertheless, it

is straightforward to adapt the proposed method to other CFA

types that are based on other color schemes –e.g., cyan, yellow,

green and magenta– or that employ different patterns for the

mosaic.

The remainder of this paper is structured as follows. The

most relevant aspects of the digital development process are

detailed in Section II, while the proposed method is described

in Section III and its compression performance is evaluated in

Section IV. Finally, some conclusions are drawn in Section V.

II. THE DIGITAL DEVELOPMENT PROCESS

All mosaic images need to be developed before they can

be viewed. This development process comprises two consecu-

tive stages, demosaicking and visual transformation. In the

demosaicking stage, the single-component mosaic image is

split into separate red, green and blue components. In the

visual transformation stage, these components are processed

to obtain the final displayable image. A diagram of the digital

development process is provided in Fig. 2, and its stages are

described next.

A. Demosaicking

Consider a (single-component) mosaic image having 2N ×
2M pixels, with each pixel carrying information about a single

primary color. Each such pixel is hereinafter referred to as a

red, green or blue pixel. In mosaics produced with a Bayer

CFA, there are then N × M red pixels, which correspond

to a horizontal and vertical subsampling factor of 2 and are

denoted by r in Fig. 1. Similarly, there are N×M blue pixels,

which are denoted by b in Fig. 1. Finally, there are two sets

of green pixels, each of size N ×M , denoted by g and G,

respectively. Taken together, the red and blue pixels can be

thought of as occupying the white squares on a 2N × 2M
chessboard. Similarly, the 2(N × M) green pixels occupy

the black squares on the same chessboard. The Bayer array

employs a higher density of green pixels, as compared to red

and blue pixels, due to the higher sensitivity of the human eye

to green light [37].

In the usual demosaicking process, the N × M red pix-

els from the mosaic image are interpolated to create a red

3

Fig. 3: Visual transformation of r, G, g and b components into a displayable image.

component of size 2N × 2M . Specifically, the red pixels are

copied from their original positions in the mosaic image to

the same locations in the red component. The resulting red

component then has pixels only at positions {(2i, 2j) : 0 ≤
i < N, 0 ≤ j < M}. Similarly, green and blue components

of size 2N × 2M are created from the green and blue pixels

of the mosaic image, respectively. The 3NM missing pixels

in each of the red and blue components (as well as the 2NM
missing pixels in the green component) are then obtained via

interpolation.

Several demosaicking algorithms have been recently pro-

posed [4], [6]–[8], [10]–[14] and very detailed reviews of the

state of the art can be found in the literature [8], [37]. An

alternative approach to demosaicking was described in [23].

In this approach, four components are created. Pixels denoted

as r, G, g and b are used to create the first, second, third and

fourth component, respectively. An example of this alternative

demosaicking with M = N = 2 is given by
∣

∣

∣

∣

∣

∣

∣

∣

r0,0 G0,0 r0,1 G0,1

g0,0 b0,0 g0,1 b0,1
r1,0 G1,0 r1,1 G1,1

g1,0 b1,0 g1,1 b1,1

∣

∣

∣

∣

∣

∣

∣

∣

→

∣

∣

∣

∣

r0,0 r0,1
r1,0 r1,1

∣

∣

∣

∣

∣

∣

∣

∣

G0,0 G0,1

G1,0 G1,1

∣

∣

∣

∣

∣

∣

∣

∣

g0,0 g0,1
g1,0 g1,1

∣

∣

∣

∣

∣

∣

∣

∣

b0,0 b0,1
b1,0 b1,1

∣

∣

∣

∣

.

(1)

Interpolation is then applied to each component separately to

yield four components of size 2N × 2M .

It is worth noting that, prior to interpolation, the original

mosaic image can be recovered from the output components

resulting from either approach. However, depending on the

interpolation algorithm employed, the original pixel values

may not be recoverable after interpolation. Thus, it is of

interest to consider compression of the components prior to

interpolation.

One advantage of the alternative method from [23] is that

the four components are of homogeneous size and have no

“missing values.” This usually results in superior compression

efficiency for compressors such as JPEG 2000 [21], [23]. That

is, the four components are typically more compressible than

either the three components from the usual demosaicking ap-

proach, or the (single component) original mosaic image. Con-

sequently, the alternative demosaicking approach from [23] is

discussed exclusively hereinafter.

B. Visual Transformation

Consistent with Fig. 2, the r, G, g and b components

that result from the demosaicking process are subjected to

visual transformation to produce the final developed image.

The typical steps of such a process are depicted in Fig. 3 and

described as follows:

1) Green Merging: The two green components are merged

into one component –usually by taking their arithmetic

mean [16]– without modifying the red or blue components.

2) White Balancing: The components are modified to en-

sure that gray tones are not perceived with any color tint in the

developed image. To this end, the red, green and blue com-

ponents are multiplied by camera-dependent constants kr, kg
and kb, respectively. Usually, these constants are normalized

so that kg = 1.

3) Chromatic Aberration Removal: The outputs of the

white balancing stage are the linear RGB components. They

typically present color fringes near contrasted edges [5], [9]

due to color misalignment [23]. In this stage, these color arti-

facts are corrected. A review of the most important algorithms

for chromatic-aberration removal can be found in [9].

4) Geometric Correction: Depending on the lens attached

to the digital camera, a spatial distortion may be present. Even

though the distortion is typically small, a geometric correction

of the image may be employed to correct it.

5) sRGB Transformation: The linear RGB components that

result from the steps above are transformed into a standard

color space. To do this, the three pixels (one from each of the

three color components) at each spatial position are considered

to be a vector that is multiplied by a 3× 3 matrix dependent

on the camera model and the target color space. Finally, a

gamma correction [19] is applied to adjust for any assumed

nonlinearity in the brightness of the target display device.

Often, the target color space is sRGB [38].

Some variations in the order of the steps can be introduced

in the visual transformation process without great changes in

the final image. For example, some authors employ a pipeline

in which interpolation occurs after white balancing [10],

while some software tools merge the green components after

removing the chromatic aberrations [16].

III. COMPRESSION FOR VISUALIZATION AND

RE-DEVELOPMENT

This section proposes a novel compression paradigm for

CFA images. In the proposed system, the development process

is performed as an integral part of the decompression process

of a standard-compliant viewer, without requiring any change

in the viewer. We analyzed several state-of-the-art standards

for this purpose –including JPEG, JPEG-LS, JPEG-XT, HEVC

and JPEG 2000– and concluded that only the latter offers

enough flexibility to facilitate the display of a high quality

developed image from a compressed mosaic image file. There-

fore, JPEG 2000 is considered exclusively hereinafter.

The development process performed by such a viewer is

constrained by the structure of the JPEG 2000 standard. For

this reason, the development process is fixed and its parameters

cannot be changed at viewing time. As a result, in some

cases, the quality of the rendered image may not be as

good as that obtained from a specialized digital development

process. Nevertheless, the quality obtained is typically high.

4

Fig. 4: Main stages of the proposed system using JPEG 2000 Part 1.

Furthermore, an aware (or smart) decoder can recover the

original mosaic data losslessly. A full-quality development

with arbitrary algorithms and parameters can then be per-

formed if desired.

It is worth stressing that, to the best of our knowledge, no

system that allows digital development as part of a standard

decompression process and lossless recovery of the original

mosaic data has been previously described, and that only

JPEG 2000 offers enough flexibility to meet these goals.

A. Typical JPEG 2000 Compression/Decompression Pipeline

In order to understand the proposed system, it is useful to

describe first a typical JPEG 2000 compression and decom-

pression pipeline. Some variations of the proposed method

employ a pipeline using technology from only JPEG 2000

Part 1, while other variations add the multicomponent trans-

form extensions from Part 2 of the standard [39]. The first

step in the JPEG 2000 pipeline is an optional point transform.

When such transform is employed, all components must be

of the same size so that a pixel can be defined as a vector

containing one sample from each component (all from the

same spatial location). The point transform is then applied

to each pixel independently. For Part 1 compliance, only

the reversible color transform (RCT) or the irreversible color

transform (ICT) is allowed [19]. When Part 2 extensions are

employed, a rich collection of multi-component transforms

(MCT) are available. If desired, multiple MCTs can be applied

sequentially. In this case, each such transform is called an MCT

stage. The components that result from any point transform are

then each subjected to the usual 2D JPEG 2000 compression

process. For this reason, these components are referred to

as the codestream components. The 2D JPEG 2000 encoder

that is applied to each of the codestream components consists

of a spatial DWT followed by a bit-plane arithmetic coding

process [19].

When a JPEG 2000 decoder is applied to the resulting

codestream, the previous steps are inverted in reverse order.

That is, inverse bit-plane coding is followed by the inverse

spatial DWT to obtain the codestream components. Then any

MCT, RCT or ICT is inverted as appropriate. It is worth

noting that the MCT can only be inverted by Part 2 compliant

decoders.

Both JPEG 2000 Part 1 and Part 2 compressed files may

include additional information –e.g., ICC color profiles [40],

component subsampling factors or component registration

offsets– which instruct compliant image viewers as to how

components should be displayed.

B. The Proposed System

The JPEG 2000 encoding and decoding pipeline can be

exploited so that a standard JPEG 2000 Part 1 viewer au-

tomatically carries out a development process similar to that

described in Section II. As stated previously, it is desirable

to allow for the lossless recovery of the original mosaic

data. Thus, in what follows only reversible (integer-to-integer)

transforms are considered in the JPEG 2000 pipeline.

The main stages of the proposed system are depicted in

Fig. 4 and described in Subsections III-B1 through III-B3,

and summarized in Subsection III-B4 below. Visual results

produced by this system are discussed in Subsection III-B5.

1) Demosaicking and Green Channel Merging: Given an

original mosaic image, the proposed encoding process begins

by extracting the r, G, g and b components according to the

alternative demosaicking approach from [23], as described in

Section II-A. Then the reversible Haar (RHaar) transform is

applied to the G and g components to obtain

g̃ = G+ ⌊(g −G)/2⌋ ≈ (G+ g)/2
d = g −G,

(2)

leaving the r and b components unmodified. The four com-

ponents are then permuted to yield r, g̃, b, d. Clearly, this

reversible transform provides some decorrelation between the

G and g components that could increase compression effi-

ciency. More importantly, it accomplishes the Green Merging

stage described in Section II-B. That is, the output g̃ of the

reversible transform is (within rounding) the arithmetic mean

of the G and g components.

2) JPEG 2000 Part 1 Compression: The r, g̃, b, d com-

ponents resulting from the previous step are then subjected

to compression with a standard lossless JPEG 2000 Part 1

compressor without any MCT or color transform. Note that

using a lossless compression algorithm allows perfect recovery

of the original mosaic image when desired.

When a standard JPEG 2000 Part 1 viewer is used to

display the compressed image, the bit-plane coding and spatial

DWT are inverted to recover the codestream components r,

g̃, b and d. At this point in the pipeline, an aware (non-

standard) decoder could easily recover the original r, G, g and

b components and re-create the original mosaic image (and/or

perform a sophisticated development process with any desired

parameter selections). On the other hand, a standard (unaware)

viewer would (automatically) ignore the fourth component d,

and continue the rendering process using only the first three

components r, g̃ and b.
3) Color Space Translation: As explained in Section II-B,

after the green merging stage, the data undergo a white

balancing process followed by corrections for aberrations and

geometry. The resulting linear RGB data are then remapped

to a standard color space such as sRGB. Neglecting aberration

and geometry corrections, a standard JPEG 2000 Part 1 viewer

can be made to carry out these steps (automatically) by

including carefully crafted color space information in the

5

Fig. 5: Color space conversion in JPEG 2000.

compressed file. This can be accomplished by inserting an

ICC color profile in the compressed file [19].

An ICC profile contains the necessary information to allow

a mapping of the first three codestream components to the

(linear) CIE XYZ color space [40]. A compliant viewer uses

this information to map the first three codestream compo-

nents to an appropriate color space for the target display.

Conceptually, this can be accomplished by first mapping to

linear XYZ space, and then to the target space, as shown

in Fig. 5. A particular type of ICC profile supported by

JPEG 2000 includes a 3 × 3 matrix I together with three

non-linearities. The information in the profile is used to map

the three image components to linear XYZ space as follows:

The first nonlinearity is applied to the first color channel, the

second nonlinearity to the second color channel, and the third

nonlinearity to the third color channel. Each resulting pixel

is then transformed via the 3 × 3 matrix. It is worth noting

that the design of the required nonlinearities, as well as the

matrix I , is specific to the camera used to acquire the original

mosaic image (but not to individual mosaic images from that

camera). Any white balancing required for a given camera

can be included in the matrix I . After bringing the image data

to linear XYZ, the image viewer then applies whatever color

space conversion is necessary to bring the image data to a color

space that is appropriate for the target display. A reasonable

choice for many computer monitors is the sRGB color space,

which requires multiplication by an additional 3 × 3 matrix

followed by gamma correction [19].

4) Summary: To recap, the proposed encoder splits the

mosaic image into four image components r, G, g and b. A

reversible Haar transform is applied to G and g to yield g̃
and d. The components are then ordered as r, g̃, b, d prior to

compression with JPEG2000. An ICC profile, specific to the

camera used to acquire the mosaic image, is embedded in the

resulting JPEG 2000 file. An unmodified standard JPEG 2000

Part 1 viewer can then be used to render an image (without the

use of any other tools such as an inverse Haar transform). An

aware (smart) decoder can employ an inverse Haar transform

to obtain lossless decompression of the original mosaic image.

5) Visual Results: Several images compressed with the

proposed encoder and then rendered using the JPEG 2000

compliant application kdu_render [41] are shown in Fig. 6.

It can be observed that the images are perceptually pleasing,

with correct white balance and no annoying visible artifacts.

In the interest of space, the images of this figure are displayed

at reduced size (spatially downsampled). Fig. 7 depicts a

crop from another example image at full-size, with no spatial

downscaling. Part (a) of the figure shows the results of the

proposed pipeline as described above. For the purpose of com-

parison, part (b) shows the results of the popular development-

specific software DCRAW [16]. The latter has been invoked

so that interpolation is skipped in the demosaicking step

and the image is output in the standard sRGB color space

instead of the BT.709 color space, employed by default.2 Both

kdu_render and DCRAW produce 8-bit color components.

As is obvious from the Figure, it is difficult for the naked eye

to find any difference between the two image versions. These

results suggest that the proposed system is able to successfully

complete a digital development process and produce visually

satisfactory images.

C. Interpolation Within the Pipeline

The proposed pipeline as discussed above does not include

interpolation. Thus, the resulting developed images have size

N ×M , whereas the default behavior of DCRAW and other

development software tools includes interpolation so that the

resulting developed image is of size 2N × 2M . Nevertheless,

it is also possible to include interpolation as an integral part

of the standard JPEG 2000 viewer pipeline so that an image

of size 2N × 2M is produced by default.

A straightforward approach, compliant with Part 1 of the

standard, is to define horizontal and vertical subsampling

factors of 2 for all components in the JPEG 2000 can-

vas coordinate system [19]. These factors do not affect the

compression process, but instruct compatible viewers to put

pixels from positions (i, j) of the decompressed image into

positions (2i, 2j) of the rendered image, of size 2N × 2M .

Odd rows and columns are then interpolated by the viewer.

This method is hereinafter referred to as Part 1 interpolation

(without component registration (CRG)). The main drawback

of this approach is the fact that the relative positions of

the different colors in the Bayer CFA are disregarded. For

instance, pixels r0,0, G0,0, g0,0 and b0,0 are co-located in the

interpolated image although they are registered at different

spatial positions on the sensor. A partial solution to this

problem, also Part 1 compliant [19], is to make use of the

CRG feature of JPEG 2000. With this feature, viewers can

be instructed to apply integer vertical and horizontal offsets

individually to each color component. In what follows, this is

referred to as Part 1 interpolation with CRG. Unfortunately,

this solution is not entirely satisfactory. The g̃ samples must

be assigned a single fixed offset even though they contain

information from both the G and g samples, which come from

different spatial locations on the sensor.

Sample image crops reflecting the interpolation discussion

above are provided in Fig. 8. Results for Part 1 interpolation

and Part 1 interpolation with CRG are shown for the D60

image in Figs. 8a and 8b, respectively. Results for a different

image captured by a Nikon D50 camera are shown at 400%

magnification in Figs. 8e and 8f. Also included for comparison

are the results for the same images from the development-

specific DCRAW software. These results are shown in Figs. 8d

and 8h, respectively. The reader is encouraged to examine all

these images with magnification set to exactly 100% in her/his

PDF viewer. This is to avoid the effect of any interpolation or

2The -h and -w -W -g 2.45 12.92 parameters are invoked to disable
the interpolation and to use the sRGB color space, respectively.

6

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6: Images compressed with the proposed encoder without interpolation. The original mosaic images were captured by the

Nikon (a) D40, (b) D70S, (c) D100, (d) D200, (e) D300, (f) D3100, (g) D3200, and (h) D5200 camera models.

(a) (b)

Fig. 7: Crop (385× 385) of a Nikon D60 image (a) rendered by the proposed pipeline without interpolation and (b) generated

by DCRAW without interpolation.

decimation performed by the PDF viewer. It can be observed

that, at original size, both Part 1 interpolation strategies

yield visually pleasant results, similar to those generated

with DCRAW. It can also be observed that, for the high-

contrast regions shown in the magnified image, color fringes

and other artifacts are produced by the Part 1 interpolation

(without CRG) strategy. Careful observation reveals that Part 1

interpolation with CRG reduces these artifacts and produces

slightly sharper images. Notwithstanding, artifacts are still

present, due mainly to green component misalignment.

D. Component Alignment Using JPEG 2000 Part 2

Even though the visual quality produced by the approach

described above is sufficient for many usage scenarios, it is

possible to use Part 2 of the JPEG 2000 standard to correctly

align all color components and increase the quality of the

developed images. In this interpolation strategy –hereinafter

referred to as Part 2 interpolation– the G and g components

are upsampled and aligned before merging them, thus remov-

ing the aforementioned component misalignment.

Some changes in the proposed pipeline are necessary to at-

7

(a) Part 1 without CRG (b) Part 1 with CRG (c) Part 2 (d) DCRAW

(e) Part 1 without CRG (f) Part 1 with CRG (g) Part 2 (h) DCRAW

Fig. 8: Comparison of interpolation strategies for a Nikon D60 image (top row, original size) and a Nikon D50 image (bottom

row, 400% magnification).

Fig. 9: Pipeline with correct component alignment using JPEG 2000 Part 2.

tain correct component alignment. A diagram of the enhanced

pipeline is depicted in Fig. 9. A significant difference in this

pipeline, compared to the Part 1 compliant pipeline, is that

green merging is not performed by the encoder. Rather, green

merging is performed by the image viewer using an inverse

multicomponent transform (MCT). Additionally, interpolation

is not performed by the viewer. Rather, it is performed by the

encoder by means of an inverse 5/3 DWT. Specifically, each

of the four N × M components extracted from the mosaic

image is upsampled by considering it to be the LL subband of

a discrete wavelet decomposition. Three additional subbands

LH , HL and HH are created, each having all coefficients

equal to zero. One level of inverse 5/3 DWT is then performed

to obtain an interpolated component of size 2N × 2M . In

order to properly align component g, a novel modification of

the usual 5/3 DWT is proposed. A full description of this

transform is provided in the appendix. As before, r and b can

be aligned via CRG offsets. All four interpolated components

are then subjected to compression using a standard JPEG 2000

Part 2 encoder, with no point transform (RCT or MCT)

employed. By construction, when the (appropriate) spatial 5/3

DWT is applied to the r, G, g and b components, the subbands

of the first decomposition level (e.g., LH1, HL1 and HH1)

are all identically zero. The JPEG 2000 bit-plane encoder is

able to encode these all zero subbands very efficiently. For

this reason, the resulting file size is virtually unchanged by the

inclusion of interpolation. Specifically, the bit-rate required for

lossless compression is increased by only about 0.001 bits per

pixel per component.

As mentioned previously, no MCT is performed during

encoding. However, consistent with Fig. 9, the headers of the

compressed file are modified to include an MCT stage which

instructs a JPEG 2000 Part 2 viewer to perform an inverse

MCT that acts to merge the green components. Specifically,

when the resulting file is opened with a JPEG 2000 Part 2

viewer, the bitplane coding and the spatial DWT are inverted,

followed by the inverse MCT. The MCT is constructed so that

it performs the RHaar transform and the permutation described

in Section III-B. White balancing and transformation to the

sRGB color space are applied via ICC color profile. A stan-

dard compliant JPEG 2000 Part 2 viewer will automatically

decompress and display an image of size 2N × 2M , with all

color components appropriately registered. An aware decoder

can recover the original mosaic data losslessly by performing

one less than the number of spatial inverse wavelet transform

levels indicated by the code stream header, and omitting the

8

TABLE I: Average lossless compression results in bpppc (lower is better) for real Bayer CFA mosaic images.

Vendor # Images
Proposed encoder RKLT + JPEG-LS JBIG2 HEVC JPEG-XT
Part 1 Part 2 JPEG 2000 [19] [18] [42] [43] [44]

Canon 20 7.295 7.319 7.260 7.120 7.497 8.105 7.847
Fuji 20 8.718 8.725 8.572 8.530 8.663 10.681 9.291
Nikon 20 7.264 7.309 7.205 7.187 7.627 8.328 7.851
Olympus 20 6.482 6.516 6.353 6.362 6.793 7.006 7.030
Sony 20 6.169 6.176 6.099 6.094 6.380 6.522 6.737

All vendors 100 7.045 7.068 6.963 6.927 7.264 7.905 7.612

green merging transform.

Crops of the D60 and D50 images, developed with the

proposed Part 2 interpolation strategy, are shown in Figs. 8c

and 8g, respectively. It can be observed that the D60 image

crop shown at original size is very similar to those rendered us-

ing the DCRAW or Part 1 interpolation strategies. Even though

some differences are evident among the D60 images, when

compared closely, side by side, all images are generally of high

quality and are free from visually annoying artifacts. Based

on observations of these crops and of further images provided

as supplementary materials, it is reasonable to conclude that

the proposed pipeline yields visually pleasing images under

normal viewing conditions. In order to see the improvements

of Part 2 interpolation over Part 1 strategies, magnified high-

contrast regions are shown in Fig. 8g. As can be seen there,

Part 2 interpolation reduces the color aberrations and jagged

edges produced by the Part 1 interpolation strategies. These

improvements result in clearer details and a sharper overall

look, as is readily apparent upon examination of the letters

”BU” that appear as text along the top of the images in Figs. 8e

and 8f. The remaining visual differences between the Part 2

approach and DCRAW (Fig. 8h) are due to the more so-

phisticated interpolation algorithm employed by the latter [2],

which removes chromatic aberrations (due to the camera) and

produces sharper edges. To the best of our knowledge, existing

chromatic aberration techniques are not reversible [4]–[10],

and thus, not admitted by the framework of the JPEG 2000

standard. Despite the fact that not all chromatic aberrations are

removed by the proposed system, we emphasize again that

the system provides automatic developing and rendering of

mosaic images using only a standard viewer. If higher quality

rendering is desired, an aware decoder can always decompress

the original Bayer data losslessly and render them via any

current or future digital development process.

IV. COMPRESSION PERFORMANCE

A. Lossless Compression Performance

Many algorithms have been developed for mosaic images.

While these algorithms are suitable for use on real mosaic

images, in many cases, results have been reported only for

simulated mosaic images. These simulated mosaic images

were obtained by downsampling fully developed 8-bit sRGB

images [20]–[22], [26]–[28], [35], [36], [45]. This approach

is reasonable, but not ideal since the development process

described in Section II cannot be inverted perfectly [10],

[30]. Thus, simulated mosaic images may contain statistically

significant differences from real mosaic images.

In our work, results are presented for the common simulated

mosaic images for the purpose of comparison with results from

the literature. Additionally, we report results for 100 real Bayer

CFA images.3 Each real mosaic image was produced with

a different camera model by Canon, Fuji, Nikon, Olympus

or Sony. Image dimensions range from 1440 × 1064 to

6036 × 4020, and samples are stored using 10 bps, 12 bps

or 14 bps. The images have been selected to depict a variety

of scene types, illumination, and color and edge complexity.

Thumbnails for 8 of these images were shown previously in

Fig. 6. Compressed files obtained by applying the proposed

encoders to each of these CFA images can be directly dis-

played using the Kakadu kdu_show tool, or decompressed

directly to 8 bps sRGB image files using the kdu_render

tool [41]. Sample original images, their corresponding com-

pressed files (for both the Part 1 and Part 2 versions of the

proposed encoder) and all implementation details (including

the ICC profiles, etc.) are available as supplementary content

at http://ieeexplore.ieee.org.

1) Real Mosaic Images: Lossless compression results for

the proposed encoder (using each of the two proposed interpo-

lation strategies) are provided in Table I. The results presented

in the table include all overhead due to the definition of the

required ICC color profiles, CRG offsets and MCT stages.

The bit rate for a given image is calculated as the size of the

compressed file in bits, divided by the number of pixels in

the original mosaic image. This quantity has units of bits per

pixel (bpp). The same numerical result would be obtained by

dividing the file size in bits by the number of pixels in each

of the four components extracted from the mosaic, with the

resulting quantity then divided by 4. In light of this, the bit

rate can also be interpreted as having units of bits per pixel per

component (bpppc) with respect to the four-component image.

We emphasize that we avoid defining the bit rate according to

the size of the developed image, as displayed by the viewer, as

this size differs depending on the method employed. Average

bit rates are reported over certain collections of images in the

table. These averages are computed as the sum of the file sizes

(in bits) of the compressed files divided by the sum of the pixel

counts of the corresponding mosaic images. This is in contrast

to averaging the bit rates from the individual images.

For comparison, results for several other image compres-

sion algorithms are also reported in Table I. The input to

each algorithm is the four component image extracted from

the mosaic without interpolation. While other demosaicking

3Downloaded from https://rawsamples.ch/index.php/en/

http://ieeexplore.ieee.org
https://rawsamples.ch/index.php/en/

9

TABLE II: Average lossless compression results in bpppc for

(8-bit) developed images as produced by DCRAW, and for the

corresponding mosaic images.

Algorithm DCRAW Mosaic

RKLT + JPEG 2000 [19] 8.536 6.963
JPEG-LS [18] 8.673 6.927
JBIG2 [42] 9.892 7.264
HEVC (H.265) [43] 10.256 7.905
JPEG-XT [44] 9.734 7.612

Proposed (Part 1) – 7.045
Proposed (Part 2) – 7.068

strategies may be used, for consistency, the four-component

demosaicked images are used throughout this paper.

Algorithms employed in the comparison include JPEG-

LS [18], JBIG2 [42], HEVC (H.265) [43], JPEG-XT [44] and

JPEG 2000 using the four component reversible Karhunen-

Loève Transform (RKLT). As discussed previously, the results

for ordinary JPEG 2000 Part 1 with no interpolation and no

exploitation of intercomponent correlation are essentially the

same as those reported for the proposed Part 2 encoder, and

so are not reported separately.

As can be seen in Table I, the best lossless compression

performance is produced by JPEG-LS followed closely by

the JPEG 2000 schemes. Averaged over all images, JPEG-

LS and JPEG 2000 with the RKLT yield essentially identical

performance. Specifically, they are within 0.04 bpppc or 0.52%

of each other. The proposed Part 1 and Part 2 encoders

introduce, respectively, a loss of 0.082 bpppc (1.2%) and

0.105 bpppc (1.5%) as compared to JPEG 2000 with the

RKLT. This suggests that the proposed encoders provide self-

developing capabilities with a negligible penalty in compres-

sion performance.

Recall that the proposed Part 1 encoder includes a reversible

Haar transform which serves to merge the two green compo-

nents. As a side benefit, a small compression gain is obtained

from the resulting exploitation of intercomponent correlation

between the green components.4

The results for JPEG 2000 with the RKLT were included

in Table I primarily to give an indication of further gains

that might be achieved by employing point transforms to

exploit intercomponent dependence. As discussed above, these

improvements are insignificant. Improvements obtained when

using the RKLT with other algorithms listed in the table are

similar, with one notable exception. For HEVC, use of the

RKLT results in a significant deterioration in compression per-

formance. Additional point transforms (including the RHaar

transform, the RCT and the 5/3 DWT) were tested and found

to yield even smaller improvements. Indeed, the RCT actually

causes a slight deterioration in compression performance for

all algorithms tested.

2) Developed Images: As discussed in Section I, mosaic

images are traditionally developed with the resulting images

4We emphasize that even though the Haar transform is normally considered
a JPEG 2000 Part 2 tool, the proposed system is still Part 1 compliant. This
can be seen by noting that the Haar transform is used as a preprocessing step
prior to a JPEG 2000 Part 1 encoder, and that no inverse Haar transform is
used in the decoder.

TABLE III: Average lossless compression results in bpppc for

6 simulated mosaic images. The Part 1 and Part 2 columns

correspond to the proposed encoders.

Image [21] [36] [27] [28] Part 1 Part 2

Boat 5.028 4.881 4.984 4.793 5.170 5.424
Fence 4.823 4.711 4.886 4.649 4.663 5.238
Landscape 6.243 6.138 6.279 6.072 6.047 6.817
Lighthouse 4.867 4.803 4.864 4.699 4.181 5.268
Wall 5.650 5.478 5.750 5.438 6.044 6.205
Windows 5.725 5.570 4.984 5.506 6.270 6.431

Average 5.389 5.264 5.291 5.193 5.396 5.897

then subjected to compression. For the purpose of comparison

with the proposed pipeline, all 100 mosaic images were

developed with DCRAW. The resulting images were stored

using 8 bits per sample and then compressed with JPEG 2000,

JPEG-LS, JBIG2, HEVC and JPEG XT. Average results for

each algorithm are provided in Table II. Average results for

the corresponding mosaic images are repeated from Table I for

ease of comparison.5 As is obvious from the table, compress-

ing mosaic images prior to development produces superior

results compared to compressing developed images. This result

holds despite the fact that the mosaic images have a bit depth

of 12 to 14, while the developed images have a bit depth of

only 8. This behavior can be attributed to redundancy intro-

duced by the interpolation performed during the development

process, which is not completely removed during compression.

This is consistent with previous work [20]–[27], [29]–[36],

[45].

3) Simulated Mosaic Images: We conclude this section

with compression results for simulated mosaic images to

provide a comparison to algorithms from the literature that

were developed specifically for compression of CFA mosaic

images [21], [27], [28], [36] (is in contrast to the standard

image compression schemes employed in the comparisons

above). In these four publications, results were provided for 6

common color images (Boat, Fence, Landscape, Lighthouse,

Wall and Windows) of size 512 × 768. These images were

downsampled to obtain simulated mosaic images, which were

then compressed. Results for applying this procedure with

our proposed Part 1 and Part 2 encoders are provided in

Table III along with results originally reported in [21], [27],

[28], [36]. Interestingly, the results indicate that the Part 2

encoder is about 0.5 bpppc worse than the Part 1 encoder

for the simulated mosaic images. This is in contrast to the

results for real mosaic images presented in Table I, where

the difference is less than 0.02 bpppc. The larger difference

for the simulated mosaic images is due to a high degree of

correlation that exists between the green components of the

simulated images. This correlation is exploited by the Haar

transform that is used to merge the green components in the

Part 1 encoder. Other results from Table III indicate that the

four mosaic-specific algorithms yield average results about

5As discussed above, bit rates are calculated using the number of pixels
in the corresponding mosaic images, rather than the number of pixels in the
developed images. This always yields a fair comparison (i.e., smaller bit rates
always imply smaller file sizes) by avoiding the issue of different development
processes that may yield different final image sizes. This also explains why
the resulting bit rates can be larger than 8 bits per sample.

10

0.01 bpppc, 0.13 bpppc, 0.10 bpppc and 0.20 bpppc better

than the proposed Part 1 encoder, respectively. It is possible

that these small differences may be bridged by exploiting

further correlation that may exist between other components

in the simulated images. This is not explored further as such

correlations do not seem to exist in real mosaic images.6

Everything considered, it can be concluded that the pro-

posed encoders produce competitive lossless compression re-

sults as compared to those of both standard and mosaic-

specific compressors.

B. Rate-Distortion Performance

As discussed throughout this paper, images compressed by

the proposed encoder are fully JPEG 2000 compliant. Hence, it

is possible to use any of the scalability features of the standard,

including scalability by resolution, spatial region, and quality.

This is particularly useful in the context of a JPIP client/server

scenario [46] where large images can be viewed remotely

using zoom, pan and quality progressivity. In this context,

it is interesting to explore the rate-distortion performance

of the proposed system under progressive (lossy-to-lossless)

transmission. To this end, a given mosaic image was losslessly

compressed with the proposed Part 2 encoder. The resulting

(single) compressed file was then decompressed/rendered at

increasing target bitrates to render a series of 24-bit (eight

bit per component) sRGB images of increasing qualities. The

quality of these images was then evaluated (with reference to

an “original” sRGB image) via the peak signal-to-noise ratio

(PSNR) and the structural similarity index (SSIM [47]). The

following definition of the PSNR between an original image

I and a reconstructed image Î was used:

PSNR(I, Î) = log
10

max(I)2

MSE(I, Î)
, (3)

where max(I) = 255 is the maximum possible pixel value of

I and MSE(I, Î) is the mean squared error, defined as

MSE(I, Î) =
∑

x,y,z

|Ix,y,z − Îx,y,z|
2. (4)

SSIM results were obtained using the Matlab 2016a ssim

routine. This procedure was repeated for each of the original

mosaic images.

The PSNR and SSIM for each target bitrate, averaged over

all 100 images, is shown in Fig. 10a and Fig. 10b, respectively,

for two different choices of “original” sRGB images. The

first such choice is the image obtained from full (lossless)

decompression and rendering via the Part 2 pipeline shown

in Fig. 9. The second choice for “original” image is obtained

by rendering via DCRAW. In what follows, these are referred

to as Original1 and Original2, respectively. It is worth noting

that Original1 corresponds to the imagery depicted in Figs. 8c

and 8g, while Original2 corresponds to the imagery depicted

in Figs. 8d and 8h.

6Another anomaly associated with the simulated images is that the Light-
house image, when compressed with the proposed pipeline, contains sig-
nificant annoying chromatic artifacts. No such extreme artifacts have been
observed over a wide variety of real CFA images.

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

Bitrate (bpppc)

20.00

25.00

30.00

35.00

40.00

P
S
N

R
 (

d
B

)

Proposed vs Original1
Proposed vs Original2
JPEG-LS vs Original2

(a)

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

Bitrate (bpppc)

0.70

0.75

0.80

0.85

0.90

0.95

1.00
S
S
IM

(b)

Fig. 10: Average rate-distortion results for the proposed Part 2

encoder. (a) PSNR results; (b) SSIM [47] results.

As expected, the PSNR and the SSIM both increase with bit

rate for both choices of original image. More specifically, the

PSNR with respect to Original1 increases rapidly while that

for Original2 reaches a limit of about 32 dB, corresponding to

the differences observed between Figs. 8g and 8h. Although

not shown in the figure, the PSNR with respect to Original1
approaches infinity as the bit rate approaches that required for

lossless decompression of the original mosaic data. Consistent

with this, the SSIM approaches its maximum value of 1 with

respect to Original1 as the target bitrate is increased, while

converging to a lower value of about 0.85 with respect to

Original2.

Rate-distortion results for the mosaic-specific methods [21],

[27], [28], [36] cannot be provided because they are purely

lossless algorithms. Among the algorithms compared in Ta-

11

TABLE IV: Average execution time in seconds for lossless compression of real Bayer CFA mosaic images.

Vendor # Images
Proposed encoder RKLT + JPEG-LS JBIG2 HEVC JPEG-XT
Part 1 Part 2 JPEG 2000 [19] [18] [42] [43] [44]

Canon 20 1.32 1.60 1.38 2.00 3.07 57.41 3.56
Fuji 20 1.20 1.52 1.23 1.68 2.76 47.83 3.33
Nikon 20 1.10 2.05 1.58 2.35 3.61 66.98 4.10
Olympus 20 1.20 1.80 1.22 1.77 2.63 51.20 2.95
Sony 20 1.77 2.49 1.92 3.04 4.42 87.83 4.94

All vendors 100 1.32 1.75 1.47 2.17 3.30 62.25 3.78

ble III, JPEG-LS provides the best lossless performance.

Results for lossy compression via JPEG-LS are included in

Figures 10a and 10b. Since JPEG-LS does not provide any

type of scalability, the results in the figures were obtained

by compressing and decompressing each image repeatedly

employing different values of the near lossless parameter

d [18]. As can be observed, JPEG-LS provides lower PSNR

and SSIM results than the proposed method at all tested

bitrates.

C. Complexity

The complexity of each proposed encoder is essentially the

same as that of a standard JPEG 2000 encoder. In the proposed

Part 1 encoder, the reversible Haar transform is followed by

a standard JPEG 2000 Part 1 encoder. The complexity of this

Haar transform is linear (O(N)) in the number of pixels in the

image, and is actually lower than the complexity of the RCT

which would normally be used to compress color imagery with

JPEG 2000, but is omitted by the proposed Part 1 encoder.

In the proposed Part 2 scheme, one level of inverse DWT is

applied prior to JPEG 2000 compression. This also introduces

additional complexity that is only linear in the number of

pixels. In the Add MCT stages, the headers of the compressed

file are modified to include the required Green Merge and

Permute inverse MCT. The overhead due to this stage does

not depend on the number of pixels of the image (O(1)). By

construction, the decoders for both schemes are unmodified

JPEG 2000 decoders, and thus have no additional complexity.

Table IV provides execution times for all algorithms con-

sidered in Table I. Results were obtained on a dedicated

Intel Core i7-6600U CPU @ 2.60 GHz machine with 16 GB

of RAM. The values in this table must be interpreted with

caution. The software implementations used in gathering

this information may reflect dramatically different levels of

optimization, and thus, may not accurately reflect inherent

complexity differences between the algorithms. Nevertheless,

the execution times indicate that the proposed algorithms entail

reasonable levels of complexity. According to the table, the

proposed Part 1 encoder is the fastest algorithm. This is due

primarily to the highly optimized software development toolkit

(Kakadu [41]) employed in our implementation. We note that

the Part 2 encoder includes our own (much less optimized)

implementation of the inverse DWT used for upsampling.

Execution times for [21], [27], [28], [36] and for the

proposed encoders are provided in Table V. We note here that

results for [21], [28] were reported in the original papers as

a fraction of the compression time of standard JPEG-LS or

TABLE V: Average execution time in seconds for 6 simulated

mosaic images. The Part 1 and Part 2 columns correspond to

the proposed encoders.

Image [21] [36] [27] [28] Part 1 Part 2

Boat 0.061 0.118 0.135 0.032 0.111 0.233
Fence 0.109 0.202 0.215 0.025 0.100 0.220
Landscape 0.046 0.085 0.108 0.030 0.121 0.338
Lighthouse 0.043 0.074 0.103 0.028 0.104 0.374
Wall 0.046 0.079 0.110 0.034 0.109 0.243
Windows 0.054 0.099 0.124 0.038 0.147 0.274

Average 0.059 0.113 0.132 0.034 0.115 0.280

JPEG 2000. Since implementations of [21], [28] are not avail-

able, we have calculated the values in Table V by measuring

execution times for JPEG-LS and JPEG 2000 and multiplying

by the reported fractions. To provide results for [27], we

have implemented the prediction algorithm described in that

publication. Results for [36] have been obtained with the

authors’ implementation.7 Results were obtained on the same

dedicated machine as above. As before, considerable caution

should be used in the interpretation of these execution times.

However, it is safe to say that the algorithms reported in [21]

and [28] have significantly lower complexity than the proposed

system. This can be explained by the low-complexity entropy

coders employed by [21], [28] rather than the context-based

arithmetic coding in JPEG 2000.

V. CONCLUSION

Mosaic images captured by digital sensors need to be devel-

oped before they can be displayed. The development process

is not reversible and, in practice, photographers and scientists

often develop images several times using different parameter

choices. Hence, it is often desirable to store the original

mosaic images losslessly. Since uncompressed mosaic images

are more than 30 times larger than developed images stored in

JPEG format, data compression is a valuable approach to cope

with the storage and transmission of mosaic images. Although

several compression algorithms have been proposed in the

literature, they require specific decoders and development-

specific software tools to visualize the compressed mosaic

images. In this paper, a novel compression approach based

on JPEG 2000 is proposed. Unlike existing methods, the com-

pressed files produced by this method can be directly displayed

using any JPEG 2000 standard-compliant viewer without

need for additional development software. In terms of visual

7Available at http://www.eie.polyu.edu.hk/∼enychan/.

http://www.eie.polyu.edu.hk/~enychan/

12

quality, the proposed method is comparable to development-

specific software. In terms of lossless compression perfor-

mance, results are within 0.20 bpppc of the best published

algorithms. A useful property of the proposed pipeline is that

compressed images can be rendered in a progressive fashion,

again using only a standard JPEG 2000 viewer. In summary,

the proposed technique is the first to include the development

process as an intrinsic part of its compression/decompression

pipeline and offers competitive visual quality and compression

performance. It is worth reiterating that the original Bayer

data are stored losslessly in the proposed codestream format.

Accordingly, in addition to the high quality rendering that can

be performed by any JPEG 2000 standard decoder, an aware

decoder can recover the original Bayer data and perform any

desired rendering algorithm.

APPENDIX

MODIFIED DWT FOR INTERPOLATION

The DWT-based interpolation methods employed by the

proposed Part 2 pipeline are described in this appendix.

As described in Section III-D, components r, G and b are

interpolated via the standard inverse 5/3 DWT, while the g
component is interpolated via a modified inverse 5/3 DWT.

The main contribution of this appendix is the description of the

modified inverse 5/3 DWT. For completeness, and for ease in

describing the modified transform, we begin with a description

of the standard inverse transform.

Since the DWT as supported by JPEG 2000 is separable,

it suffices to describe the lifting network used to implement

the 1D inverse transform. Let y[i] be the i-th sample of the

interleaved sequence to be transformed. In this sequence, the

samples at even positions (i.e., samples having even indices)

are low-pass, while the samples at odd positions are high-

pass. The standard inverse transform first updates the samples

at even positions as [19]:

y[2n]← y[2n]−

⌊

y[2n− 1] + y[2n+ 1]

4
+

1

2

⌋

. (5)

The samples at odd positions are then updated as:

y[2n+ 1]← y[2n+ 1]−

⌊

−
y[2n] + y[2n+ 2]

2
+

1

2

⌋

≈ y[2n+ 1] +
y[2n] + y[2n+ 2]

2
.

(6)

Recall that the interpolation process described in Sec-

tion III-D treats data to be interpolated as being low-pass,

introduces zeros in place of high pass data, and performs

one level of inverse DWT. In light of this (and neglecting

rounding), the resulting interpolator is depicted in Fig. 11. In

this figure, the values of x[i] at the input (top) of the lifting

network represent the data to be interpolated. The values at the

output (bottom) represent the interpolated data. Solid lines in

the figure indicate multiplication by the adjacent value, while

dashed lines indicate that a given sample is not updated in the

corresponding lifting step.8 As can be observed at the output

8In Fig. 11, the second multiplier from the left in the first lifting step
is −1/2 rather than −1/4 to account for image boundary conditions [19].
Similarly, in Fig. 12, the second multiplier from the left in the fifth lifting
step is 1 rather than 1/2.

Fig. 11: Interpolation using the standard inverse 5/3 DWT.

Fig. 12: Interpolation using the modified inverse 5/3 DWT.

of the interpolator, the original samples are placed in even

positions while odd positions are interpolated as the average of

the two nearest neighbors. When extended to two dimensions

in a separable fashion, the resulting interpolator places the

original samples at positions (2i, 2j), with interpolated values

at all other positions.

As also described in Section III-D, a modified version of

the inverse transform is employed for the g component. This

modified transform is constructed so that the original samples

are placed at positions (2i+1, 2j+1). In the modified (inverse)

13

transform, the first three lifting steps are defined as

y[2n]← y[2n]− y[2n+ 1]

y[2n+ 1]← y[2n+ 1] + y[2n]

y[2n]← y[2n]− y[2n+ 1].

(7)

It is straightforward to verify that these three steps swap

the samples at odd and even positions (with a sign change).

Specifically, after these three steps, y[2n + 1] is equal to the

original value of y[2n], while y[2n] is equal to the original

value of −y[2n+1]. The next two steps are the same as those

employed by the standard 5/3 inverse transform, but update

first the samples at even positions and then odd positions

(rather than first odd and then even, as in the standard

transform):

y[2n+ 1]← y[2n+ 1]−

⌊

y[2n] + y[2n+ 2]

4
+

1

2

⌋

y[2n]← y[2n]−

⌊

−
y[2n− 1] + y[2n+ 1]

2
+

1

2

⌋

≈ y[2n] +
y[2n− 1] + y[2n+ 1]

2
.

(8)

Again, neglecting rounding, the resulting interpolator is de-

picted in Fig. 12. As before, the samples at odd positions are

zero by construction and x[i] denotes the i-th original sample

before interpolation. As desired, the original samples appear

at odd positions in the output, while the even positions contain

the interpolated values.
It is worth noting that the JPEG 2000 standard requires

the first lifting step of any forward transform –i.e., the last
step of the corresponding inverse transform– to update odd
positions. Therefore, a null (do nothing) step is included at
the end of the lifting network for the inverse transform in
Fig. 12. The following parameters can be employed with
Kakadu kdu_compress to apply the modified DWT to the
g component:

Ckernels=ATK

Catk:C2=3

Kreversible:I3=yes

Kextension:I3=SYM

Ksteps:I3={0,0,0,0},{2,-1,1,1},{2,0,2,2},

{1,0,0,0},{1,0,0,0},{1,0,0,0}

Kcoeffs:I3=-0.5,-0.5,0.25,0.25,1,-1,1

REFERENCES

[1] B. Bayer, “Color imaging array,” US Patent 3,971,065, Jul., 1976.

[2] K. Hirakawa and T. Parks, “Adaptive homogeneity-directed demosaicing
algorithm,” IEEE Trans. Image Process., vol. 14, no. 3, pp. 360–369,
Mar. 2005.

[3] L. Fang, O. C. Au, Y. Chen, A. K. Katsaggelos, H. Wang, and X. Wen,
“Joint Demosaicing and Subpixel-Based Down-Sampling for Bayer
Images: A Fast Frequency-Domain Analysis Approach,” IEEE Trans.

Multimedia, vol. 14, no. 4, pp. 1359–1369, Aug. 2012.

[4] G. Jeon and E. Dubois, “Demosaicking of noisy Bayer-sampled color
images with least-squares luma-chroma demultiplexing and noise level
estimation.” IEEE Trans. Image Process., vol. 22, no. 1, pp. 146–56,
Jan. 2013.

[5] J. Chang, H. Kang, and M. G. Kang, “Correction of axial and lateral
chromatic aberration with false color filtering.” IEEE Trans. Image

Process., vol. 22, no. 3, pp. 1186–98, Mar. 2013.

[6] Y.-C. Fan, Y.-F. Chiang, and Y.-T. Hsieh, “Constant-Hue-Based Color
Filter Array Demosaicking Sensor for Digital Still Camera Implemen-
tation,” IEEE Sensors J., vol. 13, no. 7, pp. 2586–2594, Jul. 2013.

[7] X. Chen, G. Jeon, and J. Jeong, “Voting-Based Directional Interpolation
Method and Its Application to Still Color Image Demosaicking,” IEEE

Trans. Circuits Syst. Video Technol., vol. 24, no. 2, pp. 255–262, Feb.
2014.

[8] J. Duran and A. Buades, “Self-similarity and Spectral Correlation Adap-
tive Algorithm for Color Demosaicking.” IEEE Trans. Image Process.,
vol. 23, no. 9, pp. 4031–4040, Jul. 2014.

[9] J. T. Korneliussen and K. Hirakawa, “Camera processing with chromatic
aberration.” IEEE Trans. Image Process., vol. 23, no. 10, pp. 4539–52,
Oct. 2014.

[10] D. Khashabi, S. Nowozin, J. Jancsary, and A. W. Fitzgibbon, “Joint De-
mosaicing and Denoising via Learned Nonparametric Random Fields.”
IEEE Trans. Image Process., vol. 23, no. 12, pp. 4968–4981, Dec. 2014.

[11] Y. Monno, D. Kiku, M. Tanaka, and M. Okutomi, “Adaptive residual
interpolation for color image demosaicking,” in IEEE International

Conference on Image Processing (ICIP), Sep. 2015, pp. 3861–3865.
[12] X. Chen, L. He, G. Jeon, and J. Jeong, “Multidirectional Weighted Inter-

polation and Refinement Method for Bayer Pattern CFA Demosaicking,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 25, no. 8, pp. 1271–1282, Aug. 2015.

[13] H. Siddiqui, K. Atanassov, and S. Goma, “Hardware-friendly univer-
sal demosaick using non-iterative map reconstruction,” in 2016 IEEE

International Conference on Image Processing (ICIP), Sep. 2016, pp.
1794–1798.

[14] C. Zhang, Y. Li, J. Wang, and P. Hao, “Universal Demosaicking of
Color Filter Arrays,” IEEE Trans. Image Process., vol. 25, no. 11, pp.
5173–5186, Nov 2016.

[15] Digital Negative (DNG) Specification, Adobe Std., Rev. 1.4.0.0, June
2012.

[16] D. Coffin. DCRAW - Dave Coffin’s raw photo decoder. [Online].
Available: http://www.cybercom.net/∼dcoffin/dcraw/

[17] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compres-

sion Standard. Springer, 1993.
[18] JPEG-LS, ISO/IEC Std. IS 14 495-1, 14 495-2, 1998.
[19] D. S. Taubman and M. W. Marcellin, JPEG2000: Image compression

fundamentals, standards and practice. Kluwer Academic Publishers,
Boston, 2002.

[20] T. Toi, M. Ohta, S. Systems, and I. Technology, “A subband coding
technique for image compression in single CCD cameras,” IEEE Trans.

Consum. Electron., vol. 45, no. 1, pp. 176–180, 1999.
[21] N. Zhang and X. Wu, “Lossless Compression of Color Mosaic Images,”

IEEE Trans. Image Process., vol. 15, no. 6, pp. 1379–1388, 2006.
[22] S.-Y. Lee and A. Ortega, “A novel approach of image compression in

digital cameras with a Bayer color filter array,” in Proceedings of the

IEEE International Conference on Image Processing, 2001, pp. 482–
485.

[23] C. C. Koh, J. Mukherjee, and S. K. Mitra, “New Efficient Methods of
Image Compression in Digital Cameras with Color Filter Array,” IEEE

Trans. Consum. Electron., vol. 49, no. 4, pp. 1448–1456, 2003.
[24] A. Bazhyna, K. Egiazarian, S. K. Mitra, and C. C. Koh, “A Lossy

Compression Algorithm for Bayer Pattern Color Filter Array Data,” in
International Symposium on Signals, Circuits and Systems, vol. 2, Jul.
2007, pp. 1–4.

[25] H. Cuce, A. Cetin, and M. Davey, “Compression of Images in CFA
Format,” in 2006 International Conference on Image Processing, 2006,
pp. 1141–1144.

[26] X. Xie, G. Li, X. Li, Z. Wang, C. Zhang, D. Li, and L. Zhang, “A
New Approach for Near-lossless and Lossless Image Compression with
Bayer Color Filter Arrays,” in Proceedings of the Third International

Conference on Image and Graphics (ICIG), 2004, pp. 1–4.
[27] A. Bazhyna and K. Egiazarian, “Lossless and near lossless compression

of real color filter array data,” IEEE Trans. Consum. Electron., vol. 54,
no. 4, pp. 1492–1500, 2008.

[28] S. Kim and N. I. Cho, “Lossless Compression of Color Filter Array
Images by Hierarchical Prediction and Context Modeling,” IEEE Trans.

Circuits Syst. Video Technol., vol. 24, no. 6, pp. 1040–1046, Jun. 2014.
[29] E. Atsumi, “Digital camera system built on JPEG2000 compression and

decompression,” SPIE Proceedings, vol. 5017, pp. 254–262, 2003.
[30] S. Battiato, A. R. Bruna, A. Buemi, and A. Castorina, “Analysis and

Characterization of JPEG 2000 Standard for Imaging Devices,” IEEE

Trans. Consum. Electron., vol. 49, no. 4, pp. 773–779, 2003.
[31] B. Parrein, M. Tarin, and P. Horain, “Demosaicking and JPEG2000

compression of microscopy images,” in Proceedings of the International

Conference on Image Processing, 2004, pp. 521–524.
[32] R. Lukac and K. Plataniotis, “Single-Sensor Camera Image Compres-

sion,” IEEE Transactions on Consumer Electronics, vol. 52, no. 2, pp.
299–307, May 2006.

http://www.cybercom.net/~dcoffin/dcraw/

14

[33] S. Battiato, A. Buemi, L. D. Torre, and A. Vitali, “A fast vector
quantization engine for CFA data compression,” in Proceedings of

IEEE-EURASIP Workshop on Non Linear Signal and Image Processing

(NSIP), 2003.
[34] A. Bruna, F. Vella, A. Buemi, and S. Curti, “Predictive differential

modulation for CFA compression,” in Proceedings of the 6th Nordic

Signal Processing Symposium (NORSIG), 2004, pp. 101–104.
[35] N.-X. Lian, L. Chang, V. Zagorodnov, and Y.-P. Tan, “Reversing

demosaicking and compression in color filter array image processing:
performance analysis and modeling.” IEEE Trans. Image Process.,
vol. 15, no. 11, pp. 3261–78, Nov. 2006.

[36] K.-h. Chung and Y.-h. Chan, “A Lossless Compression Scheme for
Bayer Color Filter Array Images,” IEEE Trans. Image Process., vol. 17,
no. 2, pp. 134–144, 2008.

[37] X. Li, B. Gunturk, and L. Zhang, “Image demosaicing: a systematic
survey,” SPIE Proceedings, vol. 6822, pp. 68 221J–1–68 221J–15, 2008.

[38] M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta. A Standard
Default Color Space for the Internet: sRGB. November 1996. [Online].
Available: http://www.color.org/srgb.xalter

[39] JPEG 2000 image coding system: Extensions, ISO/IEC Std. 15 444-2,
2004.

[40] Image technology colour management – Architecture, profile format and

data structure, International Color Consortium (ICC) Std. ICC.1:2010-
12, 2010. [Online]. Available: http://www.color.org/icc specs2.xalter

[41] Kakadu JPEG2000 software. [Online]. Available: http://www.
kakadusoftware.com

[42] JBIG2, ISO/IEC Std. IS 11 544, 1993.
[43] ISO/IEC and ITU-T, “High Efficiency Video Coding (HEVC) HM

reference software.” [Online]. Available: http://hevc.hhi.fraunhofer.de
[44] JPEG XT, ISO/IEC Std. 18 477, 2014.
[45] Y. T. Tsai, “Color Image Compression for Single-Chip Cameras,” IEEE

Transactions on Electron Devices, vol. 38, no. 5, pp. 1226–1232, 1991.
[46] Information technology - JPEG 2000 image coding system - Part 9:

Interactivity tools, APIs and protocols, ISO/IEC Std. 15 444-9, Dec.
2005.

[47] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE Trans.

Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

http://www.color.org/srgb.xalter
http://www.color.org/icc_specs2.xalter
http://www.kakadusoftware.com
http://www.kakadusoftware.com
http://hevc.hhi.fraunhofer.de

	Introduction
	The Digital Development Process
	Demosaicking
	Visual Transformation
	Green Merging
	White Balancing
	Chromatic Aberration Removal
	Geometric Correction
	sRGB Transformation

	Compression for Visualization and Re-development
	Typical JPEG 2000 Compression/Decompression Pipeline
	The Proposed System
	Demosaicking and Green Channel Merging
	JPEG 2000 Part 1 Compression
	Color Space Translation
	Summary
	Visual Results

	Interpolation Within the Pipeline
	Component Alignment Using JPEG 2000 Part 2

	Compression Performance
	Lossless Compression Performance
	Real Mosaic Images
	Developed Images
	Simulated Mosaic Images

	Rate-Distortion Performance
	Complexity

	Conclusion
	Appendix: Modified DWT for Interpolation
	References

