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Abstract
We describe lossless methods for compression of 3D PET

data. Static list-mode data is re-sorted into sinograms and
compressed using a combination of run-length and entropic
coding. Dynamic list-mode data is compressed using a
sinogram/timogram format in which the arrival times of each
photon pair are stored in spatial order, indexed by the sinogram.
Compression of the timogram is performed using entropic
coding of the differential arrival times in each sinogram
bin. We describe these compression methods and present
results for static and dynamic data. In the dynamic case, we
compare compression of multiple frame sinogram data with
sinogram/timogram formats. Both formats produce substantial
reductions in data size compared to the raw data, with higher
compression factors achieved using the sinogram/timogram
format when high temporal resolution is required.

I. INTRODUCTION

The potential number of lines of response (LORs) in a PET
system increases as the square of the number of detectors.
Consequently, the large numbers of detectors in modern high
resolution human and animal scanners can produce huge data
sets when stored as sinograms. The growth in recent years in
sinogram size for a number of different scanners is illustrated
in Figure 1. Large sinogram sizes present problems both in
terms of reconstruction times and data archiving. Here we
address the latter issue.
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Figure 1: Illustration of the approximate sinogram sizes for 2D and 3D
clinical and small animal scanners shown in comparison to “Moore’s
law”, the observation that single-processor computing power doubles
roughly every 18 months. The lower curve for the ECAT systems
represents 2D complexity, the upper curve represents 3D complexity.

To reduce data sizes and reconstruction times, it is common
to rebin the data by adding adjacent rows of a single sinogram
and combining sinograms with small angular differences.

1This work was supported by the National Cancer Institute under
Grant No. R01 CA59794.

While effective, this reduces the potential for resolution
recovery during reconstruction. An alternative approach is to
store the data in list-mode in which the LOR index is stored for
each detected event. This becomes efficient as the maximum
number of LORs begins to exceed the number of detected
photon pairs. Recently, reconstruction methods have been
described that make direct use of list-mode data [1], [2].

Storing list-mode data in the chronological order in
which events are acquired is inherently inefficient since
backprojection then requires random rather than sequential
access to the image voxels. It is straightforward to rearrange
list-mode data in spatial-order which effectively results in a
sparse sinogram. These can then be stored either with the LOR
index for each event or, as we describe here, directly using
a sinogram format in which lossless compression, based on
run-length and entropic coding, is used to efficiently store and
retrieve the data.

There are very few previous reports of lossless compression
schemes specifically tailored to PET data. Macq et al [3]
present a scheme in which they use an adaptive pulse code
modulator followed by a universal variable length coder which
operates on short data blocks. Baker et al [4] are concerned
with the hardware implementation of Lempel-Ziv coding which
achieves high throughput for PET data. These methods exclude
entropic compression techniques such as Huffman coding
because their objective is to perform on-line compression
without knowledge of the prior probabilities. Since we can
generate histograms of occurrence frequency while collecting
and sorting the data, here we do make use of entropy-based
approaches.

Since many PET studies involve the collection of dynamic
data, it is also important to consider how multiple sinograms can
be efficiently stored. Traditionally, dynamic PET data is stored
as a sequence of contiguous frames with one set of sinograms
in each frame. Clearly, we can reorder the list-mode data into
frames and apply compression as described above to each frame
in turn. In this case, the total data size increases roughly linearly
with the number of frames.

Here we consider an alternative which can preserve high
temporal resolution in the data. We avoid sorting of events into
separate sinograms by using a “sinogram/timogram” format
[5], [6]. In this format, all events are collected into a standard
sinogram that represents a single frame of data corresponding
to the entire dynamic study. This is then augmented by a
“timogram” that contains the arrival times of each event stored
in spatial order so that they are indexed using the values in
the associated sinogram. In list-mode, the arrival times are
typically quantized at intervals on the order of 1msec. In our
work we have used a temporal resolution of 256msec which
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allows arrival times for a 100min study to be encoded using 16
bits. Here

�
we describe our approach to efficient storage of data

in the sinogram/timogram format and compare the results with
lossless compression of multiple frame data. We note that the
”timogram” format, and by extension the compression methods
investigated here, can also be used in place of raw list-mode
to store other attributes of events that can be appended to the
sinogram. For example: depth-of-interaction measurements,
energy collected in SPECT or PET photon detection, and
attributes of photons detected in electronically collimated
SPECT systems.

II. METHODS AND RESULTS

A. Sinogram Compression
The standard data format in many commercial PET systems

represents each sinogram element as 2 or 4 byte integers.
There is a great deal of redundancy in this format since most
sinogram elements contain few counts. In order to explore
this redundancy, we applied Lempel-Ziv [7], Huffman [8]
and run-length [9] coding followed by Huffman coding of
both sinograms and differential sinograms. Differential
sinograms store the first sinogram plane of each segment and
the differences between consecutive sinogram planes. This can
be seen as an attempt to estimate each sinogram plane from
the previous plane in the segment. We explain why such a
differencing scheme works below.

The number of counts at detector pair � are approximately
Poisson( � � ). Since corresponding entries in consecutive
sinograms have almost equal means, the difference sinogram
will contain entries that are approximately distributed as the
difference of two independent identically distributed (iid)
Poisson variables, i.e. Poisson( � � ) - Poisson( � � ). In Figure
2 we show the entropies of a Poisson random variable and
a differenced Poisson random variable (i.e. Poisson( � ) -
Poisson( � )) as a function of mean � .
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Figure 2: Entropy versus � for Poisson (solid) and differenced Poisson
(dashed) random variables. � is the mean and variance of the Poisson
random variable and is half the variance of the differenced Poisson
random variable which is zero mean. We see that for all values of � ,
the differenced random variable has higher entropy.

It is clear that for all values of � , the differenced Poisson
random variables have higher entropy. This means that if

we had constant mean sinograms, the differential sinograms
would have higher entropy, and hence, when compressed
would require more, rather than fewer, bits than the original
sinograms. However, in realistic cases, sinograms have
spatially varying means. Therefore the probability distribution
of an ordinary sinogram is a mixture of Poisson random
variables with different means. Similarly, the distribution of
a differenced sinogram is a mixture of difference Poisson
variables with different means. Figure 3 shows the probability
density functions for mixtures of Poisson and differenced
Poisson random variables. The mixtures were formed by
sampling from an underlying mean value uniformly distributed
on � � � 	 
 � .
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Figure 3: Probability density functions for uniform mixtures of
Poisson (left) and difference Poisson (right) random variables with �
uniformly distributed on �  � � � � . This demonstrates that the uniform
mixtures of difference random variables have lower entropy than
uniform mixtures of ordinary Poisson random variables

Entropy calculations using the pdf’s in Figure 3 show
that the mixture of differenced Poisson random variables
has lower entropy than the mixture of ordinary Poisson
random variables. Thus entropy based coding of differential
sinograms will, in general, achieve better compression ratios.
Empirical compression ratios shown in Section III confirm this
observation.
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Figure 4: Bits per sinogram entry for four compression methods
versus count rates (left) and a direct comparison of Huffman coding
(solid) of differential sinograms versus run-length+Huffman (dashed)
coding of original sinograms (right)

The entropy of a process is a measure of its information
content and accounts for the impact of correlations in the data.
It is impossible to reduce entropy by applying a one-to-one
transform (sinograms to differential sinograms in our case)
[11]. However, Huffman coding is based on separate coding
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of each variable and therefore cannot take advantage of
correlations� in the data. The Huffman code-book is constructed
from the univariate mixture density formed by the data and
approaches the ”empirical entropy” limit of this density. Thus
while Huffman coding is optimal for independent random
variables, performance can be improved when coding strings of
correlated data by first applying a decorrelating transformation.
Thus, since the mean (noiseless) values are highly correlated
between adjacent sinograms, computation of the differential
sinograms reduces the ”empirical entropy” resulting in
improved compression rates.

Figure 4 (a) shows the average code-length of the
compressed data (bits/entry) for Huffman and Lempel-Ziv
coding applied to original and differential sinograms with
varying count rates simulated to represent data from the
CTI ECAT HR+. It is clear that for counts above 1M,
Huffman coding applied to differential sinograms achieves
the lowest average number of bits/entry. At between 1 and
3 bits/entry, this represents a substantial saving over the
typical 16 bits/entry used in uncompressed formats. Figure
4 (b) shows a comparison between pure Huffman coding of
differential sinograms and run-length coding followed by
Huffman coding of the original sinograms. Run-length coding
becomes increasingly advantageous as the number of counts
decreases, but performs best for unrealistically low count rates.
For moderate count rates, run-length coding provides some
extra compression but it becomes increasingly inefficient as the
number of counts increases.

B. Timogram Compression
We store temporal information associated with a sinogram as

a list of arrival times indexed by sinogram entries. We call this
list of arrival times a ”timogram” with entries stored as 2-byte
integers. To exploit the redundancies in timograms we applied
Lempel-Ziv and Huffman coding to timograms and differential
timograms.

Differential timograms store inter-arrival times as opposed
to actual arrival times. The advantage in using differences is
more obvious here compared to the differential sinogram case
because we know that the � � � arrival time � � is greater than or
equal to the � � � � �  � arrival time, � � ! " . It is redundant to store� � if � � ! " is known, all we need to store is $ � % � � � � � ! " .

We model the positron emissions in each voxel in the volume
as an inhomogeneous Poisson process as in our reconstruction
work [5]. We denote the rate function at voxel j by ) * � + � . If
processes at all voxels were homogeneous with rate function) * � + � , ) * , the detection process at detector pair i would also
be a homogeneous Poisson process with rate function / 0 � + � ,/ 0 , 3 * 5 0 * ) * where 5 0 * is the detection probability.

Inter-arrival times in a homogeneous Poisson process with
rate function / 0 are independent and exponentially distributed
with mean / 0 [10]. Therefore, the portion of the differential
timogram corresponding to a particular detector pair contains
independent samples from an exponential distribution. In
this case, the histogram of the timogram would be a mixture

of exponential random variables with different means. As
the number of counts increases, the timogram’s empirical
histogram approaches the actual mixture density and Huffman
coding would then encode independent random variables
sampled from a mixture of exponentials.

In realistic cases, individual Poisson processes at voxels
are inhomogeneous and therefore the detection process at
detector pair i is also an inhomogeneous Poisson process with
rate function / 0 � + � , 3 * 5 0 * ) * � + � . In this case, inter-arrival
times are no longer independent or identically distributed.
Furthermore, the arrival times form a first order Markov
process from which the conditional distribution of the � � �
inter-arrival time $ � can be easily derived as [10]

5 � $ � 8 � � ! " � , / � � � ! " � ; < = > � ? @ A C D E F A@ A C D / � G � H G I (1)

where � � ! " , 3 � ! "0 J " $ 0 is the � � � � �  � arrival time.

One possible solution to this complication is to fit a set of
basis functions (such as decaying exponentials or B-splines)
to / � + � using either least squares or maximum likelihood
estimation and then to scale the arrival times according to the
integral of / � + � (i.e. time warping) and finally to generate the
inter-arrival times from the scaled arrival times. This would
make the process homogeneous up to the error in the estimation
of / � + � . However, this technique is both computationally
intensive (requires as many estimations as number of sinogram
elements) and requires storing as many sinograms as the
number of basis functions used in the estimation.

For these reasons, in most cases it is more practical and
efficient to apply Huffman coding to loosely correlated inter-
arrival times and to pay the price due to the correlation rather
than attempting to fully decorrelate arrival times at the expense
of increased computation and storage requirements. We can say
that the inter-arrival times are loosely correlated because each
inter-arrival time depends on the sum of previous inter-arrival
times and is independent of their actual values as long as their
sum remains constant.
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Figure 5: Bits per timogram entry for four compression methods
versus count rates (left) and scan duration (right)

Figure 5 (a) shows average bits/entry for Huffman and
Lempel-Ziv coding applied to original and differential
timograms with varying count rates. The advantage in storing
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inter-arrival times is very clear. We also see that Huffman
codingM outperforms Lempel-Ziv over all realistic count
rates. Run-length coding of timograms is not efficient and
therefore was not investigated for this application. Fig. 5b
compares the compression ratios of the same techniques
against scan duration. As scan duration grows, the possible
number of inter-arrival times increases which implies a larger
codebook for Huffman coding and fewer repetitive patterns for
Lempel-Ziv coding. These result in lower compression rates
for all four compression techniques.

III. RESULTS

We applied the compression techniques described above
to both differential and ordinary sinogram and timogram data
representing dynamic studies. We compared the compressed
data to standard uncompressed 2-byte representations in
a multiframe sinogram format. We simulated brain scan
sinograms and timograms for the ECAT HR+ with varying
numbers of counts and varying scan durations. We also applied
the same compression techniques to two real datasets: a 90
min human C-11 raclopride study (ECAT HR++) and a 90 min
C-11 and F-18 dual tracer phantom study (ECAT HR+).

To make the simulations reasonably realistic we added 20%
scatter and 10% randoms to the simulated sinograms. In the
sinogram-timogram format, we retain only the trues timogram
together with trues and randoms sinograms, i.e. the arrival times
of the delayed randoms are not stored for reasons described in
our previous work on dynamic list-mode image reconstruction
[6].

Table 1 shows the compressed data sizes using Huffman
coding of differential sinograms for multiframe dynamic
studies with varying numbers of counts, with and without
rebinning. For a typical dynamic study with 1000M counts,
reductions of at least a factor of 10 were achieved in all cases.
In Table 2 we show the data sizes for compression of the
same dynamic data using the sinogram/timogram format. We
show results for 256msec and 1sec temporal resolution with
full spatial resolution. From this table we see that at 1sec
temporal resolution and full spatial resolution the compressed
sinogram/timogram data is approximately one third the size of
the compressed standard-rebinned data at 30sec resolution and
twice the size at 5min resolution. As we reduce the temporal
and/or spatial resolution, the compressed timogram/sinogram
data sizes are reduced accordingly.

Using the same methods, we also compressed a C-11
raclopride data set, collected from the ECAT HR++, with
248M trues and 19M randoms. The original file size was 1.1
GB in list mode format, and compressed to 242 MB using
compressed multiple sinograms (30 sec resolution) and to
303.56 MB using compressed trues and randoms sinograms
augmented with a compressed trues timogram (256 msec
resolution). We achieved similar compression ratios for a
C-11 F-18 dual tracer study on the ECAT HR+. The study had
405M trues and 67M randoms and the original datasize was
2 GB in list-mode format. Compression reduced filesizes to
384.54 MB as compressed multiple sinograms and 389.3 MB

as compressed sinograms plus timograms.

IV. CONCLUSIONS

We have seen that by applying Huffman coding to
differential sinograms and timograms we can achieve
compression ratios above 90% for sinograms and 50% for
timograms on both simulated and real data. Compression
ratios are slightly lower in real data than in our simulations,
probably because of greater complexity in the randoms and
scatter profiles. However, the trends that we observe are the
same. Entropy based compression, whether applied to our
sinogram/timogram format or to standard multiframe sinogram
data, is very effective at lossless reduction in data size. These
methods are not computationally demanding, and could be
routinely used to reduce requirements for both short-term
storage and archiving of raw PET data. If high spatial and
temporal resolution in dynamic data is called for, then the
sinogram/timogram format appears to offer additional savings
compared to sequential sinogram compression.

Table 1
Data sizes for compressed 3D ECAT HR+ data as a function of total

number of counts in a 90min dynamic study with 30sec and 5min
temporal resolution with full spatial resolution (non-rebinned) and

standard rebinning.

Standard rebinning Non-rebinned sinograms
Total Counts 30 sec 5 min 30 sec 5min

10M 9.20 MB 14.75 MB 39.41 MB 63.20 MB
100M 93.41 MB 36.26 MB 400.22 MB 155.35 MB

1000M 378.33 MB 63.10 MB 1.62 GB 270.35 MB
10000M 780.68 MB 107.11 MB 3.34 GB 458.91 MB

No compr. 7.16 GB 716 MB 30.6 GB 3.06 GB

Table 2
File sizes for data in Table 1 compressed in sinogram/timogram
format with 256sec and 1sec temporal resolution and full spatial

resolution.

Total Counts Sinogram Timogram Timogram
(prompts)+(delayed) 256 msec 1 sec

10M 7.70+4.74=12.44 MB 8.44 MB 5.64 MB
100M 13.30+13.50=26.80 MB 46.47 MB 23.35 MB

1000M 19.06+22.40=41.46 MB 255.58 MB 96.66 MB
10000M 24.15+31.10=55.25 MB 1.28 GB 400.1 MB
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