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In the past years, there have been several improvements in loss-
less image compression. All the recently proposed state-of-the-art
lossless image compressors can be roughly divided into two cate-
gories: single and double-pass compressors. Linear prediction is
rarely used in the first category, while TMW [7], a state-of-the-art
double-pass image compressor, relies on linear prediction for its
performance.

We propose a single-pass adaptive algorithm that uses context
classification and multiple linear predictors, locally optimized on a
pixel-by-pixel basis. Locality is also exploited in the entropy coding
of the prediction error. The results we obtained on a test set of sev-
eral standard images are encouraging. On the average, our ALPC
obtains a compression ratio comparable to CALIC [20] while im-
proving on some images.

Keywords—Adaptive coding, arithmetic codes, data compres-
sion, Golomb–Rice codes, gradient methods, image coding, linear
predictive coding.

I. INTRODUCTION

After the Call for Contributions ISO/IEC JTC1/SC29/
WG1 (lossless JPEG) [3], the field of gray-level lossless
image compression received heightened attention. Most
of the contributions are effective in compressing images,
while holding down the computational complexity and the
memory requirements. On the other hand, most approaches
use heuristics and, even if the compression ratio achieved
cannot be in practice easily improved, it is not completely
clear whether or not these algorithms are able to achieve the
real entropy of the image.

In [7] and [8], B. Meyer and P. Tischer proposed TMW,
a dual-pass, lossless image coding algorithm that, by using
linear predictors, achieves compression performance higher
than CALIC [20], the best (in terms of compression ratio)
single-pass algorithm known so far. TMW improves the cur-
rent best results by using global optimization and blended
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linear predictors. A TMW compressed file consists of two
parts: a header that contains the parameters of the model and
the encoded data itself.

Even if TMW has a computational complexity several or-
ders of magnitude greater than CALIC, the results obtained
by this algorithm are in any case surprising because:

• Linear predictors are known not to be effective in cap-
turing fast transitions in image luminosity (edges) [19].

• Before TMW, global optimization seemed unable
to improve substantially the performance of lossless
image compressors [19].

• CALIC was thought to achieve a data rate extremely
close to the real entropy of the image [19].

In this paper, we propose ALPC, a single-pass adaptive
algorithm that uses context classification and multiple linear
predictors that are locally optimized on a pixel-by-pixel
basis. The explicit use of locality is one of the key features
of our algorithm, and local features of the image being
encoded are also exploited in the entropy coding of the
prediction errors.

We describe here a series of experiments we made with
ALPC addressing the problem of gray-level lossless image
compression exclusively from the viewpoint of the achiev-
able compression ratio, without being concerned about com-
putational complexity or memory requirements.

The results we obtained on a test set of several standard
images are encouraging. On the average, ALPC obtains a
compression ratio comparable to CALIC while improving on
some images of the test set. Experiments suggest that, with a
better encoding of the prediction error, our algorithm can be
competitive with CALIC and TMW.

II. DESCRIPTION OF THEALGORITHM

ALPC is an algorithm based on adaptive linear prediction
and consists of two main steps: pixel prediction and entropy
coding of the prediction error. A pseudocode description of
the whole algorithm is given in Fig. 1.

An input image is encoded in a single pass, by processing
its pixels in raster-scan order (i.e., proceeding from top to
bottom and from left to right). The luminosity of each pixel,
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Fig. 1. Pseudocode description of the adaptive prediction.

PIX( ), is predicted by a weighted sum of its neighbors (or
context). ALPC uses the fixed-shape context that is depicted
in Fig. 2.

Pixels forming the context of PIX( ) have been pre-
viously encoded, and both encoder and decoder know their
values exactly; to keep encoder and decoder synchronized it
is sufficient to round the prediction to its nearest integer value

Pixels are individually encoded by representing thepre-
diction errorERR( ), i.e., the difference between the pixel
being encoded, PIX( ) and its predicted luminosity

The prediction error ERR( ) is the only information
that is sent to the decoder for the reconstruction of the
input image. Encoding the prediction error is advantageous
because its typical distribution allows an efficient entropy
coding.

The predictor’s weights are adapted during
the encoding process to take into account local features of
the image. Starting from a default set of weights,
are changed and optimized on a per-pixel basis.

For each pixel, a new predictor is determined by min-
imizing the energy of the prediction error inside a small
window of previously encoded pixels

Fig. 3 shows the window with radius , cen-
tered on PIX( ). The radius allows explicit control on
the degree of locality that our algorithm exploits.

Fig. 2. Pixel PIX(x; y) and its context.

Fig. 3. Prediction windowW (R ) of radiusR and centered
on PIX(x; y).

Not all the samples collected in the window are used for
the optimization. The pixels contained in the window are
partitioned into clusters by minimizing the distance between
their contexts. A centroid is determined for each cluster and
the context of the current pixel is classified. Only the cluster
whose centroid is closest to the current pixel’s context is used
to select and refine a predictor.

By using a window of previously encoded pixels, ALPC
implements a backward prediction scheme so the encoder has
no need to send any side information to the decoder. On the
other hand, backward prediction has as a well-known major
drawback: poor performance in the presence of edges.

The radius of the window (see Fig. 3) is one
of the essential features of our algorithm. Its size affects the
prediction quality because if is too small, only few sam-
ples are in the window and the predictor “overspecializes,”
making big errors when in the presence of edges. On the other
hand, too many samples in the window (too big) tend to
generate predictors that are not specific enough to adapt to
local variations in the image.

Although in our experiments we decided to keepcon-
stant and equal for all images, it is possible to design algo-
rithms that dynamically adapt the size of the radius to image
characteristics so that prediction and convergence speed may
be improved.

As mentioned before, to improve prediction, predictor op-
timization is performed only on a subset of samples collected
in the window. The rationale is that we want the predictors’
weights to be representative of the relation existing between
the context and the pixel being encoded. By discarding sam-
ples whose context varies too much from the one of the pixels
currently being encoded, we can specialize the prediction and
follow fine periodic patterns in the window.

Most algorithms existing in the literature use a simple
pixel predictor and compensate the poor prediction with
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sophisticated heuristics to model the error probability as a
function of the context in which it occurs (see, e.g., LOCO-
I [14]). In ALPC, instead, because of the classification, the
contextual encoding is embedded in the error prediction
mechanism.

The classification algorithm that we used in our experi-
mentation is a variation of the generalized Lloyd algorithm
(or LBG [5]). This classification method, although not op-
timal in our framework, is powerful enough to improve the
performance of the basic adaptive predictor. We are confident
that a more appropriate classification algorithm will result in
improved performance.

Once the samples in the window are classified and a rep-
resentative centroid is determined for each cluster, one of the
clusters is selected according to the minimum distance be-
tween the context of the corresponding centroid and the con-
text of the pixel being encoded. Similarly, in a set of predic-
tors, the one that achieves the lowest prediction error on the
selected centroid is chosen. This is the predictor that is fur-
ther refined by applying a gradient descent optimization on
the samples of the selected cluster. At each stepof the opti-
mization, while the difference between the previous and the
current errors is smaller than a fixed threshold, the weights

of the predictor are changed according to

where is the error energy anda small constant. When too
few samples are collected in the window (e.g., at the begin-
ning, when PIX( ) is close to the top or to the left border
of the picture), a default fixed predictor is used in the predic-
tion and the gradient descent optimization is not applied. In
our implementation, we used as default predictor the “planar
predictor” described in [19]

To make the algorithm independent of the predictors’ ini-
tialization, we use at each step the set of predictors that were
refined from the previous iterations. With this choice, we ob-
served that the predictors can be initialized to
random values without compromising the performance. We
also experimented by initializing with the predictors used in
JPEG-LS; this only resulted in a slightly faster convergence
of the gradient descent optimization. Reinitializing the pre-
dictors at every step, instead of using the previous refined
weights, while resulting in a much slower convergence, does
not seem to affect substantially the compression ratio.

III. ENTROPY CODING

Image prediction error is commonly modeled in litera-
ture by using a Laplacian distribution [2]. Likewise, ALPC’s
adaptive linear prediction generates a skewed Laplacian-like
distribution, centered on zero and with quasi-symmetric very
long tails (See Fig. 4).

Fig. 4. Histogram of the prediction error for the test image “hotel.”

Efficient entropy encoding can be performed by using an
arithmetic encoder [17] or, for reduced complexity, by using
a Golomb–Rice code as described in [14].

We experimented with both methods, using both a stan-
dard approach and determining the parameters of the en-
coder’s model in a window centered on the error being en-
coded. Some of the experiments we made with the arithmetic
encoder were previously reported in [10].

Entropy coding with an arithmetic encoder is performed
by dividing the coding step in two parts: the determination of
a probabilistic model for the source and the entropy coding
that uses that model. In general, when a simple adaptive
model is used, the data stream is encoded symbol by symbol,
by updating the probabilistic model after each encoding.
Every once in a while, the model is renormalized, both to
avoid overflow and to provide a way of “discounting” the
past statistics. Renormalization improves the exploitation
of nonstationarities of the data source; however, when
encoding images, this method is not very effective because:

• the data are bidimensional but the model adaptation
proceeds in a linear order;

• careful control of the time window is not possible.

To evaluate the effect of explicit discounting, we experi-
mented both with the classic adaptive method and with deter-
mining the probabilistic model for the prediction error cur-
rently being encoded (ERR( )) in a window of
radius centered on ERR( ). Results obtained on a set
of test images are listed in Table 1. For the test images we
used, highest compression was achieved when determining
the model of the arithmetic coder in windows of radius
comprised between eight and 12 pixels.

We believe that performance can be further improved by
using a more appropriate implementation of the arithmetic
coder. The implementation that we used [16] has no special
modeling for the probabilities of symbols that have not been
seen before [18], and a small default probability is always
assigned to every symbol of the alphabet. When only a small
number of samples are available to model the distribution (a
thing that happens frequently when the model is determined
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Table 1
Comparison Between Four Entropy Coding Methods:
Golomb–Rice Coding (GR), Arithmetic Coding (AC),
Golomb–Rice with the Model in a WindowW (R ) (GR-W),
Arithmetic Coding with the Model in a WindowW (R )
(AC-W). Results are Shown in Bits Per Pixel. Test Images
are512 � 512 pixels (except MRI and X-ray that are
256 � 256), 8 Bits/Pixel. These Results are Obtained by
Using Two Predictors andR = 10

by using a window), the contribution of the default probabil-
ities become relevant and the encoder efficiency is compro-
mised.

Although entropy coding contributes only marginally to
the complexity of our algorithm, the nature of the error dis-
tribution allows us to enhance the speed by implementing the
entropy coding by mean of a low-complexity Golomb–Rice
code.

Golomb–Rice codes are a particularization of the Golomb
codes introduced by S. W. Golomb in [1] to encode nonneg-
ative symbol run lengths. These codes are characterized by
an encoding parameter that is constrained to be a power of
two. Nonnegative integers are encoded in two parts: a
binary representation of and a unary representation
of ; such codes are described in [14] and in [15].
Because the parameter is a power of two, the operations of
modulus and integer division can be simplified to masking
bits and can be implemented very efficiently both in software
and in hardware.

As described in [14], a further simplification can be in-
troduced: The parameter that characterizes the distribu-
tion can be reliably estimated by using the expectation of the
magnitude of the prediction errors. To map prediction errors
to nonnegative values, we “folded” the distribution by using
the mapping also described in [14]

f
otherwise.

Table 1 shows the results obtained on a set of test images
both for an adaptive Golomb–Rice coding and when deter-
mining the parameter in a window centered on
ERR( ). Experimentally we found that for Golomb–Rice

Fig. 5. Comparisons with the entropy of the prediction error in
LOCO-I.

codes, windows of radius of between three and five pixels
achieve highest compression.

Although Golomb–Rice coding is optimal for exponen-
tially distributed sources, the main drawback of this method
is that at least one bit must be sent for each pixel. This
well-known limitation penalizes “simple” images having
long runs of errors having the same identical value (typically
zeros). Although we did not implement this solution, a
common fix to this problem is to detect long runs of symbols
and switch the encoding to the so-called “run length” mode.

IV. RESULTS AND DISCUSSION

Experiments were performed in order to assess the algo-
rithm on different test sets composed, respectively, of nine
images of pixels, 16 images of pixels, and
two images of pixels. These test sets are widely used
for comparisons in the lossless data compression literature
and can be downloaded from several ftp sites, including [9]
and [23]. All images were gray-level (continuous-tone) dig-
itized with a resolution of 8 bits/pixel (256 gray levels).

We report our results by giving for each image the average
number of bits used to encode a pixel (empirical entropy).

Fig. 5 gives information on the efficiency of ALPC’s pre-
dictors by comparing the entropy of the prediction error of
the simple fixed predictor used in LOCO-I with the entropy
of the prediction error achieved by our algorithm. The re-
sults reported in Fig. 5 were obtained by using two predic-
tors and by optimizing the predictors in a window of radius

. As a reference, we also report the overall perfor-
mance of LOCO-I after the entropy coding that uses sophis-
ticated context modeling.

It is evident how our adaptive linear predictors are (under-
standably) much more powerful than the fixed predictor used
in LOCO-I; however, even when enriched by the classifica-
tion, our adaptive prediction does not have enough power to
capture edges and sharp transitions, present, for example, in
the picture “hotel” (see bottom of Fig. 6).

Tables 2–4 summarize the experiments we made in order
to understand the sensitivity of the algorithm to its param-
eters (number of predictors and window radii). In these ex-
periments, we measured the variations on the compression
achieved when parameters are changed one at a time.
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Fig. 6. Top: Magnitude (left) and sign (right) of the prediction error of the test image “Board.”
Bottom: Magnitude (left) and sign (right) of the prediction error of the test image “Hotel.”

Table 2
Entropy in Bits Per Pixel Versus Number of Predictors. Results
Shown for a Window of RadiusR = 6; Error is Coded by Using a
Simple Adaptive Arithmetic Encoder

Table 3
Entropy in Bits Per Pixel Versus Window RadiusR . The Number
of Predictors Used is Two; Prediction Error is Entropy Encoded by
Using a Simple Adaptive Arithmetic Encoder

In Table 2, the number of predictors is changed while
keeping fixed the window radius ; conversely, in
Table 3, the number of predictors is kept fixed at two and
the performance with respect the window size changes are
evaluated.

Both experiments described in Tables 2 and 3 were per-
formed by using a simple entropy coding scheme for the pre-
diction error: a single adaptive arithmetic coder. As we also
verified experimentally, the performance of a single adaptive
arithmetic encoder is a close approximation of the first-order
entropy of the prediction error.

Table 4 reports the conclusive experiments; the number of
predictors is kept fixed to two , and performance
is evaluated by encoding the prediction error with a proba-
bilistic model determined in a window. Results are reported
for changes in the value of .

Comparisons with some popular lossless image codecs
(see Tables 5, 6 and Fig. 7) show that the proposed algo-
rithm achieves good performance on most test set images.
The cases were we fall short of CALIC confirm that linear
prediction, even when combined with classification, is not
adequate to model image edginess. Also, unlike CALIC, our
codec does not use any special mode to encode high con-
trast image zones, so our results are penalized by images like
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Table 4
Entropy in Bits Per Pixel Versus Error Window RadiusR . Two
Predictors are Used andR = 10. Prediction Error is Encoded by
Determining the Model in a Window Centered On the Current Pixel

Table 5
Final Compression Results (in Bits Per Pixel). Test Images are
720� 756, 8 Bits/Pixel. The Number of Predictors Used in ALPC
is Two, andR = 10. Entropy Encoding is Performed with an
Arithmetic Coder and the Model is Determined in a Window
of RadiusR = 10

Table 6
Final Compression Results for the Another Test Set. Test Images
are512� 512 (Except MRI and X-ray that are256� 256),
8 Bits/Pixel. Two Predictors are Used in These Experiments
andR = 10. Entropy Encoding is Performed with an
Arithmetic Coder and the Model is Determined in a Window
of RadiusR = 10

“hotel” that have high-contrast regions. A closer look to the
prediction error magnitude and sign for “board” and “hotel,”
two images in the test set, shows that most of the edges in the
original image are still present in the prediction error (Fig. 7).

V. CONCLUSION

The results of our experiments on the test sets of standard
images are encouraging. With a better classification and

Fig. 7. Graphical representation of the data in Table 5.

selection of the contexts in the prediction window and with
a more sophisticated encoding of the prediction error, it may
be possible to achieve stable and better results on all the
test images. Also critical in the encoding of the prediction
error is a careful determination of the probability of novel
symbols.

Also, it is likely that the computational complexity can be
substantially reduced without sacrificing the performance by
using alternative methods for the optimization of the predic-
tors [6]. Further reduction in the complexity was made pos-
sible by replacing the arithmetic coder with Golomb–Rice
codes.

ACKNOWLEDGMENT

The authors would like to thank M. Cohn and F. Rizzo for
fruitful discussions and suggestions.

REFERENCES

[1] S. W. Golomb, “Run-length encodings,”IEEE Trans. Inform.
Theory, vol. 12, pp. 399–401, July 1996.

[2] P. G. Howard, “The design and analysis of efficient lossless data
compression systems,” Ph.D. dissertation, Dept. Comput. Sci.,
Brown Univ., Providence, RI, June 1993.

[3] ISO/IEC, “Call for contributions—Lossless compression of contin-
uous-tone images,”, JTC1/SC29/WG1, Mar. 1994.

[4] G. G. Langdon Jr., “Sunset: A hardware oriented algorithm for loss-
less compression of gray scale images,”Proc. SPIE, vol. 1444, pp.
272–282, Mar. 1991.

[5] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quan-
tization design,”IEEE Trans. Commun., vol. COM-28, pp. 84–95,
Jan. 1980.

[6] P. A. Maragos, R. W. Schafer, and R. M. Mersereau, “Two-dimen-
sional linear prediction and its application to adaptive predictive
coding of images,”IEEE Trans. Acoust., Speech, Signal Process.,
vol. ASSP-32, Dec. 1984.

[7] B. Meyer and P. Tischer, “TMW—A new method for lossless image
compression,” inProc. Int. Picture Coding Symp. (PCS97), Sept.
1997.

[8] B. Meyer and P. Tischer, “Extending TMW for near lossless com-
pression of greyscale images,” inProc. IEEE Data Compression
Conf. (DCC98), Snowbird, UT, Mar. 1998.

[9] B. Meyer. TMW program and most recent results. [Online] Avail-
able: http://www.cs.monash.edu.au/ bmeyer/tmw

[10] G. Motta, J. A. Storer, and B. Carpentieri, “Adaptive linear predic-
tion lossless image coding,” inProc. IEEE Data Compression Conf.
(DCC99), Snowbird, UT, Mar. 1999.

[11] G. Seroussi and M. J. Weinberger, “On adaptive strategies for an
extended family of Golomb-type codes,” inProc. IEEE Data Com-
pression Conf. (DCC97), Snowbird, UT, Mar. 1997.

MOTTA et al.: LOSSLESS IMAGE CODING VIA ADAPTIVE LINEAR PREDICTION AND CLASSIFICATION 1795



[12] D. Speck, “Fast robust adaptation of predictor weights from min/max
neighboring pixels for minimal conditional entropy,” inProc. 29th
Asilomar Conf. Signal, Systems and Computers, Pacific Grove, CA,
Oct., pp. 234–242.

[13] D. Speck, “Activity level classification model (ALCM),”, JTC
1.29.12, 1995.

[14] M. J. Weinberger, G. Seroussi, and G. Sapiro, “LOCO-I: A low com-
plexity, context-based, lossless image compression algorithm,” in
Proc. IEEE Data Compression Conf. (DCC96), Snowbird, UT, Mar.
1996.

[15] M. J. Weinberger, G. Seroussi, and G. Sapiro, “From LOCO-I to
JPEG-LS standard,” inProc. 1999 Int. Conf. Image Processing,
Kobe, Japan, Oct. 1999.

[16] F. Wheeler. Adaptive arithmetic coding. [Online] Source code avail-
able at http://ipl.rpi.edu/wheeler/ac/

[17] I. H. Witten, R. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,”Commun. ACM, vol. 30, pp. 520–540, Jun. 1987.

[18] I. H. Witten and T. C. Bell, “The zero-frequency problem: Estimating
the probabilities of novel events in adaptive text compression,”IEEE
Trans. Inform. Theory, vol. 37, July 1991.

[19] X. Wu, “An algorithmic study on lossless image compression,” in
Proc. IEEE Data Compression Conf. (DCC96), Snowbird, UT, Mar.
1996.

[20] X. Wu and N. Memon, “Context-based, adaptive, lossless image
codec,”IEEE Trans. Commun., vol. 45, Apr. 1997.

[21] X. Wu, “Efficient lossless compression of continuous-tone images
via context selection and quantization,”IEEE Trans. Image Process.,
vol. 6, pp. 656–664, May 1997.

[22] X. Wu, W. Choi, and N. Memon, “Lossless interframe image com-
pression via context modeling,” inProc. IEEE Data Compression
Conf. (DCC98), Snowbird, UT, Mar. 1998.

[23] X. Wu. Test images. [Online] ftp.csd.uwo.ca/pub/from_wu/images/

Giovanni Motta (Student Member, IEEE) re-
ceived the M.S. degree in information technology
from CEFRIEL, Milano, Italy, in 1993, and the
“Laurea” degree in Scienze Dell’Informazione
(summa cum laude) from Universitá degli Studi
di Salerno, Salerno, Italy, in 1996.

He is currently a Ph.D. candidate at the
Department of Computer Science, Brandeis
University, Waltham, MA. His research interests
are trellis vector quantization, lossless image
compression, low bit-rate video coding, low

bit-rate speech coding, and information theory.

James A. Storer (Member, IEEE) received
the B.A. degree in mathematics and computer
science from Cornell University, Ithaca, NY,
in 1975, and the M.A. and Ph.D. degrees in
computer science from Princeton University,
Princeton, NJ, in 1977 and 1979, respectively.

From 1979 to 1981, he was a Researcher
(MTS) at Bell Laboratories, Murray Hill, NJ. In
1981, he came to Brandeis University, Waltham,
MA, where he is currently Chair of the Computer
Science Department and Member of the Brandeis

Center for Complex Systems.

Bruno Carpentieri (Member, IEEE) received
the “Laurea” degree in computer science from
the University of Salerno, Salerno, Italy, and
the M.A. and Ph.D. degrees in computer science
from Brandeis University, Waltham, MA.

Since 1991, he has been Assistant Professor
of Computer Science (Ricercatore) at the Uni-
versity of Salerno. His research interests include
lossless image compression, video compression
and motion estimation, information hiding,
parallel computing, and theory of computation.

He was co-chair, in 1997, of the International Conference on Compression
and Complexity of Sequences, and, since 1997, he has been a Program
Committee Member of the IEEE Data Compression Conference. He has
been responsible for two European Commission contracts regarding the
report on the state-of-the-art of lossless image compression.

1796 PROCEEDINGS OF THE IEEE, VOL. 88, NO. 11, NOVEMBER 2000


