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In the past years, there have been several improvements in lossdinear predictors. A TMW compressed file consists of two

less image compression. All the recently proposed state-of-the-artparts: a header that contains the parameters of the model and
lossless image compressors can be roughly divided into two cate-the encoded data itself.

gories: single and double-pass compressors. Linear prediction is . . .
rarely used in the first category, while TMW [7], a state-of-the-art V€N if TMW has a computational complexity several or-

double-pass image compressor, relies on linear prediction for its ders of magnitude greater than CALIC, the results obtained
performance. by this algorithm are in any case surprising because:

We propose a single-pass adaptive algorithm that uses context Linear predictors are known not to be effective in cap-

classification and multiple linear predictors, locally optimized on a . . o . .
pixel-by-pixel basis. Locality is also exploited in the entropy coding turing fast transitions in image luminosity (edges) [19].

of the prediction error. The results we obtained on a test set of sev-  * Before TMW, global optimization seemed unable

eral standard images are encouraging. On the average, our ALPC to improve substantially the performance of lossless

obta_ins a compre_ssion ratio comparable to CALIC [20] while im- image compressors [19].

proving on Some images. « CALIC was thought to achieve a data rate extremely
Keywords—Adaptive coding, arithmetic codes, data compres- close to the real entropy of the image [19].

sion, Golomb-Rice codes, gradient methods, image coding, linear | this paper, we propose ALPC, a single-pass adaptive

predictive coding. algorithm that uses context classification and multiple linear
predictors that are locally optimized on a pixel-by-pixel

|. INTRODUCTION basis. The explicit use of locality is one of the key features

After the Call for Contributions ISO/IEC JTC1/SC29/ ngouéeg"g;gtha'};’oagd I'c‘)’f:(; f.f]a;‘;reese n‘;‘;othe Image 2?'{‘h9e
WG1 (lossless JPEG) [3], the field of gray-level lossless xplol ! by N9

image compression received heightened attention. Mostpr?,slcgon e_rlgorsr,{ . f . ¢ de with
of the contributions are effective in compressing images, € describe here a series of experiments we macde wi

while holding down the computational complexity and the ALPC addressing the problem of gray-level lossless image

memory requirements. On the other hand, most approachescgrqpressmn e.XCIUS't\./ely f{ﬁm ttf;e 'V|eWp0|nt of(;hebac:nev-
use heuristics and, even if the compression ratio achieved??.€ compression rafio, without being concerned about com-

cannot be in practice easily improved, it is not completely putational complexity or memory requirements.

clear whether or not these algorithms are able to achieve the, The results we obteynedoonterl] test set of S:C’ﬁ?l ng“?dard
real entropy of the image. images are encouraging. On the average, obtains a

In [7] and [8], B. Meyer and P. Tischer proposed TMW, compression ratio comparable to CALIC while improving on
a dual-pass, Ioésless image coding algorithm that, by usi’ngsome images of the test set. Experiments suggest that, with a

linear predictors, achieves compression performance highefg:;ere?i?isgdﬂaghﬁ grae:écitlliﬂnv\e;rror, our algorithm can be
than CALIC [20], the best (in terms of compression ratio) P :
single-pass algorithm known so far. TMW improves the cur-
rent best results by using global optimization and blended Il. DESCRIPTION OF THEALGORITHM
ALPC is an algorithm based on adaptive linear prediction
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for every pixel PIX(x,y) in the input image do begin
Collect the pixels in Wy,y(Rp) and their context X, Y-2

Determine n centroids Ci,..., Cn by applying the
LBG on the contexts in W y(Rp)

Let Ki,... be the corresponding clusters
ke ponding X-1, Y-1| X, Y-1 |X+1,Y-1

Classify each pixel/context in Wy,y(Rp) in one of
the clusters Ki,...,RK,

Classify the context of the current pixel PIX{x,y);
let k be the index of that cluster X-2,Y | X-1,Y X, Y

Let Pi={wo, ..., ws} be the predictor that achieves
the smallest error on Ck among a set of
predictors Py, ...,P,

Fig. 2. Pixel PIX(z, y) and its context.
Apply the Gradient Descent on the pixels in Cx to

refine the predictor P;
Use the refined predictor P'; to predict PIX(x,y)
Generate the prediction error ERR(x,y)

end

Fig. 1. Pseudocode description of the adaptive prediction.

Current Pixel PIX(x,y)

PIX(x, v), is predicted by a weighted sum of its neighbors (or
context). ALPC uses the fixed-shape context that is depicted
in Fig. 2.

Pixels forming the context of PIX( y) have been pre-
viously encoded, and both encoder and decoder know theirFig. 3. Prediction windowiV.,, , (R, ) of radiusR,, and centered
values exactly; to keep encoder and decoder synchronized i Pt ¥)
is sufficient to round the prediction to its nearest integer value

Not all the samples collected in the window are used for

PIX(x,y) =int(wo*" PIX (z, y — 2) the optimization. The pixels contained in the window are
fwPIX(x —1,y—1) partitioned into clusters by minimizing the distance between
N . i their contexts. A centroid is determined for each cluster and
+wy PLX (2, y — 1) the context of the current pixel is classified. Only the cluster
+ws"PIX(x+1,y—1) whose centroid is closest to the current pixel’s contextis used
+wy"PIX(z -2, y) to select and refine a predictor.
+ws*PIX(x — 1, y)). _ By using a window of preyio_usly encoded pixels, ALPC
implements a backward prediction scheme so the encoder has
Pixels are individually encoded by representing ine- no need to send any side information to the decoder. On the
diction errorERR(z, v), i.e., the difference between the pixel other hand, backward prediction has as a well-known major
being encoded, PIX{( %) and its predicted luminosity drawback: poor performance in the presence of edges.
o The radiusit,, of the windowlV,, ,(R,) (see Fig. 3) is one
ERR(z,y) = PIX(z, y) — PIX(z, y). of the essential features of our algorithm. Its size affects the

o ] ) ] prediction quality because &), is too small, only few sam-
The prediction error ERRY{ y) is the only information 65 are in the window and the predictor “overspecializes,”
that is sent to the decoder for the reconstruction of the making big errors when in the presence of edges. On the other

input image. Encoding the prediction error is advantageous hand, too many samples in the windoR,(too big) tend to
becguse its typical distribution allows an efficient entropy generate predictors that are not specific enough to adapt to
coding. . _ local variations in the image.
The pre_dlctor’s weightsuy, e, w; are adapted during Although in our experiments we decided to keigpcon-
the _encodlng process to take into accour_lt local features ofgiant and equal for all images, it is possible to design algo-
the image. Starting from a default set of weigh, - - - , w; rithms that dynamically adapt the size of the radius to image
are changed and optimized on a per-pixel basis. _ characteristics so that prediction and convergence speed may
For each pixel, a new predictor is determined by min- improved.
imizing the energy of the prediction error inside a small  Ag mentioned before, to improve prediction, predictor op-
window W, (1,) of previously encoded pixels timization is performed only on a subset of samples collected
in the window. The rationale is that we want the predictors’

oy Bz, ) weights to be representative of the relation existing between
— min Z (ERR(z', 4'))>. the context and the pixel being encoded. By discarding sam-
Wo, "+, Ws

ples whose context varies too much from the one of the pixels

PIX (z',y")CW,., ,(Rp) ) o o
o o currently being encoded, we can specialize the prediction and

Fig. 3 shows the windoWV,, ,(R,) with radiusR,,, cen- follow fine periodic patterns in the window.
tered on PIX¢, y). The radiusi?, allows explicit control on Most algorithms existing in the literature use a simple
the degree of locality that our algorithm exploits. pixel predictor and compensate the poor prediction with
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sophisticated heuristics to model the error probability as a
function of the context in which it occurs (see, e.g., LOCO-
I [14]). In ALPC, instead, because of the classification, the
contextual encoding is embedded in the error prediction
mechanism.

The classification algorithm that we used in our experi-
mentation is a variation of the generalized Lloyd algorithm
(or LBG [5]). This classification method, although not op-
timal in our framework, is powerful enough to improve the
performance of the basic adaptive predictor. We are confident
that a more appropriate classification algorithm will result in
improved performance. it

Once the samples in the window are classified and a rep-
resentative centroid is determined for each cluster, one of the
clusters is selected according to the minimum distance be-
tween the context of the corresponding centroid and the con-
text of the pixel being encoded. Similarly, in a set of predic-
tors, the one that achieves the lowest prediction error on the
selected centroid is chosen. This is the predictor that is fur-  Efficient entropy encoding can be performed by using an
ther refined by applying a gradient descent optimization on arithmetic encoder [17] or, for reduced complexity, by using

, .
~150 -100 100 150

Fig. 4. Histogram of the prediction error for the testimage “hotel.”

the samples of the selected cluster. At each stdjthe opti-
mization, while the difference between the previous and the
current errors is smaller than a fixed threshold, the weights
w; of the predictor are changed according to

oF

wit +1) = wi(t) — pp—

whereF is the error energy angda small constant. When too
few samples are collected in the window (e.g., at the begin-
ning, when PIX{, y) is close to the top or to the left border
of the picture), a default fixed predictor is used in the predic-
tion and the gradient descent optimization is not applied. In
our implementation, we used as default predictor the “planar
predictor” described in [19]

Piep ={wo =0, wy = -1, wp =1,

ws =0, wy =0, ws = 1}.

To make the algorithm independent of the predictors’ ini-

tialization, we use at each step the set of predictors that were

refined from the previous iterations. With this choice, we ob-
served that the predicto®,, - - -, P, can be initialized to
random values without compromising the performance. We
also experimented by initializing with the predictors used in
JPEG-LS; this only resulted in a slightly faster convergence
of the gradient descent optimization. Reinitializing the pre-
dictors at every step, instead of using the previous refined
weights, while resulting in a much slower convergence, does
not seem to affect substantially the compression ratio.

I1l. ENTROPY CODING

Image prediction error is commonly modeled in litera-
ture by using a Laplacian distribution [2]. Likewise, ALPC’s

a Golomb-Rice code as described in [14].

We experimented with both methods, using both a stan-
dard approach and determining the parameters of the en-
coder’'s model in a window centered on the error being en-
coded. Some of the experiments we made with the arithmetic
encoder were previously reported in [10].

Entropy coding with an arithmetic encoder is performed
by dividing the coding step in two parts: the determination of
a probabilistic model for the source and the entropy coding
that uses that model. In general, when a simple adaptive
model is used, the data stream is encoded symbol by symbol,
by updating the probabilistic model after each encoding.
Every once in a while, the model is renormalized, both to
avoid overflow and to provide a way of “discounting” the
past statistics. Renormalization improves the exploitation
of nonstationarities of the data source; however, when
encoding images, this method is not very effective because:

* the data are bidimensional but the model adaptation
proceeds in a linear order;
« careful control of the time window is not possible.

To evaluate the effect of explicit discounting, we experi-
mented both with the classic adaptive method and with deter-
mining the probabilistic model for the prediction error cur-
rently being encoded (ERR(y)) in a windowW.,, ,,(R. ) of
radiusR. centered on ERR{ ). Results obtained on a set
of test images are listed in Table 1. For the test images we
used, highest compression was achieved when determining
the model of the arithmetic coder in windows of radilds
comprised between eight and 12 pixels.

We believe that performance can be further improved by
using a more appropriate implementation of the arithmetic
coder. The implementation that we used [16] has no special
modeling for the probabilities of symbols that have not been
seen before [18], and a small default probability is always

adaptive linear prediction generates a skewed Laplacian-likeassigned to every symbol of the alphabet. When only a small

distribution, centered on zero and with quasi-symmetric very
long tails (See Fig. 4).

1792

number of samples are available to model the distribution (a
thing that happens frequently when the model is determined
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Table 1 550

Prediction error

Comparison Between Four Entropy Coding Methods: |

Golomb—Rice Coding (GR), Arithmetic Coding (AC), 500

Golomb-Rice with the Model in a WindoW’, ,(R.) (GR-W), 2

Arithmetic Coding with the Model in a WindowV,, ,(R.) 450 /rw:\

(AC-W). Results are Shown in Bits Per Pixel. Test Images
are512 x 512 pixels (except MRI and X-ray that are

256 x 256), 8 Bits/Pixel. These Results are Obtained by
Using Two Predictors an&, = 10

bits per pixel
8
—
ﬁ
A

w
o)
=)

GR A c G R-W A c_w / ——LOCOQ-) (Error Entropy after Context Modeling)

. 3.00 ~»~LOCO-I (Entropy of the Prediction Error) ——
2;:2'03:23 ggg gg; ggg ggg ! -4~ ALPC - 2 Predictors, Rp=10, Single Adaptive AC
Crowd 4.31 4.21 3.98 4.03 2% baloon barb ‘ barb2 board boats girl gold hotel zelda
Goldhill 471 | 470 | 469 | 466 Image
Hursley 479 | 477 | 454 | 455
Lake 507 | 5.11 4.97 4.93 Fig. 5. Comparisons with the entropy of the prediction error in
Landsat 416 | 414 | 409 | 4.04 LOCO-I.
Lax 584 | 583 | 581 5.75
Lena 418 | 421 | 412 | 405
In-nem;a'u g-gg g-gg g% gg; codes, windows of radiuB, of between three and five pixels

anari . . . . . . .
Milkdrop 371 | 366 | 364 357 achieve highest compression. .
Mri 349 | 348 | 325 | 3.13 Although Golomb-Rice coding is optimal for exponen-
Mskull 278 | 257 | 262 | 226 tially distributed sources, the main drawback of this method
Cfopm"zz 3‘22 :-gi :'gg 2'13 is that at least one bit must be sent for each pixel. This
Woman2 326 | 328 | 314 | 306 well-known limitation penalizes “simple” images having
Xray 263 | 263 | 252 2.56 long runs of errors having the same identical value (typically

Avg.(bpp) 445 443 435 4.28 zeros). Although we did not implement this solution, a

common fix to this problem is to detect long runs of symbols
by using a window), the contribution of the default probabil- and switch the encoding to the so-called “run length” mode.
ities become relevant and the encoder efficiency is compro-
mised. IV. RESULTS AND DISCUSSION
Although entropy coding contributes only marginally to Experiments were performed in order to assess the algo-

the complexity of our algorithm, the nature of the error dis- . . : .
o . : rithm on different test sets composed, respectively, of nine
tribution allows us to enhance the speed by implementing the.

entropy coding by mean of a low-complexity Golomb—Rice images ofr20'576 pixels, 16 images 012512 pixels, and
code Py gy P two images o256 256 pixels. These test sets are widely used

. . o for comparisons in the lossless data compression literature
Golomb-Rice codes are a particularization of the Golomb P P

. . ~and can be downloaded from several ftp sites, including [9]
codes introduced by S. W. Golomb in [1] to encode nonneg and [23]. All images were gray-level (continuous-tone) dig-

ative sym_bol run lengths. These COdET'S are characterized by|tized with a resolution of 8 bits/pixel (256 gray levels).
an encoding parametser that is constrained to be a power of - .
T . . We report our results by giving for each image the average
two. Nonnegative integers < 0 are encoded in two parts: a . . .
. . . number of bits used to encode a pixel (empirical entropy).
binary representation efinodm and a unary representation : . . . g ,
. i . . . Fig. 5 gives information on the efficiency of ALPC'’s pre-
of int(n/m); such codes are described in [14] and in [15]. . . o
i . ictors by comparing the entropy of the prediction error of
Because the parameter is a power of two, the operations o . ) . ) )
X L L . “'the simple fixed predictor used in LOCO-I with the entropy
modulus and integer division can be simplified to masking - ) .
. . - . of the prediction error achieved by our algorithm. The re-
bits and can be implemented very efficiently both in software - . . .
sults reported in Fig. 5 were obtained by using two predic-

and in hardware. tors and by optimizing the predictors in a window of radius
As described in [14], a further simplification can be in- Y op 9 P
R, = 10. As a reference, we also report the overall perfor-

troduced: The parameten that characterizes the distribu- . .
: . i . . mance of LOCO-I after the entropy coding that uses sophis-
tion can be reliably estimated by using the expectation of the . i

ticated context modeling.

magnitude of the prediction errors. To map prediction errors Itis evident how our adaptive linear predictors are (under-

Eﬁen%n;egiitlvaedg/(;alggssériV\é)eeJci):]dfelti]the distribution by using standably) much more powerful than the fixed predictor used
ppIng in LOCO-I; however, even when enriched by the classifica-

M(ERR(z, v)) tion, our adaptive prediction does not have enough power to
9. E}?R(az v) i ERR(x, y) > 0 capture edges and sharp transitions, present, for example, in
= {2 ) |ERR(357 ‘y)’| _ 1 otherwise the picture “hotel” (see bottom of Fig. 6).

Tables 2—4 summarize the experiments we made in order
Table 1 shows the results obtained on a set of test imagego understand the sensitivity of the algorithm to its param-
both for an adaptive Golomb—Rice coding and when deter- eters (number of predictors and window radii). In these ex-
mining the parametet in a windowW,, ,(R.) centered on  periments, we measured the variations on the compression
ERR(z, ¥). Experimentally we found that for Golomb—Rice achieved when parameters are changed one at a time.
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Fig. 6. Top: Magnitude (left) and sign (right) of the prediction error of the test image “Board.”
Bottom: Magnitude (left) and sign (right) of the prediction error of the test image “Hotel.”

Table 2

Entropy in Bits Per Pixel Versus Number of Predictors. Results
Shown for a Window of Radiu&,, = 6; Error is Coded by Using a
Simple Adaptive Arithmetic Encoder

Predictors 1 2 4 6 8
Baloon 2976 (29011 2.906| 2.898 | 2.899
Barb 4.39114.320 | 4.336 | 4.345 | 4.358
Barb2 4.827 1 4.836 | 4.911 | 4.956 | 4.988
Board 3.724 | 3.666 | 3.675| 3.670 | 3.677
Boats 4.055] 4.013 ] 4.040 | 4.042 | 4.062
Girl 3.935| 3.897 | 3.903 | 3.904 | 3.908
Gold 4.546 | 4.579 | 4605 4.618 | 4.636
Hotel 4.55314.570 | 4615| 4.630 | 4.644
Zelda 3.76313.739| 3.753| 3.765 | 3.771
Avg. (bpp) 4.086 4.058 4.082 4.092 4.105

Table 3

Entropy in Bits Per Pixel Versus Window Radifts-. The Number
of Predictors Used is Two; Prediction Error is Entropy Encoded by
Using a Simple Adaptive Arithmetic Encoder

Rp 6 8 10 12 14
Baloon 2.001 2.892 2.801 2894 2899
Barb 4320 4311 4.332 4347 4.362
Barb2 4.836 4.810 4748 4765 4.750
Board 3668 3671 3.683 3698 3714
Boats 4013 3986 3.977 3.978 3.983
Girl 3.897 3.881 3.879 3.885 3.891
Gold 4579 4540 4518 4515 4.515
Hotel 4570 4544 4.550 4556 4.563
Zelda 3.739 3724 3.720 3.721 3.725
Avg. (bpp)  4.058 4.040 4.033_ 4.040 4.045

1794

In Table 2, the number of predictors is changed while
keeping fixed the window radiu&, = 6; conversely, in
Table 3, the number of predictors is kept fixed at two and
the performance with respect the window size changes are
evaluated.

Both experiments described in Tables 2 and 3 were per-
formed by using a simple entropy coding scheme for the pre-
diction error: a single adaptive arithmetic coder. As we also
verified experimentally, the performance of a single adaptive
arithmetic encoder is a close approximation of the first-order
entropy of the prediction error.

Table 4 reports the conclusive experiments; the number of
predictors is kept fixed to twd?, = 10, and performance
is evaluated by encoding the prediction error with a proba-
bilistic model determined in a window. Results are reported
for changes in the value at..

Comparisons with some popular lossless image codecs
(see Tables 5, 6 and Fig. 7) show that the proposed algo-
rithm achieves good performance on most test set images.
The cases were we fall short of CALIC confirm that linear
prediction, even when combined with classification, is not
adequate to model image edginess. Also, unlike CALIC, our
codec does not use any special mode to encode high con-
trastimage zones, so our results are penalized by images like
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Table 4

Entropy in Bits Per Pixel Versus Error Window Radilis. Two
Predictors are Used ardd, = 10. Prediction Error is Encoded by
Determining the Model in a Window Centered On the Current Pixel

Re 6 8 10 12 14 16 18 20
Baloon 2.846 1284012840 [2.84212.845|2.848 | 2.851 | 2.853
Barb 4.213 {4180 | 4.168 [ 4.165 | 4.166 | 4.169 | 4.174 | 4.178
Barb2 4.582 4528 | 4500 | 4.480 | 4.484 | 4.483 | 4484 | 4.488
Board 3.608 | 3.595 | 3.591 | 3.592 | 3.594 | 3.597 | 3.600 | 3.603
Boats 3.932 13.900|3.889 [ 3.886 | 3.887 | 3.889 | 3.892 | 3.896
Girl 3.820 | 3.805 | 3.800 | 3.801 | 3.803 | 3.805 | 3.807 | 3.809
Gold 4487 14449 |4.431|442314.420 4418 | 4418 | 4418
Hotel 4.458 | 4.422[4.410 [ 4407 | 4.408 | 4410 [ 4.413 | 4.416
Zelda 3.671 365113642 |3638|3636]|3.635]3.636 | 3.636
Avg. (bpp) 3.958 3.930 3.919 3.916 3.916 3.917 3.919 3.922
Table 5

Final Compression Results (in Bits Per Pixel). Test Images are
720 x 756, 8 Bits/Pixel. The Number of Predictors Used in ALPC
is Two, and?, = 10. Entropy Encoding is Performed with an
Arithmetic Coder and the Model is Determined in a Window

of RadiusRk. = 10

CALIC LOCO-I Sunset UCM TMW ALPC
Baloon 2.78 2.90 2.89 281 | 260 | 2.84
Barb 4.31 4.69 4.64 444 | 383 | 416
Barb2 4.46 4.69 4.71 457 1 424 | 448
Board 3.51 3.68 3.72 3.567 | 3.27 | 3.59
Boats 3.78 3.93 3.99 3.85 | 353 | 3.89
Girls 3.72 3.93 3.90 3.81 3.47 | 3.80
Gold 4.35 4.48 4.60 445 | 422 | 442
Hotel 4.18 4.38 4.48 4.28 | 4.01 4.41
Zelda 3.69 3.89 3.79 3.80 | 3.50 | 364
Avgq. (bpp) 3.88 4.06 4.08 395 363 391

Table 6

Final Compression Results for the Another Test Set. Test Images
are512 x 512 (Except MRI and X-ray that arg56 x 256),

8 Bits/Pixel. Two Predictors are Used in These Experiments

and R, = 10. Entropy Encoding is Performed with an
Arithmetic Coder and the Model is Determined in a Window

of RadiusRk. = 10

CALIC LOCO- ALPC
Airplane 3.54 3.61 3.62
Airport 6.55 6.71 6.60
Crowd 3.76 3.91 4.03
Goldhill 4.63 4.71 4.66
Hursley 4.39 443 4.55
Lake 4.90 4.98 4.93
Landsat 3.99 4.08 4.04
Lax 5.63 5.78 5.75
Lena 4.11 4.25 4.05
Lenna 3.94 4.07 391
Mandrill 5.74 5.89 5.65
Milkdrop 3.56 3.63 3.57
Mri 3.15 3.36 3.13
Mskull 2.16 2.23 2.26
Peppers 4.20 4.29 4.16
Woman1 4.54 4.67 4.49
Woman2 3.20 3.20 3.06
Xray 2.59 2.46 2.56
Avg. (bpp) 4.26 4.36 4.28

“hotel” that have high-contrast regions. A closer look to the
prediction error magnitude and sign for “board” and “hotel,”

two images in the test set, shows that most of the edges inthe [9]

original image are still present in the prediction error (Fig. 7).

V. CONCLUSION

The results of our experiments on the test sets of standard
images are encouraging. With a better classification and
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Fig. 7. Graphical representation of the data in Table 5.

selection of the contexts in the prediction window and with
a more sophisticated encoding of the prediction error, it may
be possible to achieve stable and better results on all the
test images. Also critical in the encoding of the prediction
error is a careful determination of the probability of novel
symbols.

Also, itis likely that the computational complexity can be
substantially reduced without sacrificing the performance by
using alternative methods for the optimization of the predic-
tors [6]. Further reduction in the complexity was made pos-
sible by replacing the arithmetic coder with Golomb—Rice
codes.
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