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Tamm states of light are lossless interface modes decaying exponentially in the surrounding media. We show

that they can be formed at the boundary between two periodical dielectric structures, one having a period close

to the wavelength of light and another one having a period close to the double of the wavelength. The order of

layers at the interface has a crucial effect on the Tamm states. The in-plane dispersion of these states is

parabolic with effective masses slightly different for TE and TM polarizations, both of the order of 10−5 of the

free electron mass.

DOI: 10.1103/PhysRevB.72.233102 PACS number�s�: 78.68.�m, 42.70.Qs, 41.20.Jb, 42.25.Lc

Surface waves are a specific type of waves that are con-
fined at the boundary between two different media. They are
used in subwavelength microscopy, molecular chemistry,
cancer research, etc.1–3 The most popular kind of surface
wave is a plasmon formed at the boundary of metallic and
dielectric media. Recently, the possibility to organize lossless
surface waves at the interface between two dielectric media
has been discussed. Artigas and Torner4 have proposed to use
specially designed two-dimensional photonic crystals for ob-
servation of the so-called Dyakonov modes5 localized at the
surface of the crystal. The photonic structure plays the role
of a uniaxial dielectric medium having controllable refractive
indices for ordinary and extraordinary light modes.

In this Brief Report we propose another type of lossless
interface modes, which we call optical Tamm states �OTSs�
by analogy with well-known Tamm states for electrons at
crystal boundaries.6 Contrary to waveguided surface modes7

and to Dyakonov modes, Tamm states remain localized for
any value of the in-plane wave vector �including the zero
wave-vector�. OTSs are formed inside the “light cone” lim-
ited by a k=� /c condition, where k is the wave vector of
light and � is its frequency. Contrary to electronic Tamm
states, optical Tamm states cannot be formed at the surface,
but only at the interface between two photonic structures
having overlapping band gaps. We propose a simple planar
multilayer structure allowing for observation of the OTSs.
Ten years ago, one of us developed a theory of Tamm states
for electrons confined at the boundary of two semiconductor
superlattices.8 Now we have extended the method of Ref. 8
to describe OTSs. We show that they can be formed at the
interface between two periodic dielectric structures having
different periods. The OTS lies in the optical stop bands of
both parts of the structure. Its in-plane dispersion is parabolic
with an effective mass of the order of 10−5 of a free electron
mass. The splitting between TE and TM polarized Tamm
states increases quadratically with the in-plane wave vector.
We propose realistic multilayer structures based on the po-
rous silicon allowing for observation of the OTSs.

Let us consider the interface between two periodical di-
electric structures composed by the pairs of layers of thick-
nesses ar, br and refractive indices na, nb on the right-hand
side of the interface and thicknesses al, bl and indices na, nb

on the left-hand side of the interface �Fig. 1�a��. The Bloch

theorem allows representing eigenmodes of light in any infi-
nite periodical structure as products of periodical Bloch am-
plitudes and envelope functions, which are either plane
waves or real exponential functions of the coordinate. The
energy bands in which the eigenfunctions of light have ex-
ponentially decaying or increasing envelopes are called stop-
bands in photonic structures �a complete analogy with energy
gaps in solid crystals�. In our model structure, two different
semi-infinite periodic substructures have a common inter-
face. Our goal is to find the modes of light localized at this
interface �OTSs�. Evidently, their energies should lie in the
stop bands of both substructures. In each of them the OTS
coincides with one of the eigenmodes of light having an
envelope either exponentially increasing �in the left substruc-

FIG. 1. �a� Sketch of the interface between the right and the left

parts of our model structure. �b� The solid line shows the allowed

photonic band in the right substructure. The dashed line shows the

allowed photonic band in the left substructure. The energies are

shown of the pseudowave-vector q expressed in � /d units, d=al

+bl for the left structure, and d=ar+br for the right structure. The

flash shows the position of the OTS which is located within the

gaps of the two substructures.
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ture� or exponentially decreasing �in the right substructure�.
At the interface, continuity of the in-plane components of the
electric and magnetic fields of these modes must be assured
�as the Maxwell boundary conditions require�.

Following Born and Wolf,9 we introduce the transfer ma-

trices TL and TR describing the transfer of the vector � E�

H�
�

across the periods of the left and right substructure, respec-
tively. Here E� and H� are in-plane components of the elec-
tric and magnetic field. The elements of these 2�2 matrices
are dependent on the thicknesses and refractive indices of the
layers, frequency, in-plane wave vector, and polarization of
light. The dispersion equation for optical modes in periodic
structures writes

cos qd =
t11 + t22

2
, �1�

where q is the Bloch pseudo-wave-vector of light oriented
normally to the layer planes, d is the period of the structure,
t11, t22 are diagonal elements of the corresponding transfer
matrix. The stop bands are given by the condition

�t11 + t22� � 2. �2�

The matching of E� and H� at the interface between two
structures requires

�E�
L−

H�
L−� = �E�

R+

H�
R+� , �3�

where the left �right� part is the eigenvector corresponding
the mode decaying in the negative �positive� direction in the
left �right� substructure. Let XL

− and XR
+ be the eigenvalues of

the transfer matrices corresponding to these modes, so that
�XL

−��1 and �XR
+��1. Expressing the components of the

eigenvectors via eigenvalues and the elements of both matri-
ces, tij

L,R Ref. 8, one can easily obtain from �3�,

XL
− − t11

L

t12
L

=
XR

+ − t11
R

t12
R

. �4�

Equation �4� yields the energies of the OTSs and the in-plane
dispersion of these states. In order to find the OTSs, one
should solve Eq. �4� within the band gaps of both parts of the
structure.

What kind of structures can exhibit Tamm states? To get
an idea about it, let us express electric and magnetic fields in
Eq. �1� via reflection coefficients rL�R� for light incident from

the right �left� side of the interface on the left �right� part of
the structure. At normal incidence

E�
L− = 1 + rL, E�

R+ = A�1 + rR� ,

H�
L− = nb�1 − rR�, H�

R+ = Ana�rL − 1� . �5�

Within the stop bands, the reflection coefficients write

rL =
t12
L na − t11

L + XL
−

t12
L na + t11

L − XL
− � ei�L, �6�

rR =
t12
R nb + t11

R − XR
+

t12
R nb − t11

R + XR
+ � ei�R. �7�

As our left and right substructures are semi-infinite, in the
overlapping part of their stop bands �rR�= �rL�=1. Resolving
Eq. �3� with use of Eqs. �5�–�7� one can obtain the equation
for the eigenfrequencies of the OTSs in the following form:

tan��R/2�

tan��L/2�
= −

na

nb

. �8�

This equation is relatively easy to analyze as the phases of
reflection coefficients of periodic structures are well
known.10 As its right part is a finite negative number, two
tangents in the left part should take values of the opposite
sign but of the same order. Let us underline at this point, that
in one-dimensional photonic crystals the optical gaps may
appear either at the center or at the border of the Brillouin
zone, i.e., at either q=0 or q=� /d. The phase of the reflec-
tion coefficient of the structure equals to 0 at the center of the
stop band at q=0 and can be either 0 or � at the center of the
stop band at q=� /d dependent on whether the first layer of
the structure has a lower or higher refractive index than the
second layer, respectively. In all cases, the phase is a slowly
increasing function of the frequency of light. Clearly, it is
impossible to have both �L and �R close to �, having in
mind that necessarily in one substructure the first layer has
the high refractive index and in the other one the first layer
has the low refractive index. On the other hand, it is possible
to have both �L and �R close to 0. It is realized if, say, na

�nb, and the gap at q=0 in the left substructure overlaps
with the gap at q=� /d in the right substructure.

This kind of overlap can be realized, for example, be-
tween the first stop band of a perfect Bragg mirror, having

naar = nbbr � 	 , �9�

and the second stop band of a structure with almost twice
larger layers where the Bragg condition is almost satisfied, so
that

naal = 2	 + 
, nbbl = 2	 − 
 . �10�


 is introduced in order to open the gap at q=0 �
�	�.11

The photonic bands of two parts of the structure are shown in
Fig. 1�b�. We used the following set of parameters: na=1.4,
nb=2, naal=384 nm, nbbl=437 nm, naar=95 nm, and nbbr

=285 nm. The chosen values of refractive indices are easily
achievable, for instance, in porous silicon structures.12 De-
signing the right substructure, we have slightly detuned the
thicknesses of layers from those given by the Bragg condi-
tion �9� in order to tune �r, that allowed bringing the OTS
closer to the center of the stop bands of both substructures.

Figure 1�b� shows by a flash the energy of the OTS in our
model structure. Figure 2 shows the intensity of the electric
field of this mode as a function of the coordinate. Indeed, one
can see that the mode decays exponentially both in negative
and positive directions from the interface. The parameter of
decay of the Tamm states toward the left �right� substructure,
LL �LR�, is given by the eigenvalue of the corresponding

transfer matrix

LL = dL/ln�XL
−�, LR = − dR/ln�XR

+� , �11�

where dL �dR� is the period of the left �right� substructure.
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Interestingly, the Tamm states disappear if the order of
layers is inverted �i.e., if in the left �right� structure, the layer
with refractive index na �nb� goes first�. This can be easily

understood from Eq. �8�, the inversion of the number of lay-
ers changes �R by �, while �L remains almost constant.
Clearly, the left part of Eq. �8� changes drastically in this
case, and a solution can no longer be found.

At the energy of the Tamm state, the reflectivity spectrum
of the structure exhibits a sharp dip inside the stop-band, as
Fig. 3 shows. This calculation has been performed for a
finite-size structure having 25 pairs of layers in its left part
and 12 pairs of layers in its right part. This difference in the
number of pairs is needed to balance the reflection coeffi-
cients of the two substructures in order to achieve the highest
amplitude of the OTS feature. Changing the incidence angle
pushes the Tamm state toward higher energies as one can see
from the spectra in Fig. 3. Figure 4 shows the calculated
in-plane dispersion of the OTSs in our structure for TE- and
TM-polarized modes �i.e., modes having an electric field
vector and magnetic field vector in plane of the layers, re-

spectively�. It is essentially parabolic in both polarizations
and can be characterized by an effective mass of the order of
10−5 m0, where m0 is the free electron mass. The inset in Fig.
4 shows the splitting between TM- and TE-polarized OTSs.
It increases quadratically as a function of the in-plane wave
vector k. We checked that the dispersion curves obtained
solving Eq. �3� and extracted from the reflection spectra of
the model structure are exactly the same.

In order to estimate analytically the effective masses of
the surface modes we have expanded Eq. �2� into a Taylor
series over k and �����k�−��0�, where ��k� is the eigen-
frequency of the OTS. We assumed

��0�	/c 	 �/2. �12�

In this case compact expressions for the effective masses in
TE and TM polarizations can be obtained;

mef f
TE 	

�nbna

2



c	
, �13�

mef f
TM 	

�nb
2
na

2�nb + na�

2�nb
3 + na

3�



c	
. �14�

mef f
TE is about 5% heavier than mef f

TM in our case. The values
are very close to those which can be extracted from Fig. 4,
even though our right substructure is not exactly Bragg-
arranged.

In conclusion, optical Tamm states are a valuable alterna-
tive to the Dyakonov surface modes for realization of loss-
less localized photonic states in dielectric structures. They
appear at the interfaces between conventional periodic
multilayer structures and do not require in-plane modulation
of the dielectric constant. We have proposed a method of
designing the structures suitable for observation of the Tamm
states. Interestingly, the OTS is extremely sensitive to the
order of layers at the interface. In-plane dispersion of an
OTS is parabolic with effective masses lighter than the free
electron mass by a factor of 105.

This work has been supported by the Marie-Curie RTN
“Clermont2” �Contract No. MRTN-CT-2003-503677�.

FIG. 2. The solid bold line shows the electric field intensity

profile of the OTS within the proposed structure. The solid thin line

is for the corresponding refractive index profile. The dotted line is

for the interface between two substructures.

FIG. 3. Reflectivity spectra of our model structure calculated at

different incidence angles. Each curve is shifted by 1 with respect to

the preceding one. One can observe a dip and sharp peak within the

stop band of the structure associated OTS.

FIG. 4. Energy of the OTS as function of the in-plane wave

vector in TE �solid line� and TM �dashed line� polarizations. The

inset shows the energy difference between the TM and TE modes.
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