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Abstract: Reversible data hiding in encrypted images (RDH-EI) is instrumental in image privacy
protection and data embedding. However, conventional RDH-EI models, involving image providers,
data hiders, and receivers, limit the number of data hiders to one, which restricts its applicability in
scenarios requiring multiple data embedders. Therefore, the need for an RDH-EI accommodating
multiple data hiders, especially for copyright protection, has become crucial. Addressing this,
we introduce the application of Pixel Value Order (PVO) technology to encrypted reversible data
hiding, combined with the secret image sharing (SIS) scheme. This creates a novel scheme, PVO,
Chaotic System, Secret Sharing-based Reversible Data Hiding in Encrypted Image (PCSRDH-EI),
which satisfies the (k, n) threshold property. An image is partitioned into N shadow images, and
reconstruction is feasible when at least k shadow images are available. This method enables separate
data extraction and image decryption. Our scheme combines stream encryption, based on chaotic
systems, with secret sharing, underpinned by the Chinese remainder theorem (CRT), ensuring secure
secret sharing. Empirical tests show that PCSRDH-EI can reach a maximum embedding rate of
5.706 bpp, outperforming the state-of-the-art and demonstrating superior encryption effects.

Keywords: secret sharing; secure multi-party computing; reversible data hiding in encrypted domain

1. Introduction

Reversible data hiding (RDH) has evolved into a compelling methodology, facilitating
the embedding of confidential data within various forms of media. This spans sectors
such as military, medical, national governance, and copyright-protected content [1]. Tra-
ditional RDH research, conducted in the realm of plaintext, primarily revolves around
three data embedding techniques: histogram shifting [2], difference expansion [3], and
lossless compression [4]. The overarching objective of these methodologies is to augment
the embedding rate while enhancing the visual quality of the carrier images.

In summary, Reversible Data Hiding (RDH) technology is a robust tool for reversibly
embedding confidential data without damaging the original carrier. Its applications are
expansive, and it proves particularly beneficial in sensitive sectors where data security
is imperative. However, for content-sensitive scenarios, it is necessary to employ en-
cryption techniques to develop an Encrypted Domain Reversible Data Hiding (RDH-EI)
method, suitable for information-sensitive situations. These encryption techniques secure
image content by transforming the original image into an unintelligible version using an
encryption key.

RDH in encrypted images (RDH-EI) is especially advantageous in sensitive fields
where data security is paramount. Despite its limitation in multiple data hider scenarios,
the inherent reversibility of RDH technology makes it an optimal choice for situations
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demanding zero tolerance for image loss. An encrypted domain RDH-EI method, suitable
for content-sensitive scenarios, can be developed using encryption techniques.

The traditional RDH-EI model restricts the number of data providers and data hiders
to a single entity, limiting its applicability in multiple data hider scenarios. However,
the crucial feature of reversibility permits perfect reconstruction of the original carrier
during covert data extraction. This attribute renders RDH technology an ideal choice
for scenarios necessitating zero tolerance for image loss, such as satellite imagery in the
military, government images in judicial determinations, and medical imaging in healthcare.

RDH-EI is a subset of Reversible Data Hiding in Encrypted Domain (RDH-ED) [5],
effectively resolves the issue of embedding and extracting confidential data from encrypted
images. In this technique, the encrypted image data serves as the carrier. The data can be
embedded into the encrypted image without causing any pixel loss in the carrier image
during extraction.

As shown in Figure 1, according to the differences in secret data embedding models,
we divide RDH-EI into three categories.

Figure 1. Literature review of RDH-EI, in which three categories of reversible data hiding with
encryption methods can be identified: Vacating Room After Encryption (VRAE), Vacating Room
Before Encryption (VRBE), and Vacating Room In Encryption (VRIE).

(a) Vacating Room After Encryption (VRAE). In the framework of VRAE, Puech et al. [6]
first proposed the method of vacating room after AES encryption, in which additional
data can only be extracted according to the local standard deviation of the image
before decryption of the token image; subsequently, Zhang et al. [5] vacated space
by flipping the three lowest significant bits after encryption based on stream ciphers,
and secret data can only be extracted using the fluctuation function defined by the
local characteristics of the image after decryption of the token image; in order to
achieve the separability of the algorithm, Zhang et al. [7] first proposed a separable
scheme by losslessly compressing the ciphertext image to generate redundancy, but
its embedding capacity is low.

(b) Vacating Room Before Encryption (VRBE). The VRBE mode is used to generate redun-
dancy by using image correlation or other pre-processing operations before image
encryption, and its implementation methods are mainly based on lossless compres-
sion [8], pixel prediction [9–11], and frequency domain transformation [12].

(c) Vacating Room In Encryption (VRIE). (1) Homomorphic encryption-based VRIE.
Zhang et al. [13] proposed the RDH-EI scheme based on VRIE by quantizing the
encrypted domain after LWE encryption and using the redundancy generated by
ciphertext expansion to embed secret data; Huang et al. [14] used prediction error to
free up redundant space during stream cipher encryption to enhance the embedding
capacity. In recent years, Chen et al. [15] proposed an algorithm based on Paillier pub-
lic key encryption, which uses the homomorphic property to embed information in the
ciphertext domain, and the decrypted plaintext still maintains the relevant properties
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of the embedded information, but there is partial pixel overflow after embedding the
information; Wu et al. [16] improved the method of the literature [15] by solving the
overflow problem, and the security of the homomorphic encryption algorithm relies
on long keys, which increases the computational overhead and brings about severe
data scaling. (2) Secret Sharing-based VRIE. Secret sharing techniques are widely
applied in edge computing [17], data sharing [18], and outsourcing computing [19].
Thien and Lin [20] first proposed the concept of secret image sharing in 2002, which
is based on the idea of secret sharing (SS) proposed by Shamir [21] in 1979. This
technique can effectively solve the data extension problem of the RDH-EI algorithm
based on homomorphic encryption, and Wu et al. [22] first proposed the RDH-ED
algorithm based on secret sharing encryption, which splits the carrier image into
multiple shadow images of the same size as the carrier image with secret sharing
encryption, and then embeds the secret data into the shadow images by means of
difference expansion and prediction error histogram translation. The problems of
high encryption overhead and serious data expansion are effectively solved. As an
important multi-party secure cryptosystem, this method uses a threshold function to
address important data shares multiplied by different shares stored at different users.
Chen et al. [23] further reduced the time complexity by embedding secret data into a
pair of pixels using the additive homomorphism property of multiple secret sharing
and combining the difference expansion. Ke et al. [24] proposed a separable RDH-ED
based on the Chinese residue theorem separable RDH-ED, which achieves separability
by combining two embedding methods. In 2022, Xiong et al. [25] proposed an RDH-EI
scheme, which uses Asmuth-Bloom’s secret sharing scheme based on the CRT to
divide the pixels into several secret share subgraphs, but the embedding efficiency
(0.5 bpp) of this method still has room for optimization.

To solve the problems of low embedding efficiency, low embedding capacity, complex
auxiliary information for embedding, and the limited number of embedding parties in
RDH-EI, we propose a lossless RDH-EI method for multiple data hiders based on PVO
and secret sharing. Compared with the existing RDH-EI based on secret sharing, we
put forward a new method for the first time, which combines an Arnold cat map and a
logistic equation [26] with a CRT-based secret sharing scheme and adds PVO technology,
which improves the embedding rate and encryption efficiency while improving security.
In addition, unlike other RDH-EI that requires auxiliary information and guiding images,
the proposed method in this paper does not need to send guiding images. However, the
data hider can automatically convert the shadow image into the guide image by using the
data embedding key, which can significantly improve the embedding efficiency.

Main contributions of this paper. This paper describes the main contributions of a
lossless RDH-EI (Reversible Data Hiding in Encrypted Images) method for multiple data
hiders, based on PVO (Pixel Value Order) and secret sharing. The following are the key
contributions of the proposed method:

Novel PCSRDH-EI Method: This paper introduces an innovative lossless RDH-EI
method, which allows for multiple data hiders to embed data in encrypted images without
any loss. This method is based on the PVO chaotic system and secret sharing, achieving
a maximum embedding rate and surpassing existing methods, as well as significantly
improving encryption efficiency and effect.

Enhanced Security with Combined Techniques: Combining stream encryption and
secret sharing technology, this paper ensures a secure environment for data hiders to embed
their data without fear of leaks. Additionally, the proposed scheme guarantees lossless
data embedding and extraction, preserving the original image digital assets and enabling
full recovery.

No Extra Guide Parameters Required: The proposed scheme does not require any
extra guide parameters. By embedding/extracting the key, the data hider can transform the
shadow image into an guide image that does not expose the original content information,
thereby improving the usability of the scheme.
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Organization of this paper. We divide our paper into five sections. Section 1 describes
the research area and the existing schemes’ shortcomings and details the paper’s main
contributions. Section 2 presents the specific details of the proposed scheme. In Section 3,
we give a precise analysis and demonstration of our scheme. Section 4 presents the scheme’s
effectiveness and a detailed comparison with the state-of-the-art encryption techniques.
In Section 5, we give a summary and outlook of our work.

2. PCSRDH-EI Method

In this section, we provide a detailed description of our proposed method. As depicted
in Figure 2, our model involves three key participants: an image owner, a minimum of
three data hiders, and at least one receiver. The primary stages of our method encompass
image encryption, shadow image creation, data embedding, data extraction, and carrier
image recovery.

During the Image Encryption phase, the image owner divides the image into blocks
and implements coarse-grained disruption encryption between these blocks. They further
apply fine-grained encryption algorithms and the PVO algorithm within the blocks to
enhance the security of the encrypted image.

In the Shadow Image Generation phase, the image owner partitions the encrypted
image into numerous shadow images and distributes them to a predetermined number
of data hiders. This measure ensures that no individual data hider can access the entire
image, thereby augmenting the security of the scheme.

During the Data Embedding stage, each data hider employs the embedding secret
key to produce the embedding guide map and embeds the confidential data within their
respective shadow images. This procedure ensures the dispersion of the embedded data
across multiple shadow images, which further bolsters the scheme’s security.

In the Embedded Data Extraction and Image Recovery phase, the receiver employs
the secret extraction key to retrieve the embedded data from the shadow images. Upon
amassing a minimum of ’k’ secret shares, the receiver can flawlessly recover the carrier
image by integrating these shares with the encryption key.

Figure 2. The framework of our scheme. The scenario of our method has one image owner, at
least three data hiders, and at least one receiver. The main steps are ¬ coarse-grained encryption,
 fine-grained encryption, ® shadow image generation, ¯ guide image generation, ° difference
generation, ± data embedding, ² embedded data extraction, and ³ carrier image recovery.
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2.1. Image Encryption

The image owner splits a carrier image of size H ×W into non-overlapping sub-
blocks of size 2 × 2 and the number dH/2 ×W/2e, where H is the height of the im-
age and W is the width of the image. ih,w is the pixel value at location (h, w), where
Ih,w ∈ [0, 255], 1 ≤ h ≤ H, 1 ≤ w ≤ W. Each block has a number in order, numbered
in the range 1,2,...,dH/2×W/2e. This section divides encryption into two main steps:
coarse-grained and fine-grained. The encryption unit of coarse-grained encryption is a
2 × 2 non-overlapping sub-block, the encryption algorithm is Arnold’s cat map, and the
target of fine-grained encryption is the four pixels inside the non-overlapping sub-block,
which is implemented as Algorithm 1.

Algorithm 1 Image encryption.

Input: The original image I(H ×W), coarse-grained encryption key Kc ← (p, q), fine-
grained encryption key K f ← (η, x0, ∀).
Output: The encrypted image I′

1. Initialize h← 0, w← 0, s← 0, t← 0
2. Use Kc to encrypt the original image I by Equation (2) and obtain I∗

3. Use K f to generate the fine-grained encryption stream σ by Equation (3)
4. while h ≤ H do
5. While w ≤W do
6. I′h,w = I∗h,w + (σs,t mod 256) + 256
7. w← w + 1
8. s = bh/2c, t = bw/2c
9. end while

10. h← h + 1
11. s = bh/2c, t = bw/2c
12. end while
13. Return I′

Secret key definition. The implementation of encryption or decryption methods, as
described in the work by [27], requires both the sender and the recipient of the image to
possess a secret key SK. This unique key consists of two parts: a coarse-grained encryption
key denoted as Kc ← (p, q) and a fine-grained encryption key denoted as K f ← (η, x0, ∀).
This secret key is generated from 65 hexadecimal digits (260 bits), ranging from P1 to P52,
and used to compute the initial conditions and control parameters of the chaotic mapping
using the expression indicated below:

Kc1 = (P1, P2, . . . , P13)10

Kc2 = (P14, P15, . . . , P26)10

K f 1 =
(P27, P38, . . . , P39)10

252 + 1
× 10−8

K f 2 =
(P40, P41, . . . , P52)10

252 + 1
K f 3 = (P53, P54, . . . , P65)10

(1)

In which Kc1, Kc2, K f 3 belong to (0, 252), and K f 1, K f 2 belong to (0, 1).
Coarse-grained encryption. Before the image owner splits the image into shadow

images, the image needs to be scrambled to ensure its security. Since the fine-grained
encryption only needs to satisfy the randomness to generate the scrambling table, and the
test sets used in this paper are square matrix, i.e., H = W, this paper uses a two-dimensional
Arnold’s cat map to generate the scrambling table. For the case of H 6= W, other similar
random number sorting algorithms can be used to generate the scrambling table, which
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this paper will not discuss. The image owner uses the coarse-grained encryption key
Kc ← (p, q) as the secret seed key and performs[

xn+1
yn+1

]
←
[

1 p
q pq + 1

][
xn
yn

]
mod N (2)

where (xn, yn) is the position coordinates of the image block in the original image, (xn+1, yn+1)
is the transformed position, mod is the modulus operation, and N is the size of the im-
age; the image must be square. Otherwise, it does not have the condition of the Arnold
transform, for rectangular images can also be converted into a square way for topological
reasoning. Each coordinate has a unique new coordinate corresponding to it after permuta-
tion, which means that each image block has a unique position to mark the position after
permutation, and the image encryption procedure is formulated by

1 ≤ t ≤ dH/2×W/2e, which is the t-th encrypted image block. I is the carrier image
and I∗ is the coarse-grained encrypted image.

Fine-grained encryption. In the proposed scheme, there is no restriction on the specific
scrambling method, and we take the enlarged 1D logical mapping as an example. 1D
logical mapping only needs to save the seed key, the enlargement factor, and the length of
the generated 1D stream, which significantly saves the storage space and the efficiency of
crucial transmission. The image owner uses the fine-grained encryption key K f ← (η, x0, ∀)
to generate a random stream by

xr+1 = ηxr(1− xr) (3)

Furthermore, the generated sequence x =
(

x1, x2, · · · xdH/2×W/2e

)
is enlarged by a

factor of ∀ and rounded down, to obtain the size dH/2×W/2e, and perform the following
encryption operation:

I′h,w = I∗h,w + (σs,t mod 256) + 256 (4)

where I′h,w is the result of the image owner’s encryption using the key K f , where i and j
denote rows and columns, respectively, where h = 1, 2, . . . , H, w = 1, 2, . . . , W. Ih,w and I′h,w
are the ciphertext and plaintext at (h, w), respectively.

Moreover, Tfs,t is the key corresponding to the (s, t)th image block in Tf , where
s = [h/2], t = dw/2e, at the block level, the image owner uses fine-grained encryption by

I′
(

I′(1), I′(2), · · · , I′(dH/2×W/2e)
)
= Encfine

(
I∗, K f

)
(5)

where I∗ is the block-level data after coarse-grained encryption, I′ is the block-level
data after coarse-grained encryption, and 1 ≤ t ≤ dH/2×W/2e is the t-th encrypted
image block.

2.2. Shadow Image Generation

Since the encryption algorithm in this paper employs a permutation algorithm between
blocks, there is no scrambling algorithm for pixels between blocks. The RDH algorithm
based on histogram shifting (HS) can meet the user’s needs. When the data hider receives
the encrypted share, the secure multi-party embedding is performed under the guidance of
the dealer. The data distributor can collect encrypted secret data and initiate the embedding
phase in a practical application with multiple users and messages. By involving data
distributors, communication between multiple data hiders can be avoided. Data hiding
based on histogram embedding can be performed on encrypted domains, achieving the
high visual quality of the tagged images. Watermark embedding is divided into three
main steps. Algorithm 2 demonstrates the detailed algorithmic process in the form of
pseudo-code.
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Algorithm 2 Shadow image generation.

Input: The encrypted image I′, share generation key Kg = (ϑ, Mb), number of shadow
images n
Output: The shadow images τ, position correspondence table v
1. Initialize h← 0, w← 0
2. while h ≤ H/2 do
3. While w ≤W/2 do
4. δ1 ← x[h, w], δ2 ← x[h + 1, w], δ3 ← x[h, w + 1], δ4 ← x[h + 1, w + 1]
5. Record the original position [δ1, δ2, δ3, δ4] in v[h, w]
6. Sort x[h, w] by Equation (6) to get {δ′1, δ′2, δ′3, δ′4} and x′[h, w]
7. Computes dmax = δ′4 − δ′3, dmin = δ′1 − δ′2
8. w← w + 1, t = dw/2e
9. end while

10. h← h + 1, s = dh/2e
11. end while
12, while h ≤ H do
13. While w ≤W do
14. While i ≤ n do
15. τi(h, w) = ϑ(x(h, w)) mod Mb(i)

16. i← i + 1
17. end while
18. w← w + 1
19. end while
20. h← h + 1
21. end while
22. Return τ

2.2.1. Pixel Value Order

Intra-block ascending mapping. For a block of 2× 2 pixels δ = (δ1, δ2, δ3, δ4), the image
owner computes the new block of pixels utilizing an ascending ordering algorithm:(

δ′1, δ′2, δ′3, δ′4
)
← PVO(δ1, δ2, δ3, δ4) (6)

where the set
(
δ′1, δ′2, δ′3, δ′4

)
to the set (δ1, δ2, δ3, δ4) is a full projection and satisfies

δ′1 ≤ δ′2 ≤ δ′3 ≤ δ′4 (7)

Therefore, the two largest values δ′4 and δ′3 can predict the value of the other with the
value of one, and δ1 and δ′2 can also predict the value of the other with the value of one,
and their prediction differences are{

dmax = δ′4 − δ′3
dmin = δ′1 − δ′2

(8)

dmax and dmin are the maximum and minimum prediction errors in the image chunks,
respectively. For the result of I′ after the fine-grained encryption of the image, and after
repeating the same PosCon-operation, we can obtain dmax and dmin for all chunks of the
whole image, and calculate the histograms of the maximum prediction error and minimum
prediction error accordingly.

In addition, the image owner uses 00,01,10,11 to denote the original pixel positions
(1,2,3,4) matched by the scrambled pixels, respectively, and saves the original position
correspondence table v corresponding to the scrambled image pixels.
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2.2.2. Key Generation

Shadow recovery key generation. For the secret sharing scheme with a (k, n) threshold, we
choose a set of modules Mb =

{
Mb(1), Mb(2), · · · , Mb(n)

}
, where the elements in Mb satisfy{

128 < Mb(1) < Mb(2) < · · · < Mb(n) ≤ 251 < Mp
}

, satisfying the following conditions:

gcd
(

Mb(i), Mb(j)
)
= 1, i 6= j (9)

gcd
(

Mb(j), Mp
)
= 1, i = 1, 2, . . . , n (10)

Mp =
k

∏
i=1

Mb(i) (11)

In addition, we set the secret key ϑ to satisfy the following relation:

ϑ ∈ Z(∏k
i=1 Mb(i))(28−1) (12)

gcd
(

Mb(i), ϑ
)
= 1, i = 1, 2, . . . , n (13)

Then, the shadow image is generated by Kg ← (ϑ, Mb).
Embedding key generation. The randomly chosen integer ϑ is the secret key, and using

the equivalence property of congruence since ϑ is the amplification parameter, the following
two calculations have equivalence conditions under mod b:

xϑ mod b⇔ x(ϑ mod b) mod b (14)
Therefore, firstly, ϑ is converted into the residue form of ai = ϑ mod Mbi, and the

secret parameter ϑ can be guaranteed not to be revealed without exposing a certain number
of Mbi. The generated key is Ka ← (Mb, a, ∆, χ), ∆ is the threshold parameter which
determines the embedding payload, pixels exceeding the threshold ∆ are panned, and
those within the threshold ∆ are embedded. The size of ∆ will affect the visual quality of
the labeled image. For example, when increasing, the embedding payload will increase,
but the visual quality will decrease.

2.2.3. Shadow Image Generation

Unlike the scheme proposed by Xiong et al. [25] which only adds large random
numbers (only addition), the secret sharing scheme used in this paper uses the method of
adding perturbations first and then scaling up (a combination of addition and multiplica-
tion) to improve security. For a single pixel value, x(h, w), h = 1, 2, . . . , H, w = 1, 2, . . . , W,
an image of size H ×W, and the encryption key Kg = (ϑ, Mb), let us calculate

ϑ(x(h, w)) = τ1(h, w) mod Mb(1)

ϑ(x(h, w)) = τ2(h, w) mod Mb(2)

. . .

ϑ(x(h, w)) = τn(h, w) mod Mb(n)

(15)

where τ1(h, w) τ2(h, w), . . . , τn(h, w) represent the secret shares split by the pixel values at
position (h,w) in the image, and the n secret shadow images after splitting (τ(1), τ(2), · · · , τ(n))

are sent to the corresponding data embedders DH(i) for i = 1, 2, . . . , n.

2.3. Data Embedding

Since the same noise is added to each image sub-block during fine-grained encryption,
the differences between pixels do not change, which means that additional information
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can be embedded in the DH embedding data using homomorphic embedding. A module
homomorphic embedding approach is adopted in this paper, in which any shadow image
after image segmentation is used as a carrier. The additive homomorphic property of
secret sharing is taken advantage of so that the data hider can embed all extra data into
the shadow image independently. This algorithm can extract the extra data rapidly from
the newly generated shadow image. It is convenient for multiple users to tag, manage,
and retrieve secret texts independently too improve the embedding efficiency, i.e., to embed
as much data as possible with fewer modifications. Importantly, each data hider owns
an independent shadow image and can produce the embedding instruction and data
embedding images independently. Consequently, the embedding capacity scales linearly
with the number of data hiders, such that the overall capacity is obtained by multiplying
the capacity of a single image by the number of hiders involved. Algorithm 3 demonstrates
the detailed algorithmic process in the form of pseudo-code.

Algorithm 3 Distributed data embedding.

Input: The secret share of the i-th embedding party τi, data embedding key Ka ←
(Mb, a, ∆, χ), data to be embedded ci ← {ci0 , ci1}.
Output: The i-th embedded shadow image Si
1. Initialize h← 0, w← 0
2, while h ≤ H/2 do
3. While w ≤W/2 do
4. δ1 ← τ′i [2h, 2w], δ2 ← τ′i [2h + 1, 2w]
5. δ3 ← τ′i [2h, 2w + 1], δ4 ← τ′i [2h + 1, 2w + 1]
6. δ̇j = δja(i) mod Mb(i), j = 1, 2, 3, 4
7. Compute dmax[h, w], dmin[h, w] by Equations (17) and (18)
8. Embed ci1 [h, w] into δ′4 by Equation (19) and ci0 [h, w] into δ′1 by Equation (20)
9. Si[2h, 2w]← δ′1, Si[2h + 1, 2w]← δ2

10. Si[2h, 2w + 1]← δ3, Si[2h + 1, 2w + 1]← δ′4
11. w← w + 1
12. end while
13. h← h + 1
14. end while
15. Return Si

Upon receiving the image to be embedded τ(i), DH(i) divides it into non-overlapping
2× 2 sub-blocks. We denote the block at position (h, w) as {δ1[h, w], δ2[h, w], δ3[h, w], δ4[h, w]}
(for ease of writing, we abbreviate it as {δ1, δ2, δ3, δ4}) and embed ci[h, w] ← {ci0 , ci1}).
Specifically, ci0 [h, w] is embedded into δ1 while ci1 [h, w] is embedded into δ4. To obtain a
difference histogram that encodes the image difference information, we employ the secret
extraction key Ka as follows:

δ̇j = δja(i) mod Mb(i), j = 1, 2, 3, 4 (16)

Prediction error recovery. For a single 2× 2 pixel block, the four elements within
the block perform sum and mode operations using the same cryptographic secret key.
This means that the difference between any two pixels within the block should satisfy the
ascending ordering, and thus the true prediction error is recovered in the following manner:

dmax[h, w] =

{
δ̇4 − δ̇3, i f : δ̇4 − δ̇3 ≥ 0

δ̇4 − δ̇3 + Mb(i), i f : δ̇4 − δ̇3 < 0
(17)

dmin[h, w] =

{
δ̇1 − δ̇2, i f : δ̇1 − δ̇2 ≤ 0

δ̇1 − δ̇2 −Mb(i), i f : δ̇1 − δ̇2 > 0
(18)

The difference histograms are mainly concentrated around the value of 0, and the
prediction error statistics of ciphertext images are the same as those of plaintext images,
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so the prediction error statistics of ciphertext images retain the statistical characteristics of
plaintext. The prediction error histogram of a raw image is generally Laplacian, so we can
use the histogram shifting technique to hide the data in the ciphertext image.

Histogram embedding. We perform the translation embedding in two prediction
error histograms of the ciphertext image. It is worth noting that, in addition to the 0 value,
several histograms of its nearby values are also high, so we utilize multiple histogram
embeddings to increase the embedding capacity. In addition, due to the unique nature
of module homomorphic secret sharing in this paper, the selected module bases are less
than 252. Therefore, the data overflow before secret sharing will not affect the embedding
flags and results after secret sharing in the all-position embeddable histogram translation
embedding method.The image owner can use an additional auxiliary information table
to cooperate with data embedding and extraction. Therefore, the histogram panning
embedding method based on secret sharing can effectively solve the problem of possible
overflow and underflow during the data panning process.

We set the storage threshold at ∆, pixels exceeding the threshold ∆ are shifted, those
within the threshold ∆ are embedded, and according to the prediction error dmax , the
data c1 are embedded by shifting the maximum value δ4, the maximum value of possible
embedding is χ, and the data embedding algorithm embed(τ) is executed, so the data
embedding is performed by

δ′4 ←
{

δ4 + c1[h, w]∆ if 0 ≤ dmax [h, w] ≤ ∆
δ4 + χ∆ else

(19)

According to the equation prediction error dmin , embedding the data c0 by shifting
the minimum δ1, the data embedding is performed by

δ′1 ←
{

δ1 − c0[h, w]∆ if − ∆ ≤ d(i)min ≤ 0
δ1 − χ∆ else

(20)

The embedding algorithm is executed on all image blocks of the image to obtain the la-
beled image S(i) = embed(τ(i)), and send it to the corresponding receiver(i),
i = 1, 2, · · · n.

2.4. Data Extraction

When the secret data are embedded into the encrypted shadow share, the receiver can
collect the tagged encrypted shadow images from different data hiders. Upon receiving the
extraction secret key K(i)

a that corresponds to the Share(i) of the i-th shadow image, the i-th
receiver can recover the embedded data individually. At position (h, w) of S(i), the block
is denoted as {δ1[h, w], δ2[h, w], δ3[h, w], δ4[h, w]} (for ease of writing, we abbreviate it as
{δ1, δ2, δ3, δ4}). We extract w[h, w]← {c′0[h, w], c′1[h, w]}, wherein c′0[h, w] is extracted into
δ1, and c′1[h, w] is extracted into δ4. Moreover, we can obtain dmax[h, w] and dmin[h, w] using
the same method as in Equations (16)–(18).

Iterating through all the storage blocks of the block, we obtain the computational
prediction error dmax[h, w] and dmin[h, w]. From the nature of the 2× 2 pixel-based block,
it is known that there are two positions within the block where the data can be embedded,
and the possible embedded data are w̃0 by Equation (21) and w̃1 by Equation (22).

w̃0[h, w] =



⌊
d(i)max(h, w)/∆

⌋
if ∆ < d(i)max(h, w) ≤ χ∆ and d(i)min(h, w)/∆ 6= 0(

d(i)max(h, w)/∆
)
− 1 if ∆ < d(i)max(h, w) ≤ χ∆ and d(i)min(h, w)/∆ = 0

0 if 0 < d(i)max(h, w) ≤ ∆

NULL if χ∆ < d(i)max(h, w)

(21)
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w̃1[h, w] =



⌊
|d(i)min(h, w)/∆|

⌋
if ∆ <

∣∣∣d(i)min(h, w)
∣∣∣ ≤ χ∆ and d(i)min(h, w)/∆ 6= 0∣∣∣d(i)min(h, w)/∆

∣∣∣− 1 if ∆ <
∣∣∣d(i)min(h, w)

∣∣∣ ≤ χ∆ and d(i)min(h, w)/∆ = 0

0 if 0 <
∣∣∣d(i)min(h, w)

∣∣∣ ≤ ∆

NULL if χ∆ <
∣∣∣d(i)min(h, w)

∣∣∣
(22)

Iterate over all blocks and recover all embedded data. Algorithm 4 demonstrates the
detailed algorithmic process in the form of pseudo-code.

Algorithm 4 Data extraction.

Input: The i-th embedded shadow image Si, data extraction key Ka ← (Mb, a, ∆, χ).
Output: The extracted data c′

1. Initialize h← 0, w← 0
2, while h ≤ H/2 do
3. While w ≤W/2 do
4. δ1 ← S′i[2h, 2w], δ2 ← S′i[2h + 1, 2w]
5. δ3 ← S′i[2h, 2w + 1], δ4 ← S′i[2h + 1, 2w + 1]
6. δ̇j = δja(i) mod Mb(i), j = 1, 2, 3, 4
7. Compute dmax[h, w], dmin[h, w] by Equations (17) and (18)
8. Extract c′1[h, w] from δ′4 by Equation (21)
9. Extract c′0[h, w] from δ′1 by Equation (22)
10. w← w + 1

11. end while
12. h← h + 1
13. end while
14. Return c′

2.5. Image Recovery

Algorithm 5 demonstrates the detailed algorithmic process of image recovery in the
form of pseudo-code. After receiving the secret shares of k, the image owner first uses the
inverse theorem based on the residual theorem of the Chinese Remainder to obtain the
fine-grained encrypted digital image data. For the share of the hth row and wth column of
the image S1(h, w),S2(h, w), . . . ,Sk(h, w), S(i)4 (h, w) and Ṡ(i)1 (h, w) can be recovered by

Ṡ(i)4 (h, w) =



S(i)4 (h, w)−
⌊

d(i)max(h, w)/∆
⌋

∆ mod Mbi if w̃0 =
⌊

d(i)max(h, w)/∆
⌋

S(i)4 (h, w)− d(i)max(h, w) + ∆ mod Mbi if w̃0 =
(

d(i)max(h, w)/∆
)
− 1

S(i)4 (h, w) mod Mbi if w̃0 = 0

S(i)4 (h, w)− ∆χ mod Mbi if w̃0 = NULL

(23)

Ṡ(i)1 (h, w) =



S(i)1 (h, w) +
⌊
|d(i)min(h, w)/∆|

⌋
∆ mod Mbi if w̃1 =

⌊
|d(i)min(h, w)/∆|

⌋
S(i)1 (h, w)− d(i)min(h, w)− ∆ if w̃1 =

∣∣∣d(i)min(h, w)/∆
∣∣∣− 1

S(i)1 (h, w) mod Mbi if w̃1 = 0

S(i)1 (h, w) + ∆χ mod Mbi if w̃1 = NULL

(24)
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The secret can be recovered by executing the following secret recovery algorithm:

Ĩ(h, w) =
k

∑
i=1

MiSi(h, w)M−1
i mod Mp

Mi = Mp/Mbi

Mi M−1
i = 1 mod Mp

(25)

Algorithm 5 Image recovery.

Input: The i-th embedded shadow image Si, data extraction key Ka ← (Mb, a, ∆, χ),
decryption key Kc and K f , position correspondence table v.
Output: Recovered image

1. Initialize h← 0, w← 0
2, while h ≤ H/2 do
3. While w ≤W/2 do
4. δ1 ← S′i[2h, 2w], δ2 ← S′i[2h + 1, 2w]
5. δ3 ← S′i[2h, 2w + 1], δ4 ← S′i[2h + 1, 2w + 1]
6. δ̇j = δja(i) mod Mb(i), j = 1, 2, 3, 4
7. Compute dmax[h, w], dmin[h, w] by Equations (17) and (18)
8. Recover Ṡ(i)4 [h, w] by Equation (23) and Ṡ(i)1 [h, w] by Equation (24)
9. Recover Ṡ[h, w] by Equation (25)

10. w← w + 1
11. end while
12. h← h + 1
13. end while
14. Recovery I by Equation (26)–(28)
15. Return I

After recovering the secret sub share, a fine-grained decryption algorithm is executed,
and it is decrypted by

I∗(h, w) = Ĩ(h, w)− 256−
(

Tfs,t mod 256
)

(26)

where Ĩ(h, w) is the decryption result obtained by the image owner using the secret recovery
algorithm, Ii,j and I′i,j are the (h, w) ciphertext and plaintext, respectively. Tfs,t is the key
corresponding to the (s, t) image block in Tf , where s = dh/2e, t = dw/2e. After finishing
the coarse-grained decryption, the IO executes the coarse-grained decryption algorithm
using the key Kc and finishes the decryption to obtain the lossless carrier image I:[

xn+1
yn+1

]
=

[
pq + 1 −p
−q 1

][
xn
yn

]
mod N (27)

I
(

I(1), I(2), · · · , I([H/2×W/2])
)
= Deccoarse (I∗, Kc) (28)

The method proposed in this paper has significant social impact in fields such as
military imagery, remote healthcare, and forensic investigation. These fields demand the
assurance of data security and integrity, which the proposed method can improve and
ensure. As a multi-party secure cryptographic system, it can enhance data disaster recovery
through secret sharing properties and have a positive effect on data security.

3. Demonstration and Analysis
3.1. Method Demonstration

In the last section, we introduced the specific details of our proposed protocol. To better
understand the proposed method, in this chapter, we show the whole method in distri-
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butions. That is, the image encryption example diagram, secret split example diagram,
data embedding example diagram, and data extraction example diagram; additionally, the
extraction of feature images is integrated into the overall framework.

We will give a concrete example of the protocol and give an analysis and security proof
of the protocol. We will take four 2 × 2 image blocks as an example and set the parameters
of (k, n) secret sharing as 4 and 5.

Image encryption. As shown in Figure 3, let an image with 16 original pixels be I.
The image is divided into four 2 × 2 dot blocks (I(1), I(2), I(3), I(4)), and pixels of the same
color are grouped together in the image encryption example diagram:

I(1) =
(

I(1)1 , I(1)2 , I(1)3 , I(1)4

)
= (159, 152, 151, 158)

I(2) =
(

I(2)1 , I(2)2 , I(3)3 , I(4)4

)
= (152, 152, 154, 153)

I(3) =
(

I(3)1 , I(3)2 , I(3)3 , I(3)4

)
= (151, 158, 153, 160)

I(4) =
(

I(4)1 , I(4)2 , I(4)3 , I(4)4

)
= (156, 156, 155, 156)

(29)

The image owner uses the coarse-grained Arnold image permutation algorithm
Enccoarse(I, Kc) to obtain I∗:

I∗(1) =
(

I∗1 (1), I∗(1)2 , I∗(1)3 , I∗4 (1) = (155, 156, 156, 156)

I∗(2) =
(

I∗(2)1 , I∗(2)2 , I∗(3)3 , I∗4
)
= (151, 153, 158, 160)

I∗(3) =
(

I∗(3)1 , I∗(3)2 , I∗(3)3 , I∗(3)4

)
= (152, 152, 153, 154)

I∗(4) =
(

I∗(4)1 , I∗(4)2 , I∗(4)3 , I∗4 (4) = (151, 152, 158, 159)

(30)

The image owner uses the fine-grained image scrambling algorithm Enc f ine(I∗, K f ),
where the encryption key K f = 427, 311, 455, 340, and obtains I′:

I′(1) =
(

I′(1)1 , I′(1)2 , I′(1)3 , I′(1)4

)
= (582, 583, 583, 583)

I′(2) =
(

I′(2)1 , I′(2)2 , I′(2)3 , I′(2)4

)
= (462, 464, 459, 471)

I′(3) =
(

I′(3)1 , I′(3)2 , I′(3)3 , I′(3)4

)
= (597, 597, 598, 599)

I′(4) =
(

I′(4)1 , I′(4)2 , I′(4)3 , I′(4)4

)
= (491, 492, 498, 499)

(31)

Shadow image generation: As shown in Figure 4, the image owner randomly picks
the module Mb and the random mapping parameter A = 996, 601, as well as the secret key
Ka ← (Mb, a, ∆χ) for the module Mb inverse of the random parameter A:

Figure 3. Example of image encryption. The size of the demo image is 4× 4, the coarse-grained
encryption secret key is (11, 10, 01, 00), and the fine-grained encryption key is (427, 311, 455, 340).
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Figure 4. Example of shadow images generation. The random number is 996,601, the module base is
(131, 137, 139, 149, 153), and the corresponding inverse is (39, 87, 115, 72, 97).

Mb = (Mb1, Mb2, Mb3, Mb4, Mb5) = (131, 137, 139, 149, 153) (32)

a = A−1 mod Mb =
(

a(1), a(2), a(3), a(4), a(5)
)
= (39, 87, 115, 72, 97) (33)

The image owner sends the split secret data I′ and the embedding secret key Ka to
the corresponding data hider using a trusted channel. Ĩ(1∼5) is the secret share map of the
difference information obtained by DH(1∼5) with K(1∼5)

a :

Ĩ(1) =
(

I(1)1 , I′(2)1 , I′(3)1 , I′(4)1

)
a(1) mod Mb(1) = (98, 99, 105, 106)

Ĩ(2) =
(

I′(1), I′(2)2 , I′(3)2 , I′(4)2

)
a(2) mod Mb(2) = (80, 81, 87, 88)

Ĩ(3) =
(

I′(1)(1)3 , I′(2)3 , I′(3)3 , I′(4)3

)
a(3) mod Mb(3) = (74, 75, 81, 82)

Ĩ(4) =
(

I′(1)4 , I′(2)4 , I′(3)4 , I′(4)4

)
a(4) mod Mb(4) = (44, 45, 51, 52)

Ĩ(5) =
(

I′(1), I′(2)1 , I′(3)1 , I′(4)1

)
a(5) mod Mb(5) = (32, 33, 39, 40)

(34)

As shown in Figure 5, we can see that
∣∣∣d(1∼5)

max

∣∣∣ = ∣∣∣d(1∼5)
min

∣∣∣ = 1; both are less than or
equal to ∆. Therefore, the data hider performs the data embedding operation for both the
highest and lowest bits to obtain the shadow image share after embedding the data and
sends the secret share to the corresponding SSCP:

Share (1) = (110− 0× ∆, 63, 43, 127 + 1× ∆) = (110, 63, 43, 128)
Share (2) = (108− 0× ∆, 34, 1, 64 + 1× ∆) = (108, 34, 1, 65)

Share (3) = (78− 0× ∆, 49, 14, 124 + 1× ∆) = (78, 49, 14, 125)
Share (4) = (42− 0× ∆, 141, 69, 9 + 1× ∆) = (42, 141, 69, 10)
Share (5) = (65− 0× ∆, 24, 84, 43 + 1× ∆) = (65, 24, 84, 44)

(35)

Figure 5. Example of data hiding phase. The secret data to be embedded are (0,1), and the data
hider first converts the shadow image into a guide image. Subsequently, it performs an embedding
operation on the shadow image based on the difference between the pixels of the guide image.
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As shown in Figure 6, receiver (1∼5) recovers the secret share map that represents the
image difference information and obtains W = [0, 1] after receiving the embedding data
recovery request using K(1∼5)

a . The shadow image recovery and image decryption are the
reverse of the above steps and will not be repeated.

Figure 6. Example of data extraction phase. Receiver first converts the embedded shadow image into
a guide image. Subsequently, it performs an data extraction operation on the shadow image based on
the difference between the pixels of the guide image, and obtains the secret data (0,1).

3.2. Method Analysis

Definition 1. The coarse-fine-grain encryption method combined with PVO performs the encryp-
tion and decryption of the image correctly.

Proof. For an image I, let us suppose the initial position of pixel points is (xn, yn); according
to the coarse-grained encryption and decryption method is Equations (2) and (27), there is[

pq + 1 −p
−q 1

][
xn+1
yn+1

]
mod N =

[
pq + 1 −p
−q 1

][
1 p
q pq + 1

][
xn
yn

]
mod N (36)

and there is [
pq + 1 −p
−q 1

][
1 p
q pq + 1

]
=

[
1 0
0 1

]
(37)

It can be easily seen that [
1 0
0 1

][
xn
yn

]
=

[
xn
yn

]
(38)

Thus, the coarse-grained encryption is lossless and reversible.
Moreover, the fine-grained encryption uses a one-dimensional logical chaotic system

to generate a fixed sequence with the same initial value xo and parameter µ. Therefore,
the random numbers added to the image pixel blocks can be recovered by generating the
same sequence, so fine-grained encryption is lossless and reversible.

Furthermore, (δ1, δ2, δ3, δ4) ← PVO(δ1, δ2, δ3, δ4), where the set (δ1, δ2, δ3, δ4) and
where the set ( delta1, δ2, δ3, δ4) to the set (δ1, δ2, δ3, δ4) is a full projection. The position of
the original pixel can be restored losslessly according to the position relationship table if
the position relationship table is saved with 8 bits. The position of the original pixel can be
restored losslessly according to the position relationship table. Therefore, the correctness of
the encryption and decryption combined with the coarse–fine-grained encryption method
of PVO is proved .

Definition 2. This secret-sharing method can correctly split the encrypted image into multiple
shadow images and recover the shadow image into the carrier image. The message hider embeds the
message, and the receiver retrieves the embedded secret without affecting the lossless recovery of the
carrier image.
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Proof. Let the encryption key of the secret sharing algorithm be Kg = (ϑ, Mb), the original
data are x, and the image owner performs the secret splitting algorithm with Equation (15),
where b1, b2, b3, · · · bk are two mutually prime positive integers, and in the embedding
phase of the data hider, there are

r̃1 = r1 + ∆w(mod Mb1)
r̃2 = r2 + ∆w(mod Mb1)

...

r̃k = rk + ∆w(mod Mbk)

(39)

There must be a unique solution for the embedded data, i.e.,

T = xϑ + w ≡ B1B−1
1 (r1 + w) + · · ·+ BkB−1

k (rk + w)(modB) (40)

In case the image owner needs to recover the carrier image, there is

x =
B1B−1

1 (r1 + ∆w) + · · ·+ BkB−1
k (rk + ∆w)(modB)− ∆w

ϑ

Thus, the splitting and recovery of secret sharing are non-destructive and reversible.
Thus, definition 2 is proved.

Definition 3. The proposed scheme in this paper exhibits a threshold property of (k, n), which
implies that s colluding parties with less than k information embedders would still fail to reconstruct
the images encrypted using PVO’s coarse–fine-grained encryption method.

Proof. We take the example of each data hider having a single shadow image, assuming
there are n data hiders. Let Kg = (ϑ, Mb) be the encryption key of the secret sharing
algorithm, and let I(h, w) ∈ [0, 255] be the original pixel values. To ensure that the split
shadow images still take the form of images, with a maximum single-channel pixel value
of 255, the elements of Mb must satisfy the following:{

128 < Mb(1) < Mb(2) < · · · < Mb(n) ≤ 251 < Mp
}

gcd
(

Mb(i), Mb(j)
)
= 1, i 6= j

gcd
(

Mb(j), Mp
)
= 1, i = 1, 2, . . . , n

gcd
(

Mb(i), ϑ
)
= 1, i = 1, 2, . . . , n

(41)

Assuming the image owner sets a (k,n) threshold during the key generation stage,xϑ
must satisfy the following relationship to achieve the threshold property:

k−1

∏
i=1

Mb(i) < xϑ <
k

∏
i=1

Mb(i) (42)

However, the size of the pixel values x changes after fine encryption. Therefore,
different random ϑ must be set to achieve a dynamically compatible threshold scheme
when setting different values of k:

k−1

∏
i=1

Mb(i)/x < ϑ <
k

∏
i=1

Mb(i)/x (43)

This allows for (k, n) threshold secret sharing. Thus, definition 3 is proved.
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4. Experiments and Numerical Results

The six test images, including “Lena”, “Baboon”, “Barbara”, “Goldhill”, and “Pep-
pers”, are from the dataset used for the experiments. All test images are grayscale images
with a size of 512 × 512. The experimental environment was as follows: host configuration
CPU AMD 5800X, memory 32 GB, operating system Windows 11, programming language
python 3.9, and MATLAB 2022b.

4.1. Performance of Image Encryption

According to the guideline [28], we conduct multiple experiments to ensure the
security of image encryption by testing image randomness, similarity metrics, graphic
correlation, and noise robustness.

Image randomness. The intruder shares two secret images at the same time. To the
naked eye, the shadow image must look like noise. In addition, the shadow images can be
evaluated in a histogram; the more uniform the histogram distribution, the more secure
the proposed scheme is. As shown in Figure 7, the first line is the encryption effect of
Lena, Baboon, Barbara, Goldhill, and Peppers, and the second line is the encryption result
after coarse-grained encryption, which exhibits a strong regularity among pixels, but it
is visually impossible to tell what the original image is. The third line is the encryption
result after fine-grained encryption. From the line, we can see that after the fine-grained
encryption, the statistical features of the gray pixels of the carrier image can be effectively
concealed.

Figure 7. The visual effection of image encryption. The first row (a–b) is the original carrier image,
the second (a(1)–e(1)) is the image after coarse-grained encryption, and the third (a(2)–e(2)) is the
image after fine-grained encryption.

In addition, we propose two evaluation metrics for the similarity metric, which can
be measured by the peak signal-to-noise ratio (PSNR) shown in Equation (44) and the
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structural similarity (SSIM) shown in Equations (45) and (46). PSNR evaluates the similarity
of images and MSE denotes mean square error: PSNR = 10× log10

(
2552

MSE

)
dB

MSE = 1
W×H ∑W

i=1 ∑H
j=1[S

′(i, j)− S(i, j)]2
(44)

SSIM
(
S, S′

)
=

(2µSµS′ + c1)(2σSS′ + c2)(
µ2

S + µ2
S′ + c1

)(
σ2

S + σ2
S′ + c2

) (45)



c1 = (0.01× L)2, c2 = (0.03× L)2,
{x, y | S, S′ and x 6= y}, {L | 0 ≤ L ≤ 255},

µx = 1
W×H ∑W

i=1 ∑H
j=1 x(i, j), σx =

√
σ2

x

σ2
x = 1

W×H−1 ∑W
i=1 ∑H

j=1(x(i, j)− µx)
2,

σxy = 1
W×H−1 ∑W

i=1 ∑H
j=1(x(i, j)− µx)

(
y(i, j)− µy

)
(46)

Furthermore, we use the one-dimensional grayscale entropy of an image to the amount
of average information in an image. The one-dimensional entropy indicates the amount
of information contained in the aggregated features of grayscale distribution in the image
so that pi denotes the proportion of pixels with a grayscale value i in the image. The
one-dimensional grayscale entropy of a grayscale image is defined as, for an image, the
closer the information entropy is to 8, the more confusing the image is. As can be seen from
Table 1, the information entropy of the images after fine-grained encryption can reach 7.999
information entropy, indicating that the proposed encryption effect can meet the security
requirements. As shown in Figure 8, the histogram also shows that the statistical properties
of the original pixels are effectively masked after encryption, which has statistically solid
properties before fine-grained encryption:

H =
255

∑
i=0

pi log pi (47)

Figure 8. The gray histogram of Lena. From left to right are the original carrier image (a), the coarse-
grained encrypted image (b), and the fine-grained encrypted image (c).

Table 1. PSNR, entropy, and SSIM for the encrypted image.

Test Images
Coarse-Grained Encrypted Image Coarse-Grained Encrypted Image Restored Image

PSNR (dB) Entropy SSIM PSNR (dB) Entropy SSIM PSNR (dB) Entropy SSIM

Lena 12.272 7.234 0.030 8.913 7.999 0.011 ∞ 7.234 0
Baboon 12.614 7.358 0.032 9.526 7.999 0.011 ∞ 7.358 0
Barbara 11.666 7.466 0.029 9.104 7.999 0.012 ∞ 7.466 0
Goldhill 11.28 7.478 0.0327 9.040 7.999 0.011 ∞ 7.4777 0
Peppers 9.942 7.571 0.0182 8.430 7.999 0.012 ∞ 7.571 0

Graphic Correlation. Pixel values in plain images are highly similar to their neighbors,
whether located horizontally, vertically, or diagonally. This strong correlation poses a
risk for statistical attacks, necessitating efficient cryptosystems to create non-correlated
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encrypted images. Graphic correlation is a visual inspection of an image’s pixel correlation,
with the horizontal axis indicating pixel intensity and the vertical axis showing neighbor
pixel values.

As shown in Figure 9, we conducted thorough experiments to validate the correlation
between pixels. We performed a block-by-block analysis of the graphic correlation of both
the original image and the image encrypted with our fine-grained encryption system. The
results revealed a significant similarity between the pixel values of the original image and
its neighboring pixels, creating a severe vulnerability to statistical attacks. Additionally,
the correlation pattern over the 45-degree line in the original image was observed to be
strong. The closer the pattern was to this line, the higher the pixel correlation. Nevertheless,
we observed that our fine-grained encryption system generated an encrypted image. A
visual inspection of its graphic correlation revealed strong non-correlation in the horizontal,
vertical, and 45-degree directions. This is due to most neighboring pixels possessing
different intensity values.

Noise Robustness. The transmission channel may cause encrypted images to suffer
from noise attacks or interference, making it difficult to recover the plain image. Therefore,
evaluating noise robustness is necessary for chaos-based image cryptosystems. Our selected
algorithms employ substitution–permutation networks, stream encryption, and one-per-
one pixel encryption, providing certain advantages against noise. With these principles
and bulk image data, the original plain image can still be reconstructed with high visual
quality even during the encryption process. To further enhance the noise robustness of our
method, we have adopted an error correction algorithm. In this algorithm, if the first pixel
value of a 2 × 2 image block is greater than the second pixel value, the second pixel value is
assigned to the first pixel. Similarly, if the third pixel value is greater than the fourth pixel
value, the fourth pixel value is assigned to the third pixel. We test the visual effects of our
proposed algorithm under different levels of noise (1%, 10%, 30%, 50%) to demonstrate
its ability to resist noise attacks, as shown in Figure 10. The test results indicate that our
proposed algorithm with error correction capability has a stronger resistance against noise
attacks than the recovery based on pure chaotic systems, as indicated by the MES results.

Figure 9. Results of the graphic correlation test in the horizontal, vertical, and 45-degree directions.
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Figure 10. Noise robustness: The visual effects under different noise rates (1%, 10%, 30%, 50%) are
shown through the MES results, which demonstrate the stronger ability of the proposed algorithm to
resist noise attacks.

The randomness of shadow images. Assuming that an attacker can share two shadow
images simultaneously, both must be indistinguishable noise classes. In addition, shadow
images can be evaluated in histograms; the more uniform the distribution of the histograms,
the safer the proposed scheme. As can be seen from Figure 11, the histogram distribution is
approximately the same under different module bases, and no valid information can be
distinguished from the shadow image.

Figure 11. Comparison of statistical histograms of shadow images under different modules.

Figure 12 shows the shadow image under different module bases and the data obtained
by embedding the secret key. It can be seen that the shadow image is sufficiently able to
show the correlation between pixels. For the convenience of the display, the pixel box in the
upper right corner corresponds to the pixel value of the first 2 × 2 sub-block in the upper
leftmost corner. It can be seen that each data hider recovers a different guide image, but all
generate the same different histogram.
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Figure 12. Visual display of the shadow images, guide images, and embedded images. The first row
(A–E) is the shadow image, the second row (A(1)–E(1)) is the embedded guide image, and the third
row (A(2)–E(2)) is the shadow image after embedding the secret message statistical histograms of
shadow images under different modulus bases.

4.2. Comparison with the State of the Art

To better measure our proposed method, we introduce an embedding rate formula.
In order to show the embedding strategy more clearly, the embedding rate used to evaluate
the embedding capacity of the proposed scheme and other related schemes is calculated
as follows:

ER(bpp) =
Total number of embedded bits of the image

H ×W
(48)

It can be seen that the embedding capacity is related to the embedding step size and
embedding size. The larger the step size, the larger the embedding capacity, and the more
pronounced the influence on the visual effect.

The statistical histograms of the ciphertext prediction errors for five images are shown
in Figure 13. Since the plaintext prediction error and ciphertext have the same statistical
error, we can use the histogram transfer formula Equations (17) and (18) to hide the data in
the ciphertext images. In addition, the prediction error histograms of the ciphertext images
of “Lena”, “Goldhill”, and “Peppers” are mainly around the value of 0, while the prediction
difference histograms of Baboon and Barbara are far from the value of 0 of the three images
mentioned above. It can also be seen from the table that Baboon and Barbara are different
from “Lena”, “Goldhill”, and “Peppers" in terms of having lower embedding rates.
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Figure 13. Comparison of pixel difference histograms of different images. Images (A–E) repre-
sent the original images, while image (A(1)–E(1)) correspond to the difference histograms of the
encrypted images.

Table 2 shows the theoretical embedding rate/actual embedding rate. We conducted
tests on the actual embedding rate by employing Lena plots and set the three-out-of-four
threshold. It is known from the algorithm proposed in this paper that, for each block, the
pixel corresponding to the maximum value and the pixel corresponding to the minimum
value of the four-pixel blocks can perform embedding, i.e., half of the pixels can perform
embedding after deciding whether the value in the pixel can be embedded in the data
according to different thresholds. In addition, the size of the embedding amount should
be less than the threshold value, and this paper uses the embedding amount of bits 1,
2, 3 corresponding to the threshold bits 1, 2, 3, 4, respectively. The table shows that the
embedding rate is obtained at 1.038, 2.316, and 5.226, depending on how the embedding
amount and threshold bits are selected. It can be seen that the proposed method in this
paper is linear in the growth of the embedding amount. This growth is in line with the
increase in the corresponding embedding amount and the number of threshold bits.

Table 2. Embedding rate of proposed scheme.

Embedding Amount
Theoretical Embedding Rate Actual Embedding Rate

1 bit 2 bit 3 bit 4 bit 1 bit 2 bit 3 bit 4 bit

1 bit 0.5 1.5 1.5 1.5 0.346 1.038 1.305 1.419
2 bit - 3 3 3 - 2.316 2.613 2.838
3 bit - - 6 6 - - 5.226 5.679

We compare the embedding rate of the proposed method with several state-of-the-art
methods. As shown in Table 3, the embedding rate of the proposed method is significantly
higher than those of the prior art methods. Furthermore, the embedding rate of the method
varies with the different histograms of the image. The closer the value in the difference
histogram is to zero, the higher the embedding rate is. Images with smooth textures can
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obtain higher embedding rates, while images with complex textures have lower embedding
rates, such as the image Baboon.

Table 3. Embedding rate among the proposed scheme and state-of-the-art schemes.

Image Name [10] [11] [23] [29] [30] Ours

Lena 0.973 1.575 0.5 3.5 5.3 5.676
Baboon 0.872 0.728 0.5 3.5 5.3 4.776
Barbara 0.96 1.265 0.5 3.5 5.3 5.367
Goldhill 0.963 1.542 0.5 3.5 5.3 5.583
Peppers 0.976 1.545 0.5 3.5 5.3 5.703
Average 0.959 1.331 0.5 3.5 5.3 5.421

This paper and other methods exploit the correlation of natural images, such as MSB
prediction [10,11], and differential extension [23], all of which have embedding rates that
vary with the redundancy of the images. In addition, the method proposed in this paper
does not require data compression. However, it performs data embedding by recovering
histograms that retain pixel difference information through the adaptive generation of
bootstrap maps that automatically generate embedding secret keys, from which high
embedding rates are obtained.

In the scheme comparison, as shown in Table 4, all the compared algorithms use
the Vacating room approach to achieve an embedding efficiency higher than 0.5 bpp.
Among them, [10,11,23] use the Vacating room approach before encryption to increase the
embedding capacity. In addition, the proposed method in this paper uses a combination of
stream encryption and secret sharing based on chaos, which is more secure than other state-
of-the-art algorithms, single stream encryption [10,11], and single secret sharing [23]. In
addition, this paper innovatively proposed a way of generating guidance graphs by shadow
images, which reduces the scheme’s complexity and the variety of information transfer.

Table 4. Feature comparison among the proposed scheme and state-of-the-art schemes.

Scheme Separable Vacating Room Encryption Strategy Multi-Data Hider Availability of Guidance Information

[10] Yes Before Stream cipher No Yes
[11] Yes Before Stream cipher No Yes
[23] No Before Secret sharing No Yes
Ours Yes Before Stream cipher+ Secret sharing Yes No

5. Conclusions

This study addresses several key issues, including reversible information hiding in en-
crypted domains in various data-embedding scenarios, improved encryption effectiveness,
and enhanced information-embedding capability. We propose a lossless RDH-EI method
based on PVO and secret sharing for multiple data hiders, which addressed the problem
of secure and efficient data embedding in encrypted images. The method ensures lossless
embedding and extraction, and the original image’s digital assets can be fully recovered.
The proposed PVO-based secret sharing scheme achieves a high embedding rate and is
significantly better than existing encryption techniques in terms of efficiency and effect.
The combined stream encryption with the secret sharing approach significantly improves
the security of the method, ensuring that the data hiders can embed their data securely
without any fear of data leakage. Moreover, the proposed scheme does not require any
extra guide parameters, which enhances its usability.
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