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Lossy Metamaterials: No Effective Medium Properties without Noise 
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Abstract 

 

Lossy metamaterial elements act as sources of Johnson noise, making such materials inherently 

noisy. A coupled transmission line model capable of describing the effective medium properties, 

propagation and internal reflections, the internal noise distribution and the noise factor is 

developed. Two analyses are provided - numerical solution with limited physical insight and an 

approximation based on physical principles – and excellent agreement is obtained. It is shown 

that the internal noise spectrum is modified as it couples to the electromagnetic wave, and that 

there can be no change in permeability without an increase in the noise factor. This result implies 

that metamaterials will require careful evaluation of their noise performance before use in 

practical devices. 
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1. Introduction 

 

Metamaterials containing metallic resonant elements such as split-ring resonators (SRRs) and 

rods have received considerable attention, because of their ability to provide negative values of 

permittivity and permeability at frequencies up to the optical range, and the exciting potential 

applications arising therefrom [1-6]. The resonant elements are typically arranged in an array and 

a variety of effective medium theories [7-9] and homogenization methods [10-12] have been 

developed to recover the effective parameters with different unit cells. The simplest arrangement 

is a one-dimensional (1D) array [13-15]. In this case the interaction between an electromagnetic 

(EM) wave and the medium can be represented using a lumped-element model in which the EM 

wave is represented as an L-C transmission line and the lossy resonant elements as R-L-C circuits 

[16, 17]. 

 

Considerable attention has been paid to conductor resistance, which introduces propagation loss, 

and to inter-element-coupling, which allows the propagation of lattice waves (for example, 

magneto-inductive [18] and electro-inductive [19] waves for magnetically and electrically 

coupled elements, respectively). However, all resistive elements must act as sources of Johnson 

noise [20-22], with a flat power spectral density. Dielectrics are an alternative source of loss and 

noise. However, a typical L-C resonator might comprise a inductor L with series resistance R and 

a lossy capacitor formed from a material with complex permittivity ε = ε' - jε''. The latter may be 

represented as a lossless capacitor C together with an equivalent series resistor ε''/(ε'ωC), where 

ω = 2πf and f is the frequency, which acts as a thermal noise source. Any associated noise will 

therefore have 1/f spectral dependence and be most important at low frequency [23, 24]. 
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Assuming a frequency-independent loss tangent, the contributions to resistance and noise from 

the two components will be equal when ω/ω0 = Q0ε''/ε', where ω0 = 1/√(LC) is the angular 

resonant frequency and Q0 = ω0L/R is the quality factor of the inductor. For typical values of Q0 

= 100 and ε''/ε' = 10-4, ω/ω0 = 0.01, implying that the inductor will be the dominant noise source 

near resonance. This conclusion will be invalid with purely dielectric resonators. However, 

dielectric noise may be treated in the analysis that follows by appropriately modifying the power 

spectral density of the noise sources. 

 

The aspect of noise appears to have been largely ignored in metamaterials and may have a 

profound impact on any potential applications that involve signals. For example, a noisy 

electromagnetic wave incident on a metamaterial slab as shown in Figure 1a would be expected 

to exit the slab after suffering multiple reflection, attenuation and addition of further noise. While 

amplification may be used to overcome loss, it is considerably more difficult to mitigate the 

effects of noise. 

 

It is well known that noise may also propagate as a wave in distributed electrical circuits [25-33]. 

Recently it was shown that the propagation of noise waves in magneto-inductive (MI) arrays 

alters the power spectral density of the noise quite dramatically [34], and similar effects have 

been noted in other types of electrical lattice [35]. However, interaction with an electromagnetic 

wave was omitted, and the effective medium properties were consequently ignored. Here, we 

extend the analysis of 1D magneto-inductive systems to include magnetic coupling to an EM 

wave in a magnetic metamaterial. We provide two models - a detailed numerical model and an 

analytic approximation - capable of simultaneously predicting the permeability and the noise 
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performance of a medium with effective magnetic properties. In each case, multiple reflections 

are included. We show that the models agree in all their essential points, and that the effects are 

fundamentally linked. There can be no change in magnetic susceptibility caused by resonators 

formed from resistive elements without an increase in the noise factor, a conclusion that can be 

directly anticipated from the fluctuation-dissipation theorem [21, 36-38]. Here, we focus on the 

use of conductors to provide a negative value of µr.  However similar conclusions are likely to be 

reached for negative index media that contain a second source of noise derived from the 

conductors providing a negative value of εr. 

 

In Section 2, we introduce the full model and a method of numerical solution for comparison 

with later approximations. In Section 3, we calculate the dispersion relations of the isolated and 

coupled systems. In Section 4, we use a perturbation solution to estimate the propagation constant 

of the electromagnetic wave and the effective permeability of the medium. In Section 5, we show 

how the power spectral density of the noise in the coupled resonator system may be found. In 

Section 6, we show how this noise is transferred to the EM wave and estimate the noise factor of 

a finite array. Conclusions are presented in Section 7. 
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2. Physical model 

 

Initial analysis of SRRs largely ignored their electric response [1]. However, it was subsequently 

shown that there could indeed be an electric response, depending on the internal arrangement of 

the SRRs and their orientation with respect to the electric field, and that this effect could be 

significant (see e.g. [39-41]). Such a response would of course give rise to a change in effective 

permittivity, and the inclusion of dielectric losses would allow this permittivity to be noisy. 

Further complications (such as electric coupling between the elements) allow magnetic coupling 

to the electromagnetic field to give rise to an electric response, and vice versa, and further 

possibilities for noise. 

 

Here we emphasise that after a decade of active research and a very large number of papers 

exploring the wide range of possible effects in metamaterial lattices, the link between effective 

medium properties and noise has been ignored. As a result, although many exciting phenomena 

such as negative-index materials, epsilon-near-zero materials and transformation optics have been 

explored, and applications such as cloaking and electrically small devices have been proposed, 

there has been no attempt to investigate what may be a significant performance limitation. 

 

In the first paper on the subject, there is a strong case to begin with the simplest possible analysis. 

Such an approach allows a relatively complicated calculation to be presented clearly, without 

being obscured by the details of multiple couplings. In many cases magnetic effects are 

dominant, and furthermore can be engineered to be so through careful design of the elements and 

the lattice [39, 42]. We therefore restrict ourselves to magnetic coupling between the EM wave 
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and the elements and between the elements themselves. With this assumption, the effect of the 

SRRs may be entirely attributed to changes in permeability. 

 

The physical model assumed consists of an EM wave propagating in a waveguide past a one-

dimensional array of coplanar resonant elements such as SRRs. The EM wave is polarized so that 

its magnetic field may interact with the resonators, which then provide an effective magnetic 

medium. Figure 1b shows a low-frequency equivalent circuit, which consists of a pair of coupled 

lines [16]. The resonators are represented as a 1-D lattice of lumped-element circuits of period a, 

with inductance L, capacitance C and resistance R, coupled to nearest neighbours by mutual 

inductance M. Such a line supports MI waves. Due to the resistors, each element contains an 

independent Johnson noise source VNR. The EM wave is represented by a lossless transmission 

line of the same period, with parameters L' = µ0a and C' = ε0a, where µ0 and ε0 are the 

permeability and permittivity of free space, which is terminated with a matched load. The EM 

wave is derived from a signal voltage source VS with output resistance Z0, where Z0 is the 

characteristic impedance of the line. Source noise is represented by the Johnson noise source VNS, 

which is assumed to arise from the source impedance. All noise sources are assumed to have the 

same temperature. Coupling between the lines is represented by mutual inductance M', which 

will be negative here. Currents in the nth element of the EM and MI lines are Jn and In, 

respectively. For ease of comparison with standard Johnson noise expressions, all voltages and 

currents are specified by rms values. 

 

A mathematical model corresponding to Figure 1b may be constructed by using Kirchhoff’s 

voltage law to generate a set of equations relating currents to voltages. We assume N1 sections of 
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EM transmission line, followed by N2 sections of interaction region and finally N3 sections of 

transmission line. However, N1 and N3 need only be sufficient to allow later extraction of 

parameters. The total number of sections is therefore N4 = N1 + N2 + N3, and there are N5 = N4 + 

N2 equations to solve. At the input of the EM line, we will have at angular frequency ω = 2πf: 

 

(Z0 + jωL')J1 + (J1 - J2)/jωC' = V1 

(1) 

Here V1 is an input voltage, which might be due either to signal or to source noise. Between the 

input of the EM line and the interaction region (1 < n < N1), and between the interaction region 

and the load (N1 + N2 < n < N4), we will have: 

 

jωL'Jn + (Jn - Jn+1)/jωC' - (Jn-1 - Jn)/jωC' = 0 

(2) 

Within the interaction region (N1 < n < N1 + N2) we will have  

 

jωL'Jn + (Jn - Jn+1)/jωC' - (Jn-1 - Jn)/jωC' + jωM'In = 0 

(R + jωL + 1/jωC)In + jωM(In+1 + In-1) + jωM'Jn = VNRn 

(3) 

Here the voltages VNRn are due to Johnson noise in the MI waveguide elements. Finally, at the 

load, we will have: 

 

Z0
*JN3 - (JN3-1 - JN3)/jωC' = 0 

(4) 
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Equations 1-4 can clearly be written in matrix form, as V = Z I, where Z is an N5 x N5 matrix 

containing impedances and V and I are N5-element column vectors of voltages and currents, 

respectively. Their solutions can yield a number of results for comparison with later analytic 

approximations. For example, the effects of each voltage source may be found. Where these 

generate travelling waves, forward and backward waves may be separated to yield dispersion 

characteristics for each one, and reflection and transmission coefficients may also be found. In 

addition, they may be solved repetitively, to find the power dissipated in the load when either the 

voltage V1, or one of the voltages VNRn is present in isolation. The results can then be scaled, to 

represent either a signal voltage, or a voltage arising from Johnson noise. Once this has been 

done, addition of powers may be used to find the internal noise or the signal-to-noise ratio (SNR) 

at the output (which may then be compared with the SNR at the input to find the noise factor F). 
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3. Dispersion relations 

 

In general, the EM wave will encounter a finite line of resonators. However, we start by 

considering infinite systems. For the transmission line in isolation, and in the absence of any 

voltage sources, the assumption of travelling wave solutions to Equations 2 leads to the 

dispersion equation: 

 

1 - 2ω0'
2/ω2 + 2(ω0’

2/ω2) cos(kEMa) = 0 

(5) 

Here ω0' = 1/√(L'C') and kEM is the propagation constant of the EM wave. This ω-k relation has 

the well-known sinusoidal variation, providing low-pass propagation up to a maximum angular 

frequency 2ω0'. At low frequencies, it approximates to the straight-line relation kEMa = ω/ω0', and 

leads to the real-valued characteristic impedance Z0 = √(L'/C') = √(µ0/ε0). 

 

Similarly, for a chain of resonators in isolation, this approach leads to the dispersion equation for 

MI waves [18]: 

 

1 - ω0
2/ω2 - jω0/ωQ0+ κ cos(kMIa) = 0 

(6) 

Here ω0 = 1/√(LC) is the angular resonant frequency of the elements, and Q0 = ω0L/R is their 

quality factor, κ = 2M/L is the coupling coefficient and kMI is the propagation constant of the MI 

wave.  For negative κ, the waves are backward. In the absence of losses, this ω-k relation 

provides band-pass propagation over the range 1/√(1 + ⎪κ⎪) ≤ ω/ω0 ≤ 1 / (1 - ⎪κ⎪). Propagation 
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losses are low at mid-band, rising rapidly at the band edges. The effect of a finite Q-factor is to 

allow additional out-of-band propagation, albeit with very high loss. 

 

For the two lines together, Equations 3 yield the dispersion relation [16]: 

 

{1 - 2ρ2ω0
2/ω2 + 2ρ2(ω0

2/ω2) cos(ka)}{1 - ω0
2/ω2 - jω0/ωQ0 + κ cos(ka)} - q2 = 0 

(7) 

Here q2 = M'2/LL’ is the normalised coupling coefficient between the EM and MI waves, and we 

have also introduced the ratio ρ = ω0'/ω0. The dispersion equation may be solved to yield a ω-k 

diagram with two branches. The thin lines in Figure 2a show this characteristic for the lossless 

case, for the example parameters κ = -0.2, q2 = 0.02 and ρ = 20.  These results are in full 

agreement with previous theories, e.g. [7]. The thick lines show the corresponding results 

obtained for the two uncoupled systems, to which the coupled solutions are asymptotic. In this 

frequency range, the asymptotes are straight. For the coupled system, there is a gap between the 

branches near ω/ω0 = 1/√(1 + κ) = 1.118; however, the introduction of loss allows propagation in 

this region. 



11 

4. Effective medium properties 

 

Since the effects of the resonators in this restricted model are entirely magnetic, we first note that 

the relative permeability can be found from the dispersion relation as µr = (ka/kEMa)2, where ka 

corresponds to the electromagnetic branch of the coupled system. In general, k is complex and 

can be written as k = k' - jk''. Its frequency dependence may of course be found, by solving 

Equation 7. The data points in Figure 2b show the variation of ω with k' obtained for κ = -0.2, Q0 

= 100, q2 = 0.02 and ρ = 20. The result is similar to Figure 2a, but the addition of loss has now 

allowed propagation in the gap. Identical results can be obtained by numerical solution of the 

circuit equations for a finite array, separation of the currents into different waves and extraction 

of the relevant propagation constant. 

 

The data points in Figure 3a show the corresponding frequency variation of the real and 

imaginary parts of µr. The variations show typical resonant behaviour, shifted in frequency by the 

magnetic coupling between the elements to a higher resonant frequency ω0/√(1 + κ). Although 

MI wave propagation is supported over a wide band, the effects on the EM wave are restricted to 

the narrow frequency range where the two are almost synchronous. The real part of the relative 

permeability can clearly become negative in this region. 

 

Although the numerical value of ka will be used in subsequent calculations, we now present a 

simple analytic approximation for comparison with published homogenization theories. To do so 

we assume that the resonators provide a loading that alters the propagation constant of the EM 
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wave to k = kEM + Δk.  Substituting into (7), eliminating terms using (5), neglecting second order 

terms and using the low-frequency approximation for kEMa we obtain: 

 

ka = ω/ρω0  - (q
2/2ρ) (ω/ω0) / {1 + κ - ω0

2/ω2 - jω0/ωQ0} 

(8) 

The full line in Figure 2b shows the variation of ω with k' found in this way, for the same 

parameters as before. There is clearly excellent agreement with the numerical solution. The 

agreement worsens as Q0 or q2 rises, since the effect on the EM wave is larger, but for moderate 

parameters the perturbation solution provides a very reasonable approximation. 

 

Dividing (8) by kEMa and squaring the result, we can find the relative permeability as: 

 

µr = [1 - (q2/2) / {1 + κ - ω0
2/ω2 - jω0/ωQ0}]2 

(9) 

If the interaction term q2 is small enough, we then get: 

 

µr = 1 - q2 / {1 + κ - ω0
2/ω2 - jω0/ωQ0} 

(10) 

Equation 10 is clearly identical to expressions commonly found in the literature, if q2 is identified 

with the so-called ‘filling factor’ (see [1, 7], or the discussion of five separate models for µr in 

Sec. 2.8 of [43]). The full lines in Figure 3a show its predictions, for the same parameters as 

before. Once again there is excellent agreement with the numerical result (the data points). 
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A change in µr from unity will of course give rise to reflection at the array boundaries, as shown 

in Figure 3b. Since the model allows a pair of coupled modes, transmission and reflection are 

both in general accompanied by mode conversion: an electromagnetic wave incident on the array 

boundary will actually excite not only an E-M like transmitted wave, but also a MI-like wave. 

Here for simplicity we ignore the latter, and assume amplitude reflection and transmission 

coefficients r1, t1, r2 and t2 for the EM-like wave in standard forms valid for low frequency 

current waves incident on a discontinuity between transmission line sections with different 

magnetic properties: 

 

r1 = (kEM - k) / (kEM + k) t1 = 2kEM / (kEM + k) 

r2 = (k - kEM) / (kEM + k) t2 = 2k / (kEM + k) 

(11) 

 

The lines in Figure 3b show the frequency dependence of ⎪r1⎪
2 and ⎪t1⎪

2 for the same parameters 

as Figure 3a, which shows that these coefficients differ from zero and unity only when the 

relative permeability also differs significantly from unity. As before, the data points show results 

obtained from the numerical model. Good agreement is again obtained, with only slight 

discrepancies where the interaction is at its strongest. Furthermore, examination of the numerical 

model shows that the MI-like wave is indeed only weakly excited. 
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5. Internal noise  

 

We now consider the internal noise, which arises from Johnson noise in the resonators. If the 

coupling to the EM wave is weak, little of this noise will be transferred. We therefore begin by 

considering the resonator array in isolation, assuming this time that it is finite and extends from n 

= 1 to n = m. For comparison with the full numerical model, we will take N2 = m. 

 

At frequencies low enough for the noise spectrum to be flat, each of the internal noise sources 

will have rms voltage VNR such that VNRVNR* = 4KTRdf in a small bandwidth df [20, 21]. Here 

K is Boltzmann’s constant and T is absolute temperature. Elsewhere [34], we have shown that 

each source in isolation will excite travelling waves, which are reflected at the ends of a finite 

array as standing noise waves as shown in Figure 4a. These waves may then be coupled to the 

electromagnetic line as shown in Figure 4b. However, we will postpone consideration of the 

more complicated geometry until the following section. 

 

The driven response of the finite array can be found using a simple theory previously presented 

for a rather different problem (point excitation in near-field imaging devices [44]). This paper 

showed how the complete response to excitation of an arbitrary lossy magneto-inductive array 

could be found as an expansion in terms of the eigenmodes of the same array when lossless and 

undriven. For the particular case of a regular array with rectangular boundaries, the mode shapes 

and eigenvalues can be found analytically, allowing calculations to be performed extremely 

simply.  For the 1-D array here, the current in the rth element due to a source in the sth element 

can be found as: 
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Irs = (VNR/R) ν=1Σ
m isν irν / λν 

(12) 

Here isν is the normalised shape of the νth resonant mode of the equivalent lossless line, given by: 

 

isµ = √{2/(m + 1)} sin{sνπ/(m + 1)}  with ν = 1, 2 … m 

(13) 

The term irν is similar, but has s replaced with r. The terms λν are: 

 

λν = {1 + jQ0(ω/ω0)(ω0
2/ων

2 - ω0
2/ω2)} 

(14) 

Here ων is the angular resonant frequency of the νth eigenmode, given by: 

 

ων

2/ω0
2 = 1/√{1 + κ cos[νπ/(m + 1)]} 

(15) 

From Equation 12, we may obtain: 

 

IrsIrs* = (VNRVNR*/R2) ⎪ν=1Σ
m isν irν / λν⎪

2 

(16) 

Incoherently summing the effect of all noise sources then yields: 

 

IrIr*R = (VNRVNR*/R) s=1Σ
m ⎪ν=1Σ

m isν irν / λν⎪
2 

(17) 

Using the orthonormality of the modes, we then obtain: 

 

IrIr*R = (VNRVNR*/R) ν=1Σ
m

 irν
2 / ⎪λν⎪

2 

(18) 

This result may be written as IrIr*R = P (VNRVNR*/R). Here P is a normalised power spectral 

density (PSD) describing a modification to the otherwise flat spectrum of Johnson noise caused 

by the reactive elements in the array, given by: 
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P(ω, r) = ν=1Σ
m

 irν
2 / ⎪λν⎪

2 

(19) 

This result may be written in full as: 

 

P = {2/(m + 1)} ν=1Σ
m

 sin2{rνπ/(m + 1)} / {1 + [Q0(ω/ω0)(ω0
2/ων

2 - ω0
2/ω2)]2} 

(20) 

The PSD was discussed extensively in [34], and shown to depend on the number of elements m, 

the position r, the coupling coefficient κ and the Q-factor. Figure 5a shows its frequency variation 

for a 9-element array with κ = -0.2 and Q0 = 100. The thick and thin lines show results at the 

array edge (r = 9) and centre (r = 5) respectively. In each case, there is a set of resonances. At the 

edge, all nine modes are visible. However, only five can be seen at the centre, since the anti-

symmetric modes all have zeros at this point and hence make no contribution. Figure 5b shows 

similar results, for a 49-element array. Now the resonances are starting to form a continuum. At 

the array centre, the PSD has assumed a characteristic shape, which tends to the homogeneous 

result obtained in an infinite array with peaks at the band edges where the propagation losses and 

modal density are both high. The same results are obtained using the numerical model, if the EM 

wave is omitted. 
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6. Noise factor 

 

We now consider how the internal noise is coupled to the EM wave. One obvious question is 

whether the internal noise of the array, which exists over the whole MI band, is transferred to the 

EM wave unaltered. We also estimate the noise factor F of the array, which is given by: 

 

F = (SIn/NIn) / (SOut/NOut) 

(21) 

Here SInand NIn and SOut and NOut are the signal and noise powers at the input and output. In a 

linear device, the noise factor is an intrinsic property and does not depend on the signal power. A 

key test of the performance of metamaterial devices will be how their attenuation and noise factor 

compare with those of more conventional solutions. 

 

In addition to the full numerical model, we develop an analytic model to explain the physics. 

Because so many simultaneous equations are involved, construction of such a model is only 

possible if sweeping approximations are made. Effectively, these amount to assuming weak 

coupling between the EM wave and the array, so that the perturbations to the propagation 

constant of the former and the noise distribution of the latter are both relatively small. 

 

Even an approximate model should include reflection at the array boundaries. For example, an 

incident EM wave should be transmitted at the array input, multiply reflected an infinite number 

of times, and then transmitted at the output. The amplitude Jm of the current representing the 

wave at the output of the array may be related to the amplitude J0 at the input by the sum-of-all-

paths method as: 
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Jm = J0 t1t2 exp(-jmka) {1 + r2
2 exp(-2jmka) + r2

4 exp(-4jmka) ... } 

(22) 

Summing the exponential terms allows this result to be written as Jm = J0t, where t is an overall 

amplitude transmission coefficient, given by: 

 

t = t1t2 exp(-jmka) / {1 - r2
2 exp(-2jmka)} 

(23) 

Clearly Equation 23 describes a Fabry-Perot response that allows resonance whenever the round-

trip phase change in the array is a whole number of multiples of 2π. However, since the reflection 

coefficient r2 is significantly different from unity only at frequencies when there is also loss, 

high-finesse resonance is unlikely to occur. 

 

As a result of these effects, both the signal and the input noise power alter as they propagate 

through the array. Hence we can write: 

 

SOut = SIn ⎪t⎪2 

NOut = NIn ⎪t⎪2 + NAdd 

(24) 

Here NIn is the available noise power of the source and NAdd is the additive noise generated in the 

resonator array. The noise factor is therefore: 

 

F = 1 + NAdd/(NIn⎪t⎪2) 
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(25) 

For a Johnson noise source at the input, we can immediately write Nin = KTdf for a small 

bandwidth df [22]. However, to find Nadd, we must consider how noise is transferred from the 

resonator array to the EM wave. For weak coupling, a single current In in the nth array element 

will excite a pair of waves into the EM line, travelling in either direction as shown in Figure 4b. 

It is simple to show that the amplitude of each wave is κΝ In, where κΝ is a coupling coefficient 

given by: 

 

κΝ = -(j/ka)(M'/2L') (ω/ρω0)
2 

(26) 

Excitation of these waves is due to the currents Irs previously given in (12). If coupling of noise 

back into the array is neglected, the additive noise is the total power dissipated by all such waves 

in the load, taking care to account for any coherent effects and multiple reflections. For example, 

summing all the waves due to a single noise source in the sth resonant element yields an EM 

current wave leaving the array with total amplitude: 

 

JTs = κΝ r=1Σ
m Irs [exp{-j(m - r)ka} + r2 exp{-j(m + r)ka}] tN 

(27) 

Here the first exponential describes contributions from all those noise waves that are initially 

forward going, the second describes all waves that are initially backward-going and tN is an 

overall amplitude transmission coefficient that can again be found by the sum-of-all-paths 

method as: 
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tN = t2 {1 + r2
2 exp(-2jmka) + r2

4 exp(-4jmka) ... } 

(28) 

Or as: 

 

tN = t2/{1 - r2
2 exp(-2jmka)} 

(29) 

Clearly, the transmission coefficients of the input wave and the additive noise wave are related, 

as tN = (t/t1) exp(+jmka) and ⎪tN⎪
2 = ⎪t/t1⎪

2 exp(2mk''a). Consequently, Fabry-Perot resonance 

will affect both together, and many of the effects will cancel in the final noise factor. 

 

Incoherent addition of the effects of all such noise sources then involves a sum of the form JTJT* 

= s=1Σ
m JTsJTs*. Combination with the results of the previous section shows that this can be 

written as: 

 

JTJT* = p (κΝκΝ*4KTdf/R)⎪tN⎪
2 

(30) 

Here the function p is given by: 

 

p(ω, m) = s=1Σ
m ⎪r=1Σ

m ν=1Σ
m (isνirν/λν) [exp{-j(m - r)ka} + r2 exp{-j(m + r)ka}]⎪2 

 (31) 

The additive noise power dissipated in the load may then be found as 

 

NAdd = Z0 JTJT* 

(32) 
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Substitution of (32) into (25) shows that the noise factor must be: 

 

F = 1 + p(4κΝκΝ*Z0/R) exp(2mk''a)/⎪t1⎪
2 

 (33) 

Minor substitutions then allow this result to be written in the following form: 

 

F = 1 + p(q2/⎪ka⎪2)(Q0ω/ω0)(ω/ρω0)
3 exp(2mk''a)/⎪t1⎪

2 

 (34) 

The full line in Figure 6a shows the frequency variation of the noise factor obtained using this 

model, for a 9-element array with the same parameters as before (κ = -0.2, Q0 = 100, q2 = 0.02 

and ρ = 20). F is close to unity, except at peaks near a discrete set of frequencies that correspond 

to noise resonances in the magneto-inductive array. Comparison with Figure 5a shows that only 

odd-order modes can be distinguished, with successively decreasing amplitude. Consequently, 

the power spectral density of the noise is altered very significantly as it is transferred to the EM 

wave. The full line in Figure 6b shows corresponding results for a 49-element array. Now only a 

single peak may be seen. This peak corresponds to coupling at the frequency at which the 

effective permeability is most different from unity in Figure 3a. 

 

The explanation for this behaviour can be found in the form of the function p. For large arrays, 

the second exponential in (31) may effectively be disregarded, since it will be heavily reduced by 

attenuation. The summation then represents a phased addition of a single set of terms, and only 

those adding coherently (which requires the EM and MI waves to be synchronous) will give a 

significant result. This condition coincides with the condition required for a magnetic effect. 

Unfortunately, it also corresponds to a frequency range in which the internal noise density is high 
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at the centre of the array. Furthermore, both µr - 1 (the magnetic susceptibility) and F - 1 (the 

excess noise factor) are proportional to q2, showing that the two are inescapably linked. 

 

The data points in Figures 6a and 6b show the corresponding results from the numerical model. 

Although there are some small discrepancies in the peak heights, the qualitative agreement is 

excellent. This result is striking considering the sweeping approximations made in deriving the 

analytic model, and confirm its essential validity. Effectively it can provide the same results as a 

combination of multiple solutions of large numbers of simultaneous equations, and therefore 

represents a homogenization procedure. For large arrays, the noise factor is determined almost 

entirely by the propagation constant k and the power transmission coefficient ⎪t1⎪
2. Here we have 

used the value of k, so any discrepancies are largely due to the errors in the transmission 

coefficient previously shown in Figure 3b. For large m, the analytic model provides a slight 

overestimate of F; however, both models predict an exponential increase of F - 1 with distance as 

would be expected. 

 

The peak value of F in Figure 6a is approximately 2, corresponding to a noise figure of ≈ 3 dB. 

Clearly, this result is obtained at the peak of the absorption band, an undesirable operating point. 

However, the results are clearly considerably worse - and completely unrealistic for device 

applications - in Figure 6b. Better noise figures are clearly obtained off-resonance, but in this 

frequency range the effect of the medium on the wave is reduced. Further calculations show that 

the peak attenuation and noise factor increase with Q0. However, the frequency range over which 

both are large reduces at the same time, increasing the range of useable performance. 
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As presented, the expression for the noise factor is relatively clumsy, and further simplifications 

will certainly be possible. Several terms are slowly varying with frequency, and others tend to 

simple limits as m rises. However, since thick slabs have high loss, careful thought will have to 

be given as to how usable loss and noise performance may be combined with negative 

parameters. 

 

For a single Johnson noise source, the available noise power (i.e. the power that can be 

transferred to a matched load) is Pav = KTB, where B is the bandwidth [22]. At room temperature 

(T = 293 K), we therefore obtain Pav = 4 x 10-14 W, 4 x 10-13 W and 4 x 10-12 W for example 

bandwidths of B = 10 MHz, 100 MHz and 1 GHz, respectively. These powers are clearly small, 

and the cumulative effect of a many noise sources would be required to obtain a large total noise 

power. However, it should be emphasised that in any noise factor calculation one is effectively 

making comparisons between a relatively small additive noise and a source noise power of 

similar magnitude. 
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7. Conclusions 

 

We have demonstrated a physical model capable of simultaneously describing the effective 

magnetic properties and noise of a one-dimensional array of magnetically coupled resonators 

containing resistive elements. The model shows that any coupling between a resonator array and 

an electromagnetic wave that gives rise to an alteration in effective permeability also transfers 

noise to the wave, with a spectral distribution that is related to the power spectral density of the 

Johnson noise in the array. The transferred noise is concentrated in exactly the frequency range 

where significant changes in effective permeability occur, so that all such media must be 

inherently noisy.  

 

We have found a full solution of the model relying on generalized Kirchhoff equations. Since it is 

only a numerical solution leading to no physical insight, we have also solved the problem of 

noise transfer by a set of approximations that render the mathematical problem tractable and offer 

a clear physical picture. The full solution has been compared with the analytic approximations for 

the propagation constant, relative permeability, Fresnel coefficients, internal noise distribution 

and noise factor, and excellent agreement has been obtained in each case. 

 

The model was chosen to be as simple as possible, subject to the condition that it should yield a 

realistic description of noise. We have restricted the model to purely magnetic interaction 

between the EM wave and the metamaterial array, and to purely magnetic interaction between the 

elements. Future generalisations might involve modification of the equivalent circuit to include 

modelling of: 

i) Conducting rods (to model noise in negative index materials) 
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ii) Electrical interaction between the EM wave and the elements 

iii) Electrical interaction between the elements 

iv) Non-nearest neighbour interactions between the elements 

v) 2D and 3D arrays 

vi) Loss and noise associated with lossy dielectric elements 

Calculations could again be performed directly using a numerical approach, or analytically in 

terms of noise waves. In each case, care would be required to extract the full range of anisotropic 

effective medium properties, but many techniques exist for doing so. However, we emphasise 

that the effects of any additional noise sources are likely to be cumulative, since these are un-

correlated. 

 

Even without these developments, we may draw conclusions about the use of gain. Gain may 

certainly be used to compensate for attenuation, but only front-end amplification will lead to 

much improvement in the noise factor because distributed amplification will also amplify any 

noise due to the medium itself, and, even worse will create additional noise due to the 

amplification process. The implications are that all devices designed to exploit negative index 

media that contain lossy elements should be critically examined for their noise performance. 
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8. Figures 

 

1. a) Accumulation of loss and noise in a RF metamaterial slab; b) coupled circuit model of an 

electromagnetic wave interacting magnetically with a chain of lossy resonators. 

2. a) Dispersion characteristic of lossless coupled system, for κ = -0.2, q2 = 0.02 and ρ = 20 

(thin lines); corresponding result for uncoupled EM and MI systems (thick lines). b) 

Dispersion characteristic of the electromagnetic wave in a lossy coupled system, for the 

parameters above and Q0 = 100. Points: numerical solution; line: approximate solution. 

3. Frequency variation of a) the real and imaginary parts of the relative permeability and b) the 

transmission and reflection coefficients at the array input, for κ = -0.2, Q0 = 100, q2 = 0.02 

and ρ = 20. Points: numerical solution; lines: approximate solution. 

4. Model for a) excitation of noise resonances in a resonator array, and b) coupling of the array 

noise to the EM wave.  

5. Frequency variation of the normalised noise PSD, for a) a 9-element and b) a 49-element 

resonator array in isolation. In each case κ = -0.2 and Q0 = 100, and the thick lines show 

results for the array edge and the thin lines for the array centre. 

6. Frequency variation of noise factor, for an electromagnetic wave coupled to a) a 9-element 

and b) a 49-element resonator array. In each case, κ = -0.2, Q0 = 100, q2 = 0.02 and ρ = 20. 

Points: numerical solution, lines: approximate solution.  
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